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Previous experiment on Fe/Cr/Fe�001� trilayers reported a surprising observation that the interlayer ex-
change coupling could be enhanced drastically by the bombardment of irradiation even at low fluences. We
propose that it is due to the resonant states in the spacer made possible when the topography of both interfaces
is correlated and exhibits prominent Fourier components. A systematic procedure is developed to handle the
interface roughness and predict on how to optimize the interlayer coupling. This method can be extended to
bridge the gap between theories and experiments in other heterojunctions.
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I. INTRODUCTION

The interlayer exchange coupling has been studied for
more than 20 years1–6 with applications in phenomena such
as giant magnetoresistance7,8 �GMR� and tunneling magne-
toresistance �TMR�. When it comes to estimate the effect of
interface roughness �IR� on the coupling, there are few mi-
croscopic theories other than resorting to static average.4,9–11

A recent experiment12 reported that the strength of the cou-
pling in Fe/Cr/Fe�001� trilayers could be modified in a con-
trolled manner and enhanced even at low fluences by the
ion-beam irradiation. The ion bombardment is known to be
an excellent tool for patterning magnetic areas on interfaces
of multilayer system without changing the sample
structure.13

This enhancement of interlayer coupling is not expected
by the conventional approach to statistically average over the
IR. Many experiments12,14,15 have been dedicated to address
this surprising finding. They tailored the interface into exhib-
iting certain patterns by the ion-beam irradiation, but so far
there is no conclusive result.14,15 Among the many possible
coupling mechanisms in the trilayer systems that might give
rise to this enhancement, the authors of Ref. 12 have esti-
mated the percentage of having the magnetic bridges and
concluded that their contribution to the coupling was minor.
The spin-density wave in bulk chromium has been
known16,17 to be crucial at understanding how the electronic
structure and the topology of Fermi surface influence the
magnetic properties of Fe/Cr multilayers. However, since the
enhanced coupling was observed with a spacer of only eight
monolayers,12 the indirect exchange is more likely to be me-
diated by the conventional Ruderman-Kittel-Kasuya-Yosida
interaction6 instead of spin-density waves which occur17,18

only above a critical thickness of 30 monolayers. Another
possible candidate for the coupling is magnetic-dipole
interactions19 made possible by IR. Nevertheless, it is not
likely to dominate the coupling because the analysis of scan-
ning tunneling microscope �STM� images showed that the
thickness fluctuation of the spacer in Ref. 12 was only one
monolayer.

In this paper, we present another microscopic theory
based on a perturbative treatment of the IR. This modifies the
wave function of the conduction electrons in the spacer and
the interlayer coupling they mediate. Mainly, we found two

additional terms to the scattering wave functions due to the
topography of IR besides the usual static average results.
How and when these extra terms can lead to enhancement of
the interlayer coupling is addressed.

In Sec. II, we discuss the energy spectrum of quantum
well states �QWSs� in a trilayer system, which is shown to be
broadened by the rough interface, as expected20 from taking
the static average. In addition, when the two interfaces are
assigned a common periodic variation, the spectrum will get
shifted upward. In Sec. III, a resonance is predicted to occur
when the length scale of IR matches the spacer width or the
Fermi wavelength. We propose that the latter matching is
responsible for the enhancement of interlayer coupling by
the ion-beam bombardment. Conclusions and discussions are
arranged in Sec. IV, in which other coupling mechanisms,
such as the magnetic-dipole interaction and the biquadratic
coupling and the effect of alloying at the interface, are ad-
dressed. To preserve the conciseness of the main text, de-
tailed calculations are all arranged in Appendixes A–D.

II. ROUGH INTERFACE AND CORRECTIONS TO
QUANTUM WELL STATES

We start by studying a simple two-dimensional �2D� case:
an interface described by x=A sin�py� and assumes the ef-
fective mass to be the same for carriers at different sides of
the interface. As a plane wave comes in with momentum
�kx ,ky� from the left, we assume that the amplitude A of the
roughness to be much smaller than both 1 /kx and 1 / p. The
kxA�1 allows us to treat the roughness as a perturbation,
while pA�1 precludes the possible emergence of local states
at the interface, as in water waves along the coastline. Under
this limit, the action of static averaging over one rough in-
terface can be shown to be equivalent to the scattering of two
effective smooth interfaces: the first and second terms in Eq.
�1�. While, the topography at the interface creates the third
and fourth terms, of which the strength is proportional to A
and ky is shifted by p

