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We investigate the zero-temperature phase diagram of the one-dimensional S=1 Heisenberg antiferromagnet
with single-ion anisotropy. By employing high-order series expansions and quantum Monte Carlo simulations,
we obtain accurate estimates for the critical points separating different phases in the quantum phase diagram.
Additionally, excitation spectra and gaps are obtained.
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I. INTRODUCTION

Interest in one-dimensional S=1 antiferromagnets is long
standing and can be traced back to the original work by
Haldane.1,2 By analyzing the presence of topological terms in
effective-field theories for one-dimensional antiferromag-
nets, he conjectured that integer-spin chains display a ground
state with exponentially decaying spin-spin correlations and
a gapped excitation spectrum—properties markedly different
from those displayed by the exactly solvable S=1 /2 chain.
Despite early controversy, this so-called “Haldane conjec-
ture” is now supported by solid numerical3 and
experimental4,5 evidences �for a review of earlier results, see
Ref. 6�.

We are interested in the anisotropic S=1 antiferromag-
netic chain described by the Hamiltonian

H = J�
i

S� i · S� i+1 − D�
i

�Si
z�2. �1�

The single-ion anisotropy term proportional to D is relevant
in accounting for the magnetic properties of a number of
compounds: CsNiCl3 �weak axial anisotropy5,7�, NENP
�Ni�C2H8N2�2NO2�ClO4�� �weak axial anisotropy8�,
CsFeBr3, NENC �Ni�C2H8N2�2Ni�CN�4�, and DTN �NiCl2
−4SC�NH2�2� �strong planar anisotropy9–11�; DTN is particu-
larly interesting due to Bose-Einstein condensation of spin
excitations under a magnetic field.11,12 The model defined by
Eq. �1� is also very appealing from a purely theoretical per-
spective: the single-ion anisotropy D /J controls the magni-
tude of quantum fluctuations and stabilizes different phases
that, along with the quantum critical points separating them,
have been extensively investigated.13–25

For large positive values of the single-ion anisotropy D /J
the system is in an Ising-type Néel phase characterized by
finite staggered magnetization at zero temperature T=0 and
displaying a gap for holonlike excitations that we will dis-
cuss later in Sec. III B. Comparatively less well understood
is the so-called large-D phase for large negative values of
D /J—first investigated in detail by Papanicolaou and
Spathis.16 The ground state in the large-D phase smoothly
evolves from the ground state for D /J→−�, simply given
by the tensor product of Si

z=0 states at each site. The lowest-
energy excitations in this phase reside in the ST

z = �1 sector
and were termed excitons and antiexcitons in Ref. 16, where
the existence of bound states was also verified.

Physical intuition was gained about the intermediate
phase observed for small values of �D� /J, including the iso-
tropic point D /J=0 analyzed by Haldane,1,2 by studying an
extended S=1 model with biquadratic interactions,

HAKLT = J�
i

�S� i · S� i+1 + ��S� i · S� i+1�2� . �2�

Affleck, Kennedy, Lieb, and Tasaki �AKLT� �Ref. 26�
showed that this Hamiltonian is exactly solvable at �=1 /3,
where it displays a simple valence-bond solid �VBS� ground
state with gapped excitations. den Nijs and Rommelse27 later
suggested that this VBS state can be interpreted as a “fluid”
with positional disorder and long-range antiferromagnetic or-
der, characterized by a finite expectation value for the string
operator,

Os�r� = S0
z exp�i��

k=1

r−1

Sk
z�Sr

z, �3�

in the limit r→�, associated with the breaking of a hidden
Z2�Z2 symmetry.28 Since the ground state at �=0 has been
shown3 to exhibit long-ranged string correlations and is adia-
batically connected to the ground state at �=1 /3 �see, e.g.,
Ref. 29�, one concludes that the Haldane phase has a VBS
character. We remark that interest in Haldane-type phases
exhibiting long-range string correlations has been renewed
and proposals for investigating string order in cold atomic
systems have recently been made.30,31

In this paper, we are primarily interested in improving on
previous estimates for the location of the large-D-Haldane
�DH� and the Haldane-Néel �HN� critical points. Improved
results may be used as benchmarks for further tests on the
applicability of quantum information tools to detect quantum
phase transitions in the model Eq. �1�.24,25 Additionally, we
obtain results for the excitation spectra and gaps in the
large-D and Néel phases that may be of experimental rel-
evance. We also show that a series-expansion method previ-
ously applied for calculating the Haldane gap32 yields an
incorrect result, and we propose a different approach for fu-
ture work.

