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Many trial wave functions for fractional quantum Hall states in a single Landau level are given by functions
called conformal blocks, taken from some conformal field theory. Also, wave functions for certain paired states
of fermions in two dimensions, such as px+ ipy states, reduce to such a form at long distances. Here we
investigate the adiabatic transport of such many-particle trial wave functions using methods from two-
dimensional field theory. One context for this is to calculate the statistics of widely separated quasiholes, which
has been predicted to be non-Abelian in a variety of cases. The Berry phase or matrix �holonomy� resulting
from adiabatic transport around a closed loop in parameter space is the same as the effect of analytic continu-
ation around the same loop with the particle coordinates held fixed �monodromy�, provided the trial functions
are orthonormal and holomorphic in the parameters so that the Berry vector potential �or connection� vanishes.
We show that this is the case �up to a simple area term� for paired states �including the Moore-Read quantum
Hall state� and present general conditions for it to hold for other trial states �such as the Read-Rezayi series�.
We argue that trial states based on a nonunitary conformal field theory do not describe a gapped topological
phase, at least in many cases. By considering adiabatic variation in the aspect ratio of the torus, we calculate
the Hall viscosity, a nondissipative viscosity coefficient analogous to Hall conductivity, for paired states,
Laughlin states, and more general quantum Hall states. Hall viscosity is an invariant within a topological phase
and is generally proportional to the “conformal spin density” in the ground state.
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I. INTRODUCTION

A. Background and motivation

There has been renewed interest in the past few years in
non-Abelian quantum states of matter, both in the original
setting of quantum Hall �QH� states,1 and also in other sys-
tems including ones in which the symmetries under time
reversal and parity are unbroken �see, e.g., Ref. 2�. Briefly, a
non-Abelian phase of matter is a gapped �topological� phase
in which there are quasiparticle excitations over the ground
state, the adiabatic exchange of which produces a matrix
effect on the state of the system, with matrices corresponding
to distinct exchanges that do not all commute �thus the term
“non-Abelian”�. This requires that there be a degenerate
space of states when there are quasiparticles at well-
separated positions in the system. Given a reasonably local
Hamiltonian, such behavior can only occur when the dimen-
sionality of space is two for topological reasons. The basic
example proposed by Moore and Read �MR� �Ref. 1� is a
paired state, which can be viewed as a p wave or more pre-
cisely a px+ ipy wave, Bardeen-Cooper-Schrieffer �BCS�
�Ref. 3� paired state of spinless or spin-polarized composite
fermions in zero or almost zero net magnetic field. It turns
out that much of the physics of this state is also found in
such paired states of ordinary fermions.4 In this paper we
address both of these situations together, not only quantum
Hall systems. Much of the current interest in these systems is
driven by their potential use for topological quantum
computing.5

The major issue that we address in this paper is the deri-
vation of the non-Abelian statistics of the quasiholes �or vor-
tices� when they are exchanged adiabatically, where adia-

batic transport is calculated using trial forms of the wave
functions. The trial wave functions are taken to be “confor-
mal blocks” obtained from some conformal field theory
�CFT� as in MR.

A central idea of MR is that the adiabatic effect of an
exchange of quasiholes in the trial wave functions given by
conformal blocks is the same as the effect inferred from
simple analytic continuation of the wave functions viewed as
functions of the quasihole coordinates, with the particle co-
ordinates fixed. In contrast to analytic continuation, adiabatic
transport involves integration over the particle coordinates
for each infinitesimal time step since this defines the inner
product in the Hilbert space. In several examples with Abe-
lian statistics, this was shown in MR to give the same result,
but the result was not demonstrated for the trial states with
non-Abelian statistics. Here we provide a detailed explicit
calculation for the cases of two or four quasiholes in the MR
paired state �with the charge part of the wave functions re-
moved�; the four quasihole case is the first to exhibit non-
Abelian statistics. Finally, we also give a general criterion for
other states and discuss when this may hold, with examples.