�in �
1

2�eikxA/�2�in
0 �x −

A
�2

,y� + e−ikxA/�2�in
0 �x +

A
�2

,y��
+ aq�1
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�1�e−iq2xx+i�ky+p�y , �1�

where �in
0 �x ,y� denotes the wave function scattered by a
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smooth interface and aq�1,2
�1� are defined in Appendix A, which

contains details of the first-order perturbation calculations.
In a trilayer system, QWS determine the interlayer ex-

change coupling. It is crucial to study the variation in QWS
due to the IR, which broadens the resonance peaks, shifts the
energy spectrum, and sometimes reduces the number of
bound states. We find that the energy shift becomes large
when �1� 1 / p is comparable to the thickness of the spacer D
and �2� the topographies on these two interfaces are corre-
lated, which feature could not be obtained by the static
average4,9,10 or another approach which combined it with the
Green’s function.21 An example is shown in Fig. 1, assuming
both interfaces exhibit the same topography x=A sin�py�.
From Appendix C, it is shown that the only effect of static
average is to broaden the peaks in the energy spectrum that
represent bound states. When the first-order perturbation cor-
rections due to the IR are added, the spectrum becomes
shifted and the original bound states near the barrier edge can
become unbounded. This shift has been observed in the pho-
toemission experiment.20 Note that both features are more
pronounced at high-energy states because the shorter wave-
length of QWS renders them more susceptible to the topog-
raphy of the interface. We shall discuss later our finding that
the p�1 /D that causes the biggest spectrum shift often
brings about the greatest enhancement or suppression of the
interlayer coupling. Other details, such as the interface inter-
mixing and Brillouin-zone dilation,22 seem not to be crucial
for qualitative predictions.

A similar feature is found in the scattering states, namely,
interlayer coupling can be enhanced or suppressed by the IR
when �1� the topographies on both interface are correlated
and when �2� p happens to be comparable to one of the
wavelengths k that satisfy the condition for the Fano reso-
nance. Although the shift of these k by IR is small, they
somehow collaborate to create a profound effect on the cou-
pling.

III. INTERLAYER EXCHANGE COUPLING

In this section, we will study the effect of IR on the in-
terlayer exchange coupling for a three-dimensional �3D�

trilayer system, which consists of a spacer of width D and
potential V=0 sandwiched between layers L and R with po-
tentials VL and VR, respectively. Assuming the lattice struc-
ture along the planar directions of the interface is ideal, the
coupling strength is a superposition of the contributions from
all the QWS in the interface Brillouin zone4,6 �IBZ�. The
existence of interfaces without the IR affects the total elec-
tron energies of the spacer; the shift of which equals

�E =
− 1

4�3 Im	
n=1

�
1

n



−�

EF

dE

IBZ

d2k��rL,k�

n rR,k�

n e2ink�D �2�

per unit area of interface. The reflective coefficients rL/R at
the left/right interface are functions of the wave number
along the normal direction of the interface k�, which de-
pends on the energy E and k�� �k� −k��. The integer n denotes
the number of round-trip reflections by the two interfaces. In
the presence of IR, two corrections are introduced to Eq. �2�:
static average terms in Eq. �1� come in through the rL/R,
while the last two terms due to the perturbation contribute
additional close loops when the topography of both inter-
faces is correlated. By the use of the T-matrix and perturba-
tion methods, we derive the energy shift in Appendix B,
which takes the form

�Er �
2

�2��3 Im

−�

EF

dE

IBZ

d2k���	
n

− 1

n
rR,k�

n

��1 − dL
2k�
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+ 	
qy
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�1� bR,qyky

�1� ei�q�+k��D� , �3�

where dL/R are corrections after averaging the IR on the left/
right interface, and bL,kyqy

�1� �bR,qyky

�1� � are additional transmis-
sion coefficients from momentum k� ,ky� to q� ,qy� �vice
versa� induced by the tomography on interface L�R�. We
checked that the above equation indeed reduced to Eq. �2� at
the limit of p→0.