II. METHODS

We have investigated the S=1 antiferromagnetic chain de-
scribed by the Hamiltonian Eq. �1� by combining high-order
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series expansions and quantum Monte Carlo �QMC� simula-
tions. Technical details are described in this section.

A. Series expansions

Numerical linked-cluster expansions have been exten-
sively employed in the investigation of quantum magnets
�for detailed accounts the reader is referred to Refs. 33 and
34; a closely related method is discussed in Refs. 35 and 36�
and have been recently derived by some of us37 for the
square lattice version of the Hamiltonian Eq. �1�. Among the
many appealing features of the method we highlight its ap-
plicability to the study of excitations and dynamical re-
sponses, a notoriously difficult task within alternative nu-
merical approaches, following the procedure originally
devised by Gelfand.38

Basically, the linked-cluster method relies on a suitable
decomposition of the lattice Hamiltonian under investigation,

H = H0 + �V . �4�

It is assumed that the ground state of the unperturbed Hamil-
tonian H0 is known and can be written as a tensor product of
local states. One proceeds by deriving a standard Rayleigh-
Schrödinger perturbative expansion for connected clusters
comprised of an increasingly large number of sites, and at
each step, one subtracts contributions from embedded sub-
clusters containing fewer sites. In this way, long series for
ground-state quantities and excited states can be exactly cal-
culated up to a certain order in the expansion parameter �
that are then analyzed by means of any suitable extrapolation
technique �in this paper we adopt a standard Padé analysis�.
In what follows, we present the different expansions em-
ployed in the present study.

1. Large-D expansion

For investigating the phase stabilized for large negative
values of D /J, we consider the single-ion term as our unper-
turbed Hamiltonian,

H0
LDE = − D�

i

�Si
z�2, �5�

with the superexchange terms in Eq. �1� being treated as the
perturbation VLDE,

VLDE = J�
i
	Si

zSi+1
z +

1

2
�Si

+Si+1
− + Si

−Si+1
+ �
 . �6�

The �nondegenerate� ground state of H0
LDE is simply given

by tensor products of Si
z=0 states for all sites i on the chain,

and in what follows, we refer to this expansion as the
large-D expansion �LDE�. Results for the ground-state en-
ergy density obtained from an LDE series comprising terms
of up to �30 are shown in Fig. 1 �open diamonds�. Shorter
series have been obtained for the excited states �up to �14�;
the results are presented in Sec. III A.

2. Néel expansion

A suitable linked-cluster expansion for large positive val-
ues of D /J is obtained by choosing the unperturbed Hamil-
tonian,

H0
NE = J�

i

Si
zSi+1

z − D�
i

�Si
z�2, �7�

and starting from a perfectly ordered Néel unperturbed
ground state. The remaining fluctuation terms in Eq. �1� are
our perturbation VNE,

VNE =
J

2�
i

�Si
+Si+1

− + Si
−Si+1

+ � , �8�

and we refer to the resulting expansion as the Néel expansion
�NE�. The ground-state energy and the staggered magnetiza-
tion in the Néel phase have been calculated from a NE com-
prising terms of to �18 �results for the ground-state energy
are depicted as open squares in Fig. 1�. Series for the single-
particle excitations have been obtained from expansions up
to �14; the results are discussed in Sec. III B.

3. Staggered-field expansion

We have also considered a series expansion originally de-
vised by Singh,32 dubbed as the staggered-field expansion
�SFE� here, obtained by considering a Hamiltonian including
an artificial staggered-field term

HSFE = J�
i
	Si

zSi+1
z +

�

2
�Si

+Si+1
− + Si

−Si+1
+ �


− D�
i

�Si
z�2 + �1 − ���

i

�− 1�iSi
z. �9�

�Terms proportional to � are our perturbation VSFE and the
remaining ones define the unperturbed Hamiltonian H0