An additional issue that we address is adiabatic variation
in the geometry in a closed finite system, for example, a
parallelogram with periodic boundary conditions �i.e., a
torus�. There is a discrete group of transformations that map
the geometry to one equivalent to the original �called the
modular group�. It is of interest to perform these adiabati-
cally also. It turns out that in these cases the relevant Berry
connection �vector potential on the space of inequivalent ge-
ometries� has nonzero curvature �field strength�. Because
varying the aspect ratio varies the strain on the system, this
response can be related to a nondissipative viscosity
coefficient,6 which we call Hall viscosity �earlier it was
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termed “odd,” “antisymmetric” viscosity,6 or “Lorentz shear
modulus”7�. Hall viscosity is so-named because it is the natu-
ral analog in viscosity of the Hall conductivity. We show that
this viscosity arises in quantum Hall fluids and in paired
superfluids, and its magnitude is always proportional to a
spin density. This result should be of wide interest. For trial
wave functions given by conformal blocks, the spin per par-
ticle is given by the conformal weight. In the remainder of
this Introduction, we explain the central issues in more
depth, introduce some basic arguments that will be crucial
later, and also review some earlier work relevant to the prob-
lems of adiabatic statistics and Hall viscosity.

B. Adiabatic transport and quasiparticle statistics

Here for the time being we are concerned primarily with
quantum Hall states. The basic examples are Laughlin’s trial
wave functions for a ground state with n quasiholes �each of
the lowest possible nonzero fractional charge�, which in their
original form are8

�
k,l

�zk − wl��
i,j

�zi − zj�Q exp�−
1

4�
i

�zi�2� . �1.1�

Here the exponent Q determines the filling factor of the state
in the thermodynamic limit as the particle number N goes to
infinity, zi�i=1, . . . ,N� are the complex coordinates of par-
ticles, and wl are the complex coordinates of the quasiholes.
When Q is even, the particles are bosons, and when Q is odd
they are fermions, such as electrons. In either case, the func-
tions are for particles in the lowest Landau level �LLL�.

Now we consider the adiabatic calculation of statistics.
The adiabatic calculation is meaningful if the excitation
spectrum of the system above the possibly degenerate quasi-
particle state subspace is gapped �with the gap going to a
constant as the system size goes to infinity�. It can also be
valid if any gapless excitations are sufficiently weakly
coupled to the quasiparticles. For example, in a quantum
Hall system with an edge, there are gapless edge excitations.
When quasiparticles are present within the region occupied
by the particles, we will assume throughout this paper that
the system �i.e., N� is large enough so that during the ex-
change the distance of the quasiparticles from the edge is
large compared with their separation, which is itself large
compared with the microscopic correlation length scale
�which frequently is of order the particle spacing�. In this
case the edge excitations effectively decouple from the cal-
culation.

The pioneering calculation of adiabatic statistics in a QH
system was performed by Arovas et al.9 and Stone.10 �An
interesting alternative approach has been formulated
recently11 and applied to non-Abelian states12 as we were
finishing this paper.� We follow the framework of their
method but generalize to allow for non-Abelian statistics.
Thus suppose that we have a space of degenerate states with
basis ��a�w��, where a runs over some finite set and we will
use w to stand for the set of n quasihole coordinates wl, l
=1, . . . ,n. We assume that the basis is orthonormal,
	�a�w� ��b�w��=�ab, for each w. As w varies, these vectors
sweep out a subspace of a common multiparticle Hilbert

space in which they all live.13,14 The states for any fixed w
are supposed to be degenerate in energy, and we will com-
pute the adiabatic statistics within this subspace. We neglect
the “dynamical phase” which depends on the energy and the
total time taken for an exchange. The desired adiabatic phase
or matrix is the holonomy, which can be written as9,13–15