An important application of trilayers is the GMR and
TMR systems where the two side layers exhibit permanent
magnetization. When they are ferromagnetically coupled, the
energy shift by Eq. �2� can be calculated by evaluating the
reflective coefficients under the corresponding Zeeman field.
It is found to differ from that of the antiferromagnetic case.
The magnetic coupling strength J�D� can then be defined as
the difference between these two energies.6 For simplicity,
we assume the two magnetic layers to be of the same mate-
rial and their interface topographies are correlated. After
some routine calculations in Appendix B, the magnetic cou-
pling is found to be

J�D� �
2
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FIG. 1. Photoemission intensity is plotted as a function of the
energy of quantum well states when both interfaces exhibit the
same topography x=2A sin�py�. The results for smooth interfaces
are plotted in dashed line for comparison. The gray line takes care
of the IR by static average, while the solid line further considers the
corrections due to the first-order perturbation. The parameters cho-
sen for this plot are m�=1, the depth of quantum well is V0=0.5 in
unit of Ry /�2, 2A=0.5 in unit of the Bohr radius, p=0.5, broaden-
ing factor defined in Appendix C is set to be 1, and D=6.8.
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where rp /rap denote the reflective coefficients for carriers
with spin parallel/antiparallel to the magnetization of the
layer they reflect from.

A. Uncorrelated interfaces

An intuitive equation, which resorts to static average over
the IR, has been widely used by experimentalists and theo-
rists alike4,9–11

J̄�D� = 	
n

w�n�J�nd� , �5�

where w�n� is the weighting of n layers among the various
widths between two rough interfaces, d is the width of one
unit layer in the spacer, and D is defined as the mean width
	nw�n�nd. This weighting w�n� is usually assumed to obey
the Gaussian distribution.4,9–11

When the IR on the two interfaces is uncorrelated, the last
term in Eq. �4� due to their interference vanishes. The re-
maining term is shown in Fig. 2 to be equivalent to the static
average. It can be seen from the figure that uncorrelated IR
always reduces the coupling strength but retains the same
period as the exact result for smooth interfaces, which turns
out to be roughly � /kF as predicted by the Ruderman-Kittel-
Kasuya-Yosida formula—a second-order result.

B. Correlated interfaces

When the topography of both interfaces is correlated, the
close loops in Eq. �4� formed by the interference will survive
and give rise to new signatures. The correlation can be
introduced22 by the ion irradiation through the trilayer, which
has the capacity of rearranging the atoms on both interfaces.
Although Ref. 12 used an ionized helium of 5 keV, smaller
than the 2 MeV Au+2 in Ref. 22, we believe this correlation
is still possible because the penetration depth is inversely
proportional to the cross section of the incoming ions. Con-
sider the extreme case that both interfaces share the same
topography, A�y�=sin�py� /3 in unit of a0. The coupling
strength is plotted in Fig. 3 with the same parameters as Fig.
2. Since the gray and dashed lines are for different p, it is not

surprising that they oscillate with different period. However,
when D is much larger than the amplitude of both topogra-
phy, the roughness becomes immaterial and both lines start
to merge with the solid line for smooth interfaces. This is
consistent with the experimental observation that the effect
of irradiation diminishes when the spacer gets thicker.12 The
important feature to note here is that unlike Fig. 2 where
uncorrelated roughness always diminishes the coupling
strength, the coupling here can be enhanced at certain D, as
was observed experimentally.12

The coupling constant J is plotted in Fig. 4 as a function
of p for two fixed values of D. Two signatures are worth
noticing. �1� Both lines exhibit two peaks—the sharp one has
been discussed in Sec. II to occur at p�1 /D and is caused
by the bound state, while the broad one at p�kF comes from
the scattering state where we chose kF�1; �2� the coupling
strength decreases when p�1.

Let us now generalize to a 3D trilayer. Again, assume the
two interfaces to share the same topography, A�y ,z�
=1 /3 sin��ny�sin��nz�, after being irradiated by ion beams
with fluence n. The variation in the coupling strength with
respect to n is plotted in Fig. 5, which resembles the gray
line for the 2D case in Fig. 4. The position of the first peak is
shifted down to such a small value that it is hard to discern it
in the figure. Note that both the qualitative behavior and
position of the second peak in Fig. 5 agree excellently with
the solid-circle line in Fig. 3 of Ref. 12 by Demokritov et al.
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FIG. 2. Coupling strength in unit 10−5Ry /�2a0 between rough
interfaces with random topography in 2D is calculated by Eq. �4�
�in dashed line� and the static average Eq. �5� �in gray line� as a
function of the average width D in Bohr radius a0. The parameters
we used are the Fermi energy EF=1, Vp=0.01 and Vap=0.1 �energy
unit is Ry /�2�, and the maximum amplitude of the IR on both
interface is a0 /3. For comparison, the result for smooth interfaces is
plotted in solid line.
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FIG. 3. Coupling strength is plotted as a function of the average
film width D as Fig. 2 with the same parameters except that the two
interfaces are now assumed to share the same topography A�y�
=1 /3 sin�py�. Again, the result for smooth interfaces is shown in
solid line for comparison. The gray/dashed lines represent p
=0.05 /1.5, respectively.
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FIG. 4. Absolute value of the coupling strength for the same 2D
trilayer in Fig. 3 is replotted as a function of p for a fixed D. The
solid/gray lines are for D=6 /7a0, respectively. The resonance peaks
appear near p�1 /D.
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The reason why we did not extend the ion dosage to higher
values is that they violate the requirement pA�1 mentioned
in the beginning of Sec. II for the perturbation method to
work.