SFE.�
The unperturbed ground state is a perfectly ordered Néel
state, as in the case of the NE, and the Hamiltonian Eq. �1� is
recovered in the limit �=1, where the last term in Eq. �9�
vanishes. This staggered-field term is included in order to
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FIG. 1. �Color online� Ground-state energy density for the
model described by Eq. �1� as a function of the single-ion aniso-
tropy D /J. QMC results are shown as filled circles and have been
obtained for a lattice with L=48 sites. Empty symbols correspond
to results from the series expansions: LDE �diamonds�, NE
�squares�, and SFE �triangles�. The vertical dashed lines highlight
our best estimates for the location of the critical points: DC

DH /J
=−0.971�5� for the point separating the large-D and Haldane
phases, and DC

HN /J=0.316�2� for the HN phase transition �see main
text�. Unless visible, error bars are smaller than depicted symbols.
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prevent the condensation of solitons before �=1, as dis-
cussed in Ref. 32, allowing one to obtain a seemingly precise
estimate for the Haldane gap at D /J=0. Results for the
ground-state energy per site obtained from an SFE including
terms up to �18 are represented by open triangles in Fig. 1; it
is clear from this plot that the SFE systematically underesti-
mates E0 /L toward the DH critical point, and we will address
this issue later in Sec. III C, along with our results for the
gap at D /J=0.

B. Quantum Monte Carlo

QMC simulations have been performed by employing the
ALPS �Algorithms and Libraries for Physics Simulations�
library39 implementation of the directed loops algorithm40,41

in the stochastic series-expansion �SSE� framework.42 We
have simulated the model Eq. �1� on lattices with length L
ranging from 24 to 48, applying periodic boundary condi-
tions. In order to assess ground-state properties, simulations
were performed for temperatures T=1 /100�1 /2L; results
for the spin stiffness �S �Fig. 2� and the Binder cummulant
Q2 �Eq. �11�� �Fig. 7� are converged, within statistical errors,
to their ground-state expectation values for this value of T, as
verified by running preliminary QMC simulations for various
temperatures. Results for the ground-state energy density
E0 /L for a lattice L=48 are shown in Fig. 1; the data for
E0 /L are essentially converged for this system size �within
statistical errors, as we can conclude by comparing against
results obtained from smaller lattice sizes—not shown here�,
and good agreement is obtained with the results from the
LDE and NE described in Sec. II B.

III. NUMERICAL RESULTS

We present estimates for the location of the quantum criti-
cal points in the phase diagram of the Hamiltonian Eq. �1�
and results for the excitation spectra and gaps obtained by
using the numerical procedures described in Sec. II.

A. Large-D-Haldane phase transition

The Gaussian quantum phase transition between the
large-D and the Haldane phases has been studied in a num-
ber of recent works.20,21,24,25 The critical point was pin-
pointed by Chen et al.20 by performing exact diagonaliza-
tions of small clusters with twisted boundary conditions.
Furthermore, these authors verified that the DH transition is
described by a conformal field theory with central charge c
=1, as further confirmed by Boschi et al.21 using a combined
field-theoretic and numerical analysis. More recently, Tzeng
et al.,24,25 motivated by the current interest in applying con-
cepts and tools from quantum information theory to the study
of condensed-matter systems,43 showed that the DH phase
transition can be located by investigating the scaling behav-
ior of the ground-state fidelity and the entanglement entropy,
and arrived at the estimate44 DC

DH /J=0.97. Here, we investi-
gate the DH transition employing the numerical methods de-
scribed in Sec. II.

1. Spin stiffness

In Fig. 2�a� we show our QMC results for the spin stiff-
ness �S, obtained in terms of the winding number w, with
�S=3�w2� /2� �� is the inverse temperature�,45 for system
sizes L ranging from 24 to 48. Away from the critical point,
both the large-D and the Haldane phases display exponen-
tially decaying spin correlations, and therefore we expect �S
to approach zero in the thermodynamic limit—a trend clearly
discernible in Fig. 2�a�. On the other hand, close to the criti-
cal point, where the correlation length 	 diverges, the spin
stiffness is expected46 to scale as �SL2−z−d. Since d=1 is
the spatial dimension and the dynamic critical exponent is
expected to be z=1 �see below�, one expects �S to assume a
size independent value at the transition point �similar to what
happens for the S=1 /2 chain with easy-plane anisotropy, see
Ref. 47�, as confirmed by our QMC data plotted in Fig. 2�a�.
We remark that this “peaked behavior” for �S is a signature
of a transition between two phases with exponentially decay-
ing spin correlations and it should be contrasted with the
“crossing behavior” for �SL observed in more conventional
order-disorder quantum transitions in two-dimensional �2D�
systems �see, e.g., Refs. 48–50�.

