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We employ the Morse theory of critical points �extrema and saddle points� of functions on compact mani-
folds to analyze the potential-energy surface of adsorbates on periodic crystalline surfaces. Formulation of the
theory for this case is very simple and allows one, e.g., to check completeness or consistency of a proposed
potential-energy surface topology. For highly symmetric adsorption or surface-diffusion systems and/or when
some additional information on the potential energy is available, the theory can be predictive. For example, if
the most stable adsorption position for a symmetric adsorbate is the bridge site on bcc or fcc�001� surfaces, or
on fcc�111� and hcp�0001� ones, the saddle points of the potential energy will appear away from top and
hollow sites. Application of the Morse theory is illustrated on examples of known adsorption systems.
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I. INTRODUCTION

Determination of the diffusion path�s� of molecular or
atomic adsorbates on solid crystalline surfaces is of crucial
importance in catalysis.1–3 The key feature is the clarification
of basic properties of the adsorbate potential-energy surface
�PES� as a function of its position above the surface. The
same potential surface can be helpful in the determination of
the stable adsorption sites and the geometry of adatom over-
layers.

It might seem that a formal mathematical analysis is re-
stricted essentially to applications of the group theory. Re-
cently, however, an extension of the theory for complicated
surface structures has been formulated.4 In the present paper
we show that by employing the surface periodicity, one can
obtain useful information on the possible number of critical
points on the PES �local minima and maxima and saddle
points� and on the relation between the number of critical
points of particular kinds. To this goal, the mathematical
theory of Morse5–7 of functions on compact manifolds is
used. Although the Morse theory represents a specific chap-
ter in algebraic topology, the results we need represent only a
fraction of this theory and can be formulated as a rule of
thumb. With their aid one can prove that a list of critical
points obtained in calculations is not complete or, on the
contrary, is most probably complete, and some inconsistency
in PES models can be traced. For systems possessing a
higher symmetry, especially when, e.g., the most stable ad-
sorbate position is known, the theory is yet more predictive.
Let us note that an application of the Morse theory to the
PES of small molecules �residing in vacuum� has been un-
dertaken in chemistry.8,9

All mathematical facts that we are going to mention can
be found in mathematical textbooks, some of which are
listed in the reference section at the end of the paper. How-
ever, since the reader may not be familiar with some notions
and results, we gather them also in Sec. II. Instead of adopt-
ing the fully rigorous approach, we explain part of the ma-
terial on the simple case of the two-dimensional �2D� torus.
After that, the application of the mathematical theory is ex-

plained and illustrated on examples of well-known chemi-
sorption systems that are taken from the literature.

II. METHODOLOGY

Let us consider a crystalline surface possessing a 2D pe-
riodicity defined by two elementary-translation vectors t1
and t2 that generate a discrete symmetry group of transla-
tions G. Points on the surface are described by a 2D vector R
when an appropriate coordinate system is fixed. Let us de-
note as E�R� the potential energy of an adatom above the
surface as a function of R. Often, valuable information �as a
rule, the most stable adatom positions� is provided by experi-
ments. In calculations, it is supposed that for a given R, all or
certain selected from the remaining degrees of freedom
�height of adatom above the surface, lattice deformation due
to the adatom presence, magnetization, etc.� are allowed to
relax, be it in calculations or in a gedanken experiment. The
same idea applies to molecular adsorption, coadsorption of
several atoms, or infinite adsorbate overlayers, with R being
now a position of a selected atom, whereas positions of other
atoms in the system are allowed to relax as R varies. Let us
stress that we are always working within the surface �1
�1� elementary cell, treating the overlayers with a higher
�m�n� periodicity as large molecules. Clearly, we obtain in
this way E�R� as a doubly periodic function with two periods
t1 and t2. It is convenient to consider E�R� as a function on
the 2D torus T2 �Fig. 1� that is obtained from the plane rep-
resenting the crystal surface by identifying points that are

a
b

FIG. 1. The two-dimensional torus T2. See Sec. II for a descrip-
tion of the loops a and b.
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equivalent with respect to the group G. �More formally, T2 is
the quotient space R2 /G, where R2 is the 2D plane.� The
reader interested in applications to surface science only can
skip the rest of this section.