IV. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have developed a perturbative method
to handle the interface roughness. The broadening of the
peaks in the spectrum and the usual trend of suppressing the
interlayer coupling can be calculated quantitatively by our
procedures, but they are already captured by the previous
method of static average. What is special about our method
is that it can predict an enhancement in the interlayer cou-
pling, as has been reported experimentally, when the Fourier
transformation of the topography on both interfaces is domi-
nated by the same prominent component p which is compa-
rable to kF. We ascribe it to the scattering states under such a
correlation. In the mean time, if p is close to the inverse of
the average spacer width, we show that the bound state,
namely, the peaks in the spectrum will be shifted and give
rise to another sharper anomaly in the interlayer coupling,
which can be either an enhancement or a suppression de-
pending on the specific value of D and p. Under the classical
mechanism of dipole interactions,19 correlations between the
topography on both interfaces have been studied to give rise
to an enhanced coupling. However, it is precipitated by the
largeness of IR amplitude instead of when p�1 /D or kF.

Biquadratic coupling4,23 has been known to coexist in the
trilayers with the bilinear one that we calculated in this work.
For completeness, we have also checked the effect of IR on
the intrinsic biquadratic coupling by the perturbative ap-
proach. It is found to be enhanced as well under the same
conditions as the bilinear term. However, the enhanced
strength remains 3 orders of magnitude smaller than the lat-
ter, which conclusion is similar to that reported6 for a smooth
interface and without the intralayer coupling.

Another common feature linked to the ion-beam irradia-
tion is the alloying effect. Although this is more likely to take

place at the interface, the possibility of its happening in the
whole spacer cannot be excluded. When this occurs at some
special composition, the nesting effect24 might come about
and give rise to an enhanced interlayer coupling. The effect
of alloying at the interface is considered in Appendix D. It is
found to always suppress the interlayer coupling consistent
with the conclusion of ab initio calculations.25 When the in-
terdiffusion is severe, the reduction is exponential. If the ex-
tent of alloying is narrow, the correction is small and the
relative enhancement due to the correlations is the same as in
the absence of the alloying.

The excellent agreement of our conclusions and figures
did not rely on any fitting parameter and the microscopic
topography of the interface roughness is our only input. We
thus conclude that the enhancement of interlayer coupling
strength, the prime interest of this work, does not depend
critically on the anisotropic field due to the interface rough-
ness nor the possible different channel for direct exchange
between the magnetic side layers which is made possible by
the irradiation.12
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APPENDIX A: PERTURBATIVE METHOD OF
SCATTERING

In order to realize the IR in a microcsopic way, we start
from the microscopic Hamiltonian for a 2D heterojunction
with an irregular topography A�y� and the potential on the
right side is set to be higher by V0. The wave functions on
the left/right sides are, respectively, denoted by ��x ,y� and
	�x ,y�. The boundary conditions are

��A�y�,y� = 	�A�y�,y� ,

� ���x,y�
�x

�
x=A�y�

= � �	�x,y�
�x

�
x=A�y�

. �A1�

In order to find the scattering wave functions, let us consider
a plane wave with momentum �kx ,ky� moving from the left
toward the interface. In the limit that A�1 /kx ,1 / p, the scat-
tering states can be obtained by treating the IR as a pertur-
bation to the smooth interface,

��x,y� = �0�x,y� + 	
qy

aky,qy
e−iqxx+iqyy ,

	�x,y� = 	0�x,y� + 	
qy

bky,qy
eiqx�x+iqyy , �A2�

where �0�x ,y� and 	0�x ,y� are the original scattering states
for a smooth interface and 	0�x ,y� carries momentum
�kx� ,ky�. For an elastic scattering, the dispersion relation in
Eq. �A2� is
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FIG. 5. Absolute value of the coupling strength �in unit of
10−5Ry / �2�3a0