In order to estimate the location of the quantum critical
point DC

DH /J and the correlation length critical exponent 
,
we assume the scaling ansatz

�S�t,L� = f�S
�tL1/
� , �10�

with reduced coupling t= �D /DC
DH−1�. Data collapse is

achieved for DC
DH /J=−0.971�5� and 
=1.4�1� �Fig. 2�b��

values that are in good agreement with the ones from Ref. 24
�DC

DH /J=−0.97 and 
=1.42 and 1.45�.44 We use our result

=1.4�1� to calculate the Luttinger-liquid parameter K by
employing the relation21,24,25 
=1 / �2−K� and obtain K
=1.29�5�, which is consistent with previous findings.21,24,25

Additionally, the bulk spin stiffness at the critical point is
estimated to be �S

DH=1.619�5�.

2. Excitations

The lowest-lying excitations in the large-D phase lie in
the ST

z = �1 sectors, and we calculate their dispersion rela-
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FIG. 2. �Color online� �a� Spin stiffness �S as a function of the
single-ion anisotropy close to the critical point separating the
large-D and Haldane phases �lines are only guides to the eyes�.
Results have been obtained from QMC simulations for values of L
ranging from 24 to 48 and error bars are smaller than depicted
symbols. �b� Data collapse is achieved for DC

DH /J=−0.971�5� and

=1.4�1� �see main text�.
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tion by applying the LDE presented in Sec. II A 1. Results
obtained after a standard Padé analysis are shown in Fig. 3�a�
for D /J=−2. As we approach the DH transition from the
large negative D /J side, the gap at q=� drops to zero, and
the dispersion in that neighborhood becomes linear—a trend
already noticeable for D /J=−2 �Fig. 3�a�� and consistent
with a dynamic critical exponent z=1. We remark that this
behavior is not reproduced in the strong-coupling analysis by
Papanicolaou and Spathis,16 which gives a quadratic disper-
sion relation �this is also the case in our results for couplings
deep into the large-D phase—not shown here�. The depen-
dence of the gap at q=� on D /J is shown in Fig. 3�b�.
Unfortunately, the series convergence becomes irregular be-
yond the rightmost data point in the figure, preventing us
from obtaining independent estimates for DC

DH /J and for the
critical exponents. In order to partially circumvent this prob-
lem, we fit the scaling function � /J=A0���DC

DH−D� /J��z
,
assuming z=1, to the data points depicted as squares in Fig.
3�b�. By fixing DC

DH /J=−0.971, as estimated from our QMC
data, the data are fitted for 
=1.478, which is a value con-
sistent with the QMC result 
=1.4�1� and which further con-
firms that indeed z=1.

B. Haldane-Néel phase transition

The Néel phase for large positive values of D /J has a
twofold-degenerate ground state, and therefore the HN quan-
tum phase transition is expected to belong to the universality
class of the two-dimensional Ising model. Chen et al.20 lo-
cated the HN critical point by applying a phenomenological
renormalization-group analysis to the data from exact diago-
nalization of clusters with up to 16 sites. More recently the
estimate44 DC

HN /J=0.31 was obtained by Tzeng and Yang,24

who studied the scaling behavior of the ground-state fidelity
close to the HN critical regime.

1. Staggered magnetization

We first employ the NE discussed in Sec. II A 2 in order
to calculate the staggered magnetization, ms

z= ��−1�iSi
z� /L, as

a function of D /J. The results obtained by applying standard
Padé approximant extrapolations to the series in � are shown
in Fig. 4�a�. The position of the HN quantum critical point
can be determined by a Dlog Padé analysis of ms

z as a func-
tion of �; as shown in Fig. 4�b�, the estimate DC

HN /J
=0.295�25� �highlighted as the shaded region in Fig. 4�a��
for the HN critical point is simply obtained as the range of
values for D /J consistent with a pole at �=1, where the full
Hamiltonian Eq. �1� is recovered. From the Padé extrapola-
tion we also obtain an estimate51 �=0.147�13� for the critical
exponent associated to ms

z, which is somewhat larger than,
but not incompatible with, the exact result �=1 /8 for the 2D
Ising universality class. We also note that there is little sign
of ms

z vanishing in the shaded region in Fig. 4�a�; this can be
explained by the small value of the expected critical expo-
nent �=1 /8, which implies that ms

z plunges steeply to zero at
the critical point—a behavior which naive Padé approxi-
mants will hardly pick up.