The tirelike surface T2 provides a simple example of a
connected compact manifold. Obviously �under “common”
regularity assumptions�, PES attains on T2 its absolute maxi-
mum and absolute minimum �the most stable position of the
adsorbate� at certain points. A mathematical theory we owe
to Morse5–7 for functions on similar manifolds states much
more as the number of local minima, maxima, and saddle
points and some relation among them are concerned. The
Morse results are formulated by using the notion of Betti
numbers �rank of homology groups�. For our purposes, it is
most convenient to give highly simplified definitions and
then explain these somewhat abstract ideas of algebraic to-
pology on the example of T2.

We shall consider the class of real smooth Morse func-
tions on an nD �connected and compact� manifold Mn. A
Morse function F has critical points �points on Mn where
grad F=0� in isolated points only. Besides that, it is sup-
posed that the matrix of second derivatives of F �Hessian�
has the maximal rank n in critical points. The main reason
for the restriction on the Hessian is to avoid situations when
on the one-dimensional �1D� cross section of a PES by a
coordinate plane, a critical point represents an inflection
point. Let us place the critical point to the coordinate origin
and consider F along a selected coordinate x. Near x=0 we
have F�x�=ax+bx3+¯. For nonzero �a�� �b� the critical
point disappears �ab�0� or we find two close extrema �ab
�0� that degenerate into a single inflection point at x=0 as a
vanishes. The function bx3+¯ is monotonous and does not
represent any special interest. This example reflects a general
situation: for a smooth function of n variables, the non-
Morse character �degenerate Hessian� of isolated critical
points is unstable with respect to arbitrarily small
perturbations.10 It is the idea of the catastrophe theory10 that
non-Morse critical points in real systems appear only when
they are fixed by tuning a continuous parameter �e.g., tem-
perature� and can signalize a change in the regime �bifurca-
tion and phase transition� of the system. This opinion is
shared by specialists11 on PESs in chemistry as well. In an-
other words, we expect that for realistic potential surfaces the
violation of the assumption on the Hessian is an unlikely
degenerate case unless there is a physical reason for such a
degeneracy. The critical points of Morse functions represent
“true” extrema or saddle points, and we shall suppose below
that the PESs we study here belong with the Morse func-
tions. We need yet a simple definition. Index i�F , p� of F at a
critical point p�Mn is equal to the number of negative eigen-
values of the corresponding Hessian. Clearly, one has a
maximum of F for i�F , p�=n and a minimum for i�F , p�=0.
We shall denote as �k�F� the number of critical points of F
with the index equal to k. In Sec. III, the simplified notation
�k will be used when applied to the PES E�R�.

Let us sketch now very briefly the definition of Betti num-
bers. It is understood that all constructions we are going to
describe are done “within” Mn. A “regular” kD figure �k
=0,1 , . . . ,n� is called k cycle if its boundary is the empty set.
A k cycle is trivial if it is itself a boundary of a �k+1�D

figure. Indeed, it can be shown that the “boundary has no
boundary” and so trivial cycles have no relation to the prop-
erties of Mn. Two k cycles that can be deformed continuously
one into another and/or differ by a trivial cycle are consid-
ered as mutually equivalent. It appears that for every k there
exists a finite number of classes of nonequivalent, nontrivial
k cycles that serve as a basis. Any k cycle can be constructed
by combining cycles from these classes, maybe up to a trivial
k cycle. �The classes are generators of the kth homology
group; the class of trivial k cycles is the neutral element in
the group. To describe the construction properly, one should
also discuss the orientation of cycles.� The number of these
bases classes is6,12 the kth Betti number bk�Mn�. The best
way to explain the notion is to consider the torus T2 in Fig. 1.
For k=0 or 2, the only nontrivial class is represented by a
single point on T2 and by T2 itself, respectively. �For Mn,
b0=bn=1 for the same reason.�

For k=1, there are two independent classes represented by
the loops a and b in Fig. 1 and b1�T2�=2. For the 2D sphere
S2, b1=0 since every loop on the sphere is a boundary of an
area. We are now prepared to write down the theorems5,6,8,9

relating some properties of critical points to the Betti num-
bers.