2�� is plotted as a function of ion dosage �in unit of
ions/a0

2� for a 3D trilayer. Same parameters as the last three figures.
The average spacer width is D=7a0 and the topography is A�y ,z�
=1 /3 sin��ny�sin��nz�. The resonance peak appears near “n
=0.0025” consistent with the condition for the bound state to be-
come resonant and so it is hard to discern in the figure. This peak is
sharper than that of Fig. 4 for a 2D case with a magnitude close to
zero.
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E =
kx

2 + ky
2

2m�
=

kx�
2 + ky

2

2m�
+ V0 =

qx
2 + qy

2

2m� =
qx�

2 + qy
2

2m� + V0,

�A3�

where m� denotes the effective mass of the charge carriers.
Insert Eq. �A3� into Eq. �A2� and use kxA�y� and kx�A�y� as
the perturbation to expand the boundary conditions in Eq.
�A1�. We shall retain only up to the second order in pertur-
bation for aky,qy

and bky,qy
,

aky,qy

�1� = − i�qx� − qx�Tkx,kx�
F�A�y�,qy − ky� = bky,qy

�1� , �A4�

aky,qy

�2� =
1

qx + qx�
��kx� + qx��
 + �� , �A5�

bky,qy

�2� = aky,qy

�2� − 
 , �A6�


 = Tkx,kx�
m�V0F�A2�y�,qy − ky� , �A7�

� = − i2m�V0F�	
qy�

aky,qy�
�1� eiqy�y,qy� , �A8�

where the superscripts �1/2� denotes the first-/second-order
result, the subscript “ky ,qy” denotes scattering from ky to qy
state, Tkx,kx�

is the transmission coefficient for a smooth inter-
face, and “F�A�y� ,qy −ky�” represents the Fourier transfor-
mation of function A�y� to the momentum space in qy −ky.

When F�A�y� , p� contains many p components, their con-
tributions to the third and fourth terms in Eq. �1� tend to
cancel each other at the level of first-order perturbation, un-
less one or two p dominates. When the cancellation happens,
we are forced to go up to the second order. Except when the
scattered wave happens to exhibit the same momentum as
the incoming wave, the different components again cancel
each other and we are left with the same result as that of the
static average. For example, A�y�=	n�Bn sin�pn�
+Cn cos�pny�� contains many modes, the perturbative wave
functions in Eq. �A2� are reduced to

��x,y� � eikxx+ikyy + Rkx,kx�
�1 − kx

2d0
2�e−ikxx+ikyy ,

	�x,y� � Tkx,kx��1 −
�kx − kx��

2d0
2

4
�eikx�x+ikyy , �A9�

where kx
2d0

2=kx
2	n�Bn

2+Cn
2� signifies that they originate from

the second-order perturbation. The above results can be
shown to be equivalent to the effect of successive scattering
from two smooth interfaces with �2d0 distance apart,

��x,y� �
1

2�eikxd0/�2�0�x −
d0

�2
,y� 1+ e−ikxd0/�2�0

��x +
d0

�2
,y�� ,

	�x,y� �
1

2�eikxd0/�2	0�x −
d0

�2
,y�

+ e−ikxd0/�2	0�x +
d0

�2
,y�� . �A10�

APPENDIX B: CORRECTION TO THE INTERLAYER
COUPLING

Interlayer exchange coupling in Eq. �2� can be written in
a more general way by the T matrix6

�E =
1

4�3 Im

E�EF

dETr�ln�I − R̂L
−+eiK̂+DR̂R

+−eiK̂−D�� ,

�B1�

where I is the unit matrix, R̂L
−+ / R̂R

−+ are the reflective matrices
from the left/right smooth interfaces which is a function of
energy E and are nonzero only in the diagonal components,
and the superscript −+ denotes that the left-going wave is

turned into right-going and vice versa for +−. Matrix R̂L
−+

takes the form6

R̂L
−+ = �

rL,k�
0 0 ¯

0 �

0 rL,q�

] �

� , �B2�

where rL,k�
/rL,q�

are the reflective coefficients of momen-
tums k� /q� from the left interface. Similar expression by

replacing the subscript L by R is the definition of R̂R
+−. The

notation K̂ denotes

K̂+ = K̂− = �
k� 0 0 ¯

0 �

0 q�

] �

� . �B3�

When the topography AL�y� /AR�y� at the left/right inter-
faces is considered, the second-order perturbation result in
Appendix A will introduce corrections to the reflective ma-

trices �R̂L
−++ �̂L� / �R̂R

+−+ �̂R�,

�̂L
−+ = �

0 ¯ bL,qyky
¯

] �

bL,kyqy
0

] �

�
− �

rL,k�
dL

2k�
2 0 0 ¯

0 �

0 rL,q�
dL

2q�
2

] �

� , �B4�

and similar expression for �̂R after replacing the L by R. By
the use of Appendix A, the weighting b�1� and d can be
copied as
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bL,kyqy