2. Excitations

More accurate estimates for DC
HN /J can be obtained by

analyzing excited states above the Néel ground state. At this
point, following den Nijs and Rommelse,27 it is useful to

interpret the S=1 chain as a diluted system of S̃=1 /2
pseudoparticles; as we show in Fig. 5, sites with Si

z= �1 are
seen as being occupied by spin-half particles with pseu-

dospin components S̃i
z= �1 /2 and sites with Si

z=0 as being
empty �occupied by “holes”�. Using this language, the Néel
ground state is equivalent to an “undoped” antiferromagnet
�Fig. 5�a��, and for small �positive� values of D /J, the low-
lying excited states lie in the “one-hole sector” �containing
one site with Si

z=0�. Interestingly enough, the situation is
reminiscent of spin-charge separation in one-dimensional
fermionic systems �see, e.g., Ref. 52� where a hole doped
into the system �as depicted in Fig. 5�b�� fractionalizes into

0 π / 2 π 3π / 2 2π
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4
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(q
)

/J
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0
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0.4

0.6

0.8

1

1.2

1.4

∆
/J

A
0

(-0.971 - D / J)
ν

(a) (b)

A
0

= 0.520

ν = 1.478

D / J = -2

FIG. 3. �Color online� �a� Excitation spectrum in the large-D
phase, for D /J=−2, obtained from the LDE. �b� Gap for excitations
�q=�� in the large-D phase as a function of D /J, again obtained
from the LDE �the series become badly behaved beyond the right-
most data point�. The continuous line has been obtained by fitting
the scaling function � /J=A0���DC

DH−D� /J��z
, assuming z=1, to
the data points depicted as squares using the QMC estimate
DC

DH /J=−0.971 �vertical dashed line�. In both panels, with the ex-
ception of the rightmost data point in �b�, error bars are smaller than
the depicted symbols.
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Padé approximants for the staggered magnetization series as a func-
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“holon” and “spinon” constituents �enclosed by an ellipsis
and a rectangle in Fig. 5�c�, respectively�.

Since one spinon �two consecutive sites with the same
pseudospin component� has an energetic cost J, we expect
ST

z =0 states solely displaying a holon to have a lower exci-
tation energy, as confirmed by our results below. Such a ho-
lon state is depicted in Fig. 5�d�; we replace one pseudospin
in the Néel configuration shown in Fig. 5�a� by a hole and
flip all pseudospins to its right. Antiferromagnetic correla-
tions “across the hole” allow for the hole to delocalize, low-
ering the energy of holon excited states.52 Furthermore, these
holon excitations can be seen as precursors of the ground
state in the Haldane phase; as shown by den Nijs and
Rommelse,27 VBS states can be interpreted as a fluid with
positional disorder and long-range antiferromagnetic order.
This picture is consistent27 with the holon state depicted in
Fig. 5�d� but not with the holon-spinon excitation shown in
Figs. 5�b� and 5�c�.53,58 Therefore, the HN critical point can
be determined by locating the value DC

HN /J where the gap for
the holon excitations vanishes.

Results for the spectrum of holon excitations obtained
from the NE are shown in Fig. 6�a� for D /J=1. We remark
that the series seemingly diverges at the commensurate mo-
menta q=2� /5 and q=8� /5 �indicated by the vertical
dashed lines in Fig. 6�a�� and that the results at higher ener-
gies have a rather poor convergence, as indicated by the
relatively large error bars in the figure. This suggests that
holon excitations decay into multiholon states and that a con-
tinuum of excited states exists at high energies. Unfortu-
nately, the poor convergence of the �short� series for two-
and three-holon excited states, obtained by applying the pro-
cedure described in Ref. 54, prevents us from further analyz-
ing this issue, which is left open to future investigations. On
the other hand, our results for low-energy excitations around
q=� are nicely converged, allowing us to precisely locate
the critical point. In Figs. 6�c� and 6�d� we show the depen-
dence of the gap � /J for holon excitations on D /J, and we
can see that it vanishes at DC

HN /J=0.316�2�, with a critical
exponent51 
=1.01�3� �directly obtained from the Padé
analysis� consistent with the 2D Ising universality class.