Morse inequalities. For a Morse function F �using the
notation introduced above� the following inequalities hold
true:

�k�F� � bk�Mn�, k = 0,1, . . . ,n . �1�

Relation to the Euler-Poincaré characteristic. By
introducing the Euler-Poincaré characteristic ��Mn�
=�k=0

n �−1�kbk�Mn� of the manifold, one has the relation

�
k=0

n

�− 1�k�k�F� = ��Mn� . �2�

For manifolds we have met, ��T2�=0, ��S2�=2. Formula
�2� can remind the reader of the famous Euler’s formula v
−e+ f =2 valid for convex polyhedra �v, e, and f are the
number of vortices, edges, and faces of the polyhedron�. Ac-
tually, the formula admits generalization12 with the Euler-
Poincaré characteristic on the right-hand side �2 is the value
for the sphere S2 into which the polyhedron surface can be
deformed�. It is amazing that this can be done using quite
elementary mathematical means only.13 We mention yet the
inequality

�k�F� − �k−1�F� + ¯ + �− 1�k�0�F�

� bk�Mn� − bk−1�Mn� + ¯ + �− 1�kb0�Mn�,

k = 0, . . . ,n − 1. �3�

�By inserting −F into Eq. �3�, some new inequalities can be
obtained.�

It will be useful to show a method to evaluate Betti num-
bers for topological products of manifolds. Let us associate
with a mD manifold X the Poincaré polynomial PX�t�
=�k=0

m bk�X�tk. According to Ref. 14, for the product X�Y of
two manifolds one can write �this result also easily follows
from theorems for homology groups of topological products
given in Ref. 6�
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PX�Y�t� = PX�t� · PY�t� . �4�

Let us note also the useful relation

PX�− 1� = ��X� . �5�

To close this section, let us mention other potential appli-
cations of the Morse theory. For diffusion in three-
dimensional �3D� periodic crystals, one needs to consider the
3D torus T3=S1�S1�S1, where S1 is the 1D sphere �circle
circumference�. It is easy to derive topological characteristics
for the nD torus Tn �product of nS1� by using Eqs. �4� and
�5�; since its Poincaré polynomial is �1+x�n, we get bk�Tn�
= � n

k � and ��Tn�=0. �Since the interaction becomes divergent
as the diffusing particle approaches a lattice atom, one has to
suppose a regular maximum in this point during the analy-
sis.� Another system that we mention is a physical system
with n inequivalent magnetic moments. In this case, the
number of spins and not the dimension of the system is the
relevant parameter. Let us consider the energy as a function
of magnetic-moment orientation. Actually, periodicity of the
atomic arrangement is not important here; it is irrelevant
whether the atoms belong to an elementary cell in a periodic
structure or to an atomic cluster. The controlling parameter
for each magnetic moment is its direction in the space, i.e.,
position on the 2D sphere S2, and the manifold we need to
construct is a product of n spheres S2. By considering the
Poincaré polynomial �1+x2�n, we arrive at the Betti-number
values b2k= � n

k �, b2k+1=0, and �=2n for this structure.

III. DISCUSSION AND EXAMPLES

Equations �1� and �2� are quite general and they can be
used, for example, to verify whether some critical point�s� on
the PES is not missing in the set obtained in calculations. We
shall show, however, that the use of these equations can eas-
ily rationalize properties of frequently met symmetric adsor-
bate patterns. On high-symmetry crystal surfaces such as bcc
or fcc�001�, fcc�111� and hcp�0001�, and fcc�110�, certain
sites can be considered as candidates for adsorption because
of their high symmetry. Indeed, by supposing that their sym-
metry is not spoiled by the adsorbate, the symmetry guaran-
tees that grad E�R�=0. The symmetry is not broken by
atomic adsorbates, but this property is conserved also for
some simple molecular adsorbates indeed. For example, for
CO on late transition-metal surfaces the calculations confirm
that the molecule adsorbs upright �or almost upright� in high-
symmetry points2,15 and the latter thus represent critical
points of the PES. Analogous behavior can be perhaps an-
ticipated also for other small symmetric molecules such as
NO or NH3. Let us now remind the reader of these highest-
symmetry surface sites.16,17 There are the threefold and four-
fold hollow �also center� sites that are quite often preferred
by atomic adsorbates. Actually, one has to discriminate be-
tween the threefold fcc and hollow hcp sites depending on
their position with respect to the subsurface substrate layer.
Adsorption energies at these two sites are often rather simi-
lar. Further, there is the bridge site and the least coordinated
top �or peak� position. At anisotropic surfaces ��110�fcc�
there are nonequivalent short-bridge and long-bridge sites,