P exp i

C

�Aw · dw + Aw̄ · dw̄� , �1.2�

where C is a closed directed path that begins and ends at a
base point w�0� in the configuration space of the quasiholes.
�This configuration space can be thought of as Cn, where C
is the complex plane or Riemann sphere, minus the “diago-
nal” on which wk=wl for some k, l, k� l, modulo the action
of the permutation group Sn for the identical quasiholes; if
the quasiparticles are not all of the same type there are ob-
vious modifications of the permutation group.� P is the path
ordering operator, in which the matrix for a later point on the
path is to the left of earlier ones, Aw ·dw=�lAw,ldwl, and Aw,l
is a matrix. It is possible to change to a different basis set
��b��w��= ��a�w��Mab�w� as a function of position on the
path C, where M�w� is a unitary matrix for each point w on
the path C, in order to preserve orthonormality. This is re-
ferred to as a change in gauge. The expression is correct as
written when the vector potential A refers to a single gauge
choice for the whole path C �as in the case of the states in
Eq. �1.1� above�. In general such a choice may not be con-
venient, and then one must use patches with a gauge choice
on each patch. The patches overlap, and in the overlap region
there is a transition function �gauge transformation�, which is
a unitary matrix M. The holonomy is then the matrix com-
posite of the path-ordered exponentials for the part of the
path within each patch, with gauge transformations by the
transition matrices inserted in between. It is frequently the
case that a single transition function M is sufficient, and the
transition can be located at the base point w�0�. Then the
adiabatic transport maps the basis states ��b�w�0��� to
�a��a�w�0���Bab, where the holonomy is given by

B = MP exp i

C

�Aw · dw + Aw̄ · dw̄� . �1.3�

Defined this way, the holonomy is gauge invariant in all
cases, up to conjugation by a unitary matrix that corresponds
to a change in orthonormal basis at w�0�. We note also that
the use of a different base point on the same path C conju-
gates the holonomy by some unitary matrix and has no effect
on the structure of the braid-group representation.

The Berry connection is given in components by

Aw,l,ab�w� = i�a��w�� ��b�w�
�wl

� , �1.4�

Aw̄,l,ab�w� = i�a��w�� ��b�w�
�wl

� . �1.5�

Then Aw̄,l�w�=Aw,l�w�†, which ensures that the holonomy is
unitary �Aw is not holomorphic in w in general�. For func-
tions in the LLL, the inner product is the usual 	�a ��b�
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=��d2zi�a
*�b. In the calculation in Ref. 9, the trial quasi-

hole states used were the wave functions �Eq. �1.1�� which
are not orthonormal with respect to this inner product �for
Laughlin quasiholes, there is only a single state for n quasi-
holes, so the label a is dropped�. Arovas et al.9 appeared to
neglect this point10 but arrived at the correct answer none-
theless. The result is that if two quasiholes are exchanged
around a counterclockwise path that does not enclose any
other quasiholes �the others stay at fixed positions through-
out�, the adiabatic phase change is ei�/Q.

The central point of the calculation is that the necessary
inner products can be evaluated by using the plasma map-
ping of Laughlin,8 plus the fact that screening occurs in the
Coulomb plasma provided Q is not too large. We reformulate
this as follows �following a line of argument begun by
Halperin16�. Consider instead the following wave functions,
which represent the same quantum states as Eq. �1.1� be-
cause they differ only by functions of the parameters w:

��w1, . . . ,wn;z1, . . . ,zN�

= �
k�l

�wk − wl�1/Q · �
i,k

�zi − wk� · �
i�j

�zi − zj�Q

�exp�−
1

4Q
�

k

�wk�2 −
1

4�
i

�zi�2� �1.6�

�here and below we take the notational liberty of using some
indices more than once in distinct factors, which have been
separated here by the dots�. The modulus squared is the Bolt-
zmann weight for a classical plasma of charges Q at all zi, 1
at all wk, with a neutralizing background of density 1 /2�,
impurities at fixed positions wk, with the two-dimensional
�2D� Coulomb interaction potential between unit charges
taken to be minus the natural logarithm of the distance
squared, and with temperature Q. Thus the overlap integral is
the corresponding partition function,

Z�w1, . . . ,wn� = ����w1, . . . ,wn���2

=� �
i

d2zi exp
1

Q��
k�l

ln�wk − wl�2

+ Q�
i,k

ln�zi − wk�2 + Q2�
i�j

ln�zi − zj�2

−
1

2�
k

�wk�2 −
Q

2 �
i

�zi�2� . �1.7�

Given the partition function, we can define the free energy F
as F=−ln Z �or as this times the temperature Q, but this
makes no difference for us�. Then by screening, for suffi-
ciently large separation of the quasiholes, this free energy
goes to a constant at sufficiently large separation of the
quasiholes. This constant has the form

F = Af0�Q� + nfqh�Q� , �1.8�

consisting of an extensive background term, which is the
area A occupied by the particles plus quasiholes times a con-
stant f0�Q� plus a “defect free energy” fqh�Q� for each quasi-
hole. �In a more general situation with different types of
quasiparticles, these latter terms would be different for each

type of quasiparticle, as well as depending on the underlying
ground state.� Both constants f0�Q� and fqh�Q� are well de-
fined but Q dependent, given the definition above, but have
no universal significance.