�1� = i�q� − qL�� �TL,k�k�
� F�AL�y�,qy − ky� ,

bR,qyky

�1� = i�k� − kR�� �TR,q�q�
� F�AR�y�,ky − qy� ,

dL = 	
n

�BLn
2 + CLn

2 � ,

dR = 	
n

�BRn
2 + CRn

2 � . �B5�

Insert the full reflective matrices with IR into Eq. �B1�
and expand the trace term to the second order in �̂L / �̂R,

�Er �
1

4�3 Im

E�EF

dETr�ln�I − M̂� + �̂
1

I − M̂

−
1

2
�̂

1

I − M̂
�̂

1

I − M̂
� , �B6�

where

M̂ � R̂L
−+eiK̂+DR̂R

+−eiK̂−D �B7�

and

�̂ � �̂LeiK̂+DR̂R
+−eiK̂−D + R̂L

−+eiK̂+D�̂ReiK̂−D + �̂LeiK̂+D�̂ReiK̂−D.

�B8�

Substituting the above two definitions into Eq. �B6�, the in-
terlayer exchange coupling can be obtained as

�Er �
2

�2��3 Im

−�

EF

dE

IBZ

d2k���	
n

− 1

n
rR,k�

n

��1 − dL
2k�

2 �nrL,k�

n �1 − dR
2k�

2 �ne2ink�D

+ 	
qy

bL,kyqy

�1� bR,qyky

�1� ei�q�+k��D� . �B9�

APPENDIX C: ENERGY SPECTRUM IN ROUGH THIN
FILMS

The photoemission intensity I�E� can be used to deter-
mine the energy spectrum20 of a smooth thin film, which is a
function of the reflective coefficients rL/R on the left/right
interfaces and the film width D,

I�E� � � 1

1 − rL,k�
rR,k�

ei2k�D + i��2

, �C1�

where � is the broadening factor20 which depends on the
film thickness and the mean-free path. Bound states satisfy
rL,k�

rR,k�
ei2k�D=1 and correspond to the peaks in I�E�.

When IR is considered, more close loops from successive
reflections and the action of static averaging will modify
both rL/R. Equation �C1� becomes

I�E� � �1 − rL,k�
rR,k�

�1 − dL
2k�

2 ��1 − dR
2k�

2 �ei2k�D

+ 	
qy

bL,kyqy

�1� bR,qyky

�1� ei�q�+k��D + i��−2
, �C2�

where dL,R, bL,kyqy

�1� , and bR,qyky

�1� are defined in Eq. �B5�. It is
checked that Eq. �C2� reduces to Eq. �C1� when we take the
limit AL,R�y�→0 or p→0.

APPENDIX D: ALLOYING

Besides the topography that we have discussed in detail,
the realignment of atoms at the interface due to ion-beam
irradiation should also include alloying. We estimate its ef-
fect on the coupling by softening the sharp boundary at the
interface into a smooth Eckart potential V�x�=V0�1
+tanh�x /a�� /2 where a depends on the extent of alloying.
The reflective probability for this potential can be found in
the literature26 as

�rkx,kx�
�2 =

cosh�2�a�kx − kx��� − 1

cosh�2�a�kx + kx��� − 1
, �D1�

where kx and kx� are the longitudinal momenta in either side
of the interface. Comparing with the sharp barrier, this
modulation always diminishes the reflective probability.
When a is much larger than the Fermi wavelength, Eq. �D1�
is suppressed exponentially as exp�−8�kx�a�. According to
Eq. �2�, the magnetic coupling strength is proportional to the
reflective probability and so is expected to be reduced dras-
tically by the alloying as concluded by the ab initio
calculations.25

If the interdiffusive process is weak, namely, kxa�1, the
alloying only introduces a small correction to the interlayer
coupling strength,

�Ea � �Ee−4/3��a�2kFkF� . �D2�

This means that the relative enhancement due to the correla-
tions is the same as before considering the alloying.
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