respectively, with generally rather different bonding capacity.
It is interesting that for CO adsorption at low coverage on
transition-metal faces, all three adsorption sites, top, bridge,
and hollow, are experimentally observed or theoretically
predicted.15,18,19 The investigation of CO adsorption is a deli-
cate task because of the tendency of the commonly used
density-functional schemes to overestimate stability of the
highly coordinated adsorption sites, and corrections should
be applied in the calculations.18,19

We shall consider below the adsorption of an isolated ad-
sorbate or an ordered overlayer with adsorbates occupying
equivalent sites on the substrate surface. It is useful to
present first Eq. �2� in the form applicable to the torus T2,

�0 − �1 + �2 = 0. �6�

�0, �1, and �2 are the number of local minima, saddle
points, and local maxima on the PES, respectively. The most
important consequence of Eq. �1� is

�1 � 2, �7�

whereas taking k=1 in Eq. �3� �and also utilizing the remark
following it� we get

�1 − �0 � 1, �1 − �2 � 1. �8�

As the most simple case, let us consider the situation when
the number of extrema on the PES is the minimal possible
one by respecting simultaneously the fact that the symmetry
sites listed above are critical points. For the bcc or fcc�001�
and for fcc�111� or hcp�0001� surfaces we get the situation
depicted in Fig. 2�a� �two extrema and two saddle points, i.e.,
�0=�2=1, �1=2� and Fig. 3�a� �three extrema and three
saddle points, i.e., �0+�2=3, �1=3�. �The two extrema in
hollow sites in Fig. 3 are generally not equivalent; see the
remark above. Besides that, the symmetry of the bridge sites

(a) (b)

FIG. 2. The elementary cell on the bcc or fcc�001� crystal sur-
face. Open circles represent the surface atoms. The surface atoms
and lines that are drawn by dotted lines coincide with their coun-
terparts drawn in full line on the torus T2 �see text�. �a� and �b�
show the simplest and the second simplest structures of the
potential-energy surface, respectively. Black dots denote extrema
positions and black triangles denote positions of saddle points on
the potential-energy surface in part �a�. In �b� we distinguish be-
tween minima �black squares� and maxima �black dots�.

(a) (b)

FIG. 3. The same as in Fig. 2 for the elementary cell of the �111�
surface of an fcc crystal or �0001� surface of an hcp crystal.
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is only Cv because of the above nonequivalence of hollow
sites. When interaction of the adsorbate with the more distant
subsurface metal atoms is neglected, the symmetry of the
bridge site is higher: C2v. Hence, the adsorption site can
appear slightly perpendicularly shifted from the center of the
bridge �not shown in the figure�.� Very often, the atomic
adsorbates prefer the hollow sites �cf., e.g., Refs. 17 and 20�
that become thus minima on the PES. From the Morse theory
it follows that in this simple case, the bridge sites must be
saddle points. The bcc�110� surface layer can be regarded as
a deformed structure shown in Fig. 3, in which the horizontal
bridge site is changed in the long-bridge �or hollow� one. On
this surface, the quasithreefold site �that actually has symme-
try not high enough to imply grad E=0� is the stable adsor-
bate position16 for oxygen in the p�2�2�O /W�110� system.
Up to the deformations just described, the PES topology of
this system is consistent with Fig. 3�a�.