For the sake of comparison, we also show the dispersion
relation for the ST

z = �1 holon-spinon �Figs. 5�b� and 5�c�� in
Fig. 6�b� also for D /J=1. The dependence of the gap at q
=0 on D /J is shown in Fig. 6�c�. Note that our results indi-
cate that the energy of this excitation remains finite at the
transition, confirming that a holon-spinon state has a higher
excitation energy than an isolated holon state. As we see in
the plot of Fig. 6�c�, for large values of D /J the difference in
energy between holon-spinon and holon excited states is ap-
proximately J, confirming our qualitative analysis above.

3. Binder cumulant

The previous findings are confirmed by our QMC results
for the second-order Binder cumulant Q2 for the staggered
magnetization ms

z given by

Q2 = 1 −
��ms

z�4�
3��ms

z�2�2 . �11�

Q2 is expected to display universal behavior in the critical
regime, and results obtained from different lattice sizes

a)

b)

c)

d)

FIG. 5. �Color online� Pseudoparticle representation of the S
=1 chain �Ref. 27�. Sites with Si

z= �1 are seen as being occupied

by spin-half particles with pseudospin components S̃i
z= �1 /2 �de-

picted as +’s and −’s� and sites with Si
z=0 as being empty �occupied

by holes represented by circles� In this language, the Néel ground
state corresponds to an undoped antiferromagnet �a�. Excited states
are obtained by doping the system with holes �b�. As depicted in �c�,
a hole doped into the system decays into spinon �enclosed by the
rectangle� and holon �enclosed by the ellipsis� constituents �the
state depicted in �c� is obtained from the state in �b� by allowing the
hole to “hop” four sites to the left, as indicated by the arrows�.
Since a spinon costs an energy J, excited states containing only a
holon �d� are expected to have lower energy �see main text�.
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in the magnified plot. �d� Data points in all panels were obtained by applying a Padé analysis to the results obtained from the NE.
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should cross close to the critical point, as confirmed by the
data shown in Fig. 7�a�. In order to estimate the critical point
we assume the scaling ansatz Q2�t ,L�= fQ2

�tL1/
� with t
= �D /DC

HN−1�. Data collapse is achieved for DC
HN /J

=0.312�6� and 
=1.1�1�, as shown in Fig. 7�b�, consistent
with the estimates obtained from the NE. A slightly smaller
value, DC

HN /J=0.310�6�, is estimated from a data collapse
obtained by fixing the critical exponent to the known value
for the 2D Ising universality class, 
=1.

Additionally, from the data collapse displayed in Fig. 7�b�
we arrive at the estimate Q2

�=0.515�10� for the value as-
sumed by the Binder cummulant at the critical point, mark-
edly different from the known result55 Q2

�=0.610 69. . . for
the two-dimensional Ising universality class. This discrep-
ancy can be ascribed to differences in the way Q2 is calcu-
lated in classical and quantum Monte Carlo simulations: al-
though the d-dimensional quantum system is indeed formally
equivalent to a classical model in d+1 dimensions, equal-
time expectation values for diagonal operators are averaged
along the imaginary-time direction in quantum simulations.
In other words, our results for Q2

� should be consistent with
the ones obtained for the classical two-dimensional Ising
model if the moments of the magnetization appearing in the
definition Eq. �11� are evaluated along individual lines on the
square lattice. Since, to the best of our knowledge, no such
calculation has been done, this prevents us from comparing
our estimate Q2

�=0.515�10� with published results. We re-
mark that a similar situation was observed in Ref. 48 for S
=1 /2 bilayers, expected to belong to the universality class of
the classical Heisenberg model in three dimensions.