Now we can reformulate the statistics calculation. Sup-
pose that, in addition to being �ortho�normalized, the wave
functions of the states ��a�w�� are holomorphic in w, as the
Halperin functions above are �except for the Gaussian fac-
tors, which we ignore here but comment on afterward, and
except on the diagonal wk=wl, which is to be avoided�. Then
it follows that

Aw,l,ab�w� = i
�

�wl
	�a�w���b�w�� = 0. �1.9�

Then the holonomy is given entirely by the transition matrix
or matrices: B=M. For the wavefunctions �Eq. �1.6��, the
transition matrix is just a number M of mod 1 that is required
to transform back to the original sheet �or gauge� after mak-
ing an exchange due to the wave functions not being single
valued in the wk’s. For the exchange of two quasiholes along
a path not enclosing any others �which stay at fixed positions
throughout�, this gives the phase M =ei�/Q. It is important to
emphasize that when applying this argument to wave func-
tions, they should be functions in a common Hilbert space
for all w and with the integration measure independent of the
parameter w being varied.

The fact that the normalizing Gaussian factors are not
holomorphic in w means that the calculation also produces a
phase factor eiA�C�/Q, where A�C� is the area enclosed by the
loop C.9 This can be interpreted as the fractionally charged
quasiparticles detecting the background magnetic field9

through an Aharonov-Bohm phase, though, in fact, it is Q
times the particle density that they detect, which happens to
give the same result because the particle density is uniform,
with filling factor 1 /Q, outside the quasiholes. �If the particle
density were not uniform, the normalizing Gaussian factors
in w’s would be modified.� This effect is ubiquitous for QH
states. We will comment on it further in connection with
systems that are not QH systems. Other than this effect, the
holonomy depends only on the homotopy class of the path C
in the configuration space, not on the precise path; that is, it
is invariant under small deformations of the path such that C
does not pass through the diagonals wk=wl during the defor-
mation. Then the holonomy gives a unitary representation of
the braid group, acting in the space of degenerate states at
w�0�, times the path-dependent factor eiA�C�/Q which we will
frequently just ignore.

The transition matrices M result from the behavior of the
wave functions under analytic continuation of the quasiholes,
with the particle coordinates held fixed �or even if they are
not fixed�. In the context of solutions of differential equa-
tions, this is called monodromy, and we follow this terminol-
ogy here. Halperin16 noted that the monodromy of his func-
tions �Eq. �1.6�� suggested fractional statistics but did not
perform the adiabatic calculation. The use of the present ap-
proach in the adiabatic calculation gives the statistics without
the further calculations performed by Arovas et al.,9 in par-
ticular, confirming the sign of the phase �alternatively, their
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calculation9 can also be used to produce the normalization of
the Laughlin quasihole functions10�.

The statistics calculation for the Laughlin quasiholes gen-
eralizes easily to wave functions that correspond to multi-
component Coulomb plasmas.1 Here we wish to generalize it
to non-Abelian cases, specifically those in which the trial
wave functions are conformal blocks from CFT. These are
holomorphic in the quasihole coordinates and have non-
trivial, sometimes non-Abelian, monodromy; Halperin form
�1.6� of Abelian quasihole wave functions can also be
viewed as conformal blocks.1 The goal will be to see whether
the effect noted above for the latter states, that holonomy
equals monodromy, holds for these trial functions, as conjec-
tured by MR. The result will hinge on whether the screening
property in the plasma mapping for the Laughlin states,
which makes the Halperin functions �conformal blocks� or-
thonormal, also generalizes when other conformal blocks are
used as trial wave functions. The answer will be yes in some
cases.

In addition, we apply the same formalism to consider
adiabatic variation in the geometry of the system. We will
show later that the curvature of the Berry connection is non-
zero, and this determines the Hall viscosity. We also consider
the holonomy around a loop corresponding to a modular
transformation. In some cases we can apply a similar argu-
ment that the orthonormalized wave functions are almost ho-
lomorphic in the relevant complex parameter � except for a
very simple nonholomorphic part.