We have just proven that for the simplest PES the bridge
adsorption positions cannot be extrema on the PES. Yet ex-
periments and calculations show15,17,18 that for some
transition-metal surfaces, CO prefers just this geometry. The
possible PES topology is shown in Fig. 2�b� ��0=2 , �1
=4 , �2=2� and Fig. 3�b� ��0=3 , �1=6 , �2=3�. Let us
stress that there must appear saddle points in “unexpected”
positions to satisfy Eqs. �6� and �8�. They are situated, nev-
ertheless, at symmetry directions in the elementary cell. If
they lay in general points at the PES, the C4v or C3v symme-
try would enlarge their number, forcing simultaneously exis-
tence of a higher number of extrema according to Eq. �6� and
the PES would become very complicated. �Structures with
other minima and maxima distributions are also consistent
with the Morse theory by supposing that the sum �0+�2
does not change. Besides that, the quadruples of saddle
points in Fig. 2�b� �triples in Fig. 3�b�� can be rotated by 45°
�by 60°�.� Good news from the analysis of Figs. 2 and 3 is
that when seeking for the stable adsorption sites on corre-
sponding surfaces, it is sufficient to do the calculations for
the highest-symmetry sites.

It is instructive to compare Fig. 2 with the results of the
calculation of Eichler and Hafner2 for CO adsorption at
Pd�001�, performed to gain better insight into numerous ex-
perimental studies for this system. They confirmed the bridge
site as the stable adsorption position. They found an activa-
tion barrier for the CO transition between the hollow and
bridge sites, respectively, which conforms to the position of
saddle points in Fig. 2�b�. On the other hand, the calculations
do not discover any barrier for the transition between the top
and bridge sites, although in experiments21,22 the top sites
behave as metastable ones. The authors discussed2 the pos-
sibility of missing another saddle point in the calculation.
Actually, it follows from the Morse theory that appearance of
such new points would be associated inevitably with the ex-
istence of other extrema that would make the PES unlikely
complicated. The authors offered another explanation:2 the
energetically favorable channel for the escape of CO from
the top position is very narrow which hinders the transition.
Another reason might be the necessity of correlated displace-
ments of CO at a higher coverage22 that also hinders the

transitions. The PES structure in Fig. 2 is also consistent with
the density-functional derived models of oxygen adsorption
at dereconstructed Pt�001� and Ir�001� surfaces23,24 �see also
Ref. 25 for a Pt monolayer at the Fe�001� substrate�.

Another interesting example is oxygen adsorption at the
anisotropic Pd�110� surface. The theoretical investigation of
the PES �Ref. 1� places the stable adsorption site to the
quasi-short-bridge position �a position slightly shifted from
the short-bridge one�. Since according to the calculations1

the adsorption energy further drops in the sequence long-
bridge–hollow site, we can suggest the PES topology shown
in Fig. 4�b�. Clearly, �0=2, �1=3, and �2=1. At low oxygen
coverage the stable adsorption site might be perhaps1 the
short-bridge site. This leads to a more simple Fig. 4�a� with
�0=1, �1=2, and �2=1.

Naturally, application of the Morse theory to more com-
plicated situations would be desirable. As a possible ex-
ample, let us mention the nondissociative adsorption of the
oxygen molecule at Pt�111�. For this system, a number of
calculated data for selected paths on the PES have been
published.26 It would be interesting to check whether the
present approach can contribute to a deeper understanding of
topology of this PES or it can predict possible PES modifi-
cations for appropriate diatomic molecules adsorbed on �111�
faces of transition metals.

IV. CONCLUSIONS

By using topological notions �Betti numbers and Euler-
Poincaré characteristic�, the Morse theory puts limits on the
number of critical points �extrema and saddle points� of
functions on compact manifolds. In the present paper, the
theory is applied to adsorption or diffusion of atoms and
molecules on periodic crystalline surfaces. This application
has an extremely simple character and can be employed to
check the completeness and consistency of a proposed
potential-energy surface of an adsorbate. The theory is yet
more predictive when the substrate surface possesses high
symmetry and/or some additional information such as the
geometry of the stable adsorption site is available as we il-
lustrate on examples from surface science. We show that for
symmetric adsorbates and highly symmetric bcc and
fcc�001� surfaces as well as fcc�111� or hcp�0001� ones, the
set of critical points can be reduced to the highly symmetric
sites on the surface when the saddle points coincide with the
bridge sites. When in the latter sites the potential reaches an
extremum, new sites must appear to host the saddle points.
Other applications of the Morse theory in the solid-state
physics are also shortly mentioned.

(a) (b)

FIG. 4. Structure of the PES for CO adsorption on Pd�110� �see
text�. The meaning of the symbols is the same as in Fig. 2.
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