C. Haldane gap

Finally, we have investigated the SFE introduced by
Singh32 and discussed in Sec. II A 3 in order to estimate the
Haldane gap at D /J=0. Singh32 assumed that the magnon
gap in the Néel phase of the SFE system will extrapolate
continuously to the Haldane gap as �→1, in spite of the
phase transition that must occur at or before �=1. The ex-
trapolated value for the magnon gap, � /J=0.42�1�,56 ob-

tained from a series involving terms of up to �10 as presented
in Ref. 32, is indeed consistent with the high-precision result
for the Haldane gap � /J=0.410 50�2� from density-matrix
renormalization-group �DMRG� calculations.3 However,
higher-order Padé approximants for an extended series com-
prising terms up to �14 show a clear trend toward smaller
values, and we arrive at the considerably lower value � /J
=0.23�6�. It is thus obvious that a more careful analysis is
required. If we apply a change in variable �=1−�1−� to the
series, following Huse,57 then Padé approximants for the se-
ries in � show a vanishing magnon gap, � /J=0.00�1�, at the
transition point �=1. The failure to yield correct results for
the Haldane gap, combined with the fact that it systemati-
cally underestimates the ground-state energy toward the DH
critical point, as mentioned in Sec. II A 3 in connection with
Fig. 1, strongly suggests that the SFE approach is not appro-
priate for estimating results for the integer-spin Haldane sys-
tems.

We recall that a Néel state is chosen as the unperturbed
state when performing the SFE, and the VBS character of the
Haldane phase is ignored. We expect physical results to be
obtainable from a different expansion assuming the AKLT
model ��=1 /3 in Eq. �2�� as the unperturbed Hamiltonian
and starting from the exact VBS ground state26 at �=1 /3,
treating �= ��−1 /3� as the expansion parameter. Such an
expansion would require the application of the linked-cluster
formalism to valence-bond states—something that, to the
best of our knowledge, has not yet been tried and that would
constitute an interesting topic for future work.

IV. CONCLUSIONS

Summarizing, we have investigated the one-dimensional
S=1 antiferromagnet with single-ion anisotropy, described
by the Hamiltonian Eq. �1�, by means of linked-cluster series
expansions and QMC simulations. Our estimates for the
zero-temperature phase transitions in this model are more
precise than previous ones and could be used as benchmarks
in future explorations of the applicability of quantum infor-
mation tools to the study of quantum critical phenomena.

Our best estimate for the DH critical point �DC
DH /J

=0.971�5�� has been obtained from a scaling analysis of the
spin stiffness �S from QMC simulations. The spin stiffness
remains finite at the transition in the thermodynamic limit
��S

DH=1.619�5�� and vanishes elsewhere, implying a “peaked
behavior” for finite systems. Our result for DC

DH agrees with
the estimate44 obtained by Tzeng and Yang24 �DC

DH=0.97�;
the same is true for the estimate for the correlation length
critical exponent: 
=1.4�1� �present work� and 
=1.42 and
1.45 �Ref. 24�. We have further obtained results for the dis-
persion relation and gap for excitations in the large-D region
that may be of direct experimental relevance given, for in-
stance, the current interest on the large-D compound
DTN.11,12 Our series for the excited states in the large-D
phase has a considerably more extended range of applicabil-
ity compared to the strong-coupling results of Papanicolaou
and Spathis16 and is available on request.

Precise results for the HN phase transition have been ob-
tained from a linked-cluster expansion �NE� for holonlike
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FIG. 7. �Color online� �a� Staggered magnetization Binder cu-
mulant Q2 �see Eq. �11�� for couplings D /J close to the Haldane-
Néel critical point, as obtained from QMC simulations for system
sizes L ranging from 24 to 48. �b� Data collapse is achieved for
DC

HN /J=0.312�6� and 
=1.1�1�.
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excitations. By analyzing the gap for these excited states we
have arrived at the estimates DC

HN /J=0.316�2� and 

=1.01�3�. The former compares well with the result44

DC
HN /J=0.31 from Ref. 24 while the latter confirms that the

HN transition belongs to the universality class of the two-
dimensional Ising model with the exact exponent 
=1.

Finally, we have shown evidence that the SFE expansion
of Singh32 does not converge to the Haldane gap at D /J=0.
Instead, we propose an expansion around the AKLT state

�the exact ground state for the Hamiltonian Eq. �2� with �
=1 /3�,26 which we hope to explore in a future work.
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