C. Conformal blocks as trial wave functions

Next we discuss how conformal blocks from CFT can be
used as trial wave functions, following MR. For background
on CFT, see Ref. 17.

The trial wave functions for QH systems that we will
study in this paper take the form

�a�w1, . . . ,wn;z1, . . . ,zN�

=�charge	��z1� ¯ ��zN���w1� ¯ ��wn��a,CFT.

�1.10�

Here again coordinates zi are those of particles �either bosons
or fermions�, so �a is single valued and either symmetric or
antisymmetric in these variables, while coordinates wl are
those of quasiholes. The label a again runs over a basis for a
space of functions. On the right-hand side, �charge is inde-
pendent of a and is a function of the same coordinates of
similar form to Eq. �1.6�, though the exponents �or charges
of the particles and impurities in the corresponding plasma�
may take other rational-fraction values. We note that the ex-
ponent in the particle-particle factors is the inverse of the
filling factor, �= P /Q, and the Gaussian in the particle coor-
dinates is always as in Eq. �1.6�. The values of the exponents
in the charge part are determined by the requirement that the
whole function �a be single valued and �anti�symmetric in
the particle coordinates; this may always be done consis-
tently with a plasma form, thanks to consistency properties
of conformal blocks. The exponents are determined only up
to addition of integers, and we usually consider the smallest

possible positive values, which give the highest value of the
filling factor, and the lowest value of the quasihole charge;
further the field � is usually also chosen, given the CFT, to
obtain the lowest possible quasihole charge for a given pos-
sible filling factor.

The expectation value Fa�w1 , . . . ;z1 , . . . �= 	¯�a,CFT
stands for a conformal block in some CFT, in which � and �
stand for fields. The notation is somewhat formal because the
function is generally not single valued and a sheet should be
specified. The function is holomorphic in the z’s and w’s off
the diagonal on which some z’s and/or w’s coincide. The
field � must have the property that its monodromy is Abe-
lian, which means that there is a single primary field �of
some chiral algebra� in its operator product expansion �OPE�
with itself �we omit nonzero OPE coefficients, which play no
role here�,

��z���0� � z−2h�+h�*�*�0� + ¯ , �1.11�

as z→0, where �* is another field and the ¯ stands as usual
in CFT for terms smaller by positive integer powers of z as
z→0, which are descendants of �* under the chiral algebra.
Moreover, � must generate in this way only fields that are
also Abelian. Further, there must be exactly one term in the
OPE of � with �,

��z���0� � z−h�−h�+h�*�*�0� + ¯ , �1.12�

where again �* is another field, h� is the conformal weight of
� �and similarly for other fields�, and the same is true for �*,
and so on. These requirements mean that � is what is called
a “simple current:” the operation of taking the OPE of � with
the primary fields in the theory �including � itself� just per-
mutes the primary fields. This has the effect of guaranteeing
that the full function �a has the stated properties. The OPE
of � with itself may be nontrivial, containing terms that do
not differ in conformal weight only by integers

��z���0� � z−2h�+h��1���1� + ¯ + z−2h�+h��2���2� + ¯ + ¯ ,

�1.13�

where, depending on which CFT is used, any number of
distinct primaries could appear on the right. Those appearing
with nonzero coefficients may be summarized by the fusion
rules �analogous to the Clebsch-Gordan formulas for SU�2�
tensor products�, which generally have the form

	
 � 	� = �
�

N
�
� 	�, �1.14�

in which the fields 	
 run over the full set of primary fields
in the CFT used �� ,�* , . . ., as well as � ,�* ,��1� , . . ., will be
among these� and the N
�

� =N�

� are non-negative integers

�which may be larger than 1 in some cases�. The product
here is formal and simply refers to terms in an actual OPE.
We define 	0=1, the identity operator. For an Abelian field
�one obeying Abelian fusion rules�, N



� is equal to 1 for one
value of � �and zero otherwise� and similarly for iterated
products; otherwise the field is non-Abelian. �As explained
in Ref. 1, �charge can also be viewed as a kind of conformal
block in the CFT of a single scalar field , with the role of
the fields �, � played by charged fields �exponentials of �,
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but which also includes a chiral version of the neutralizing
background charge density.8� A rational CFT �RCFT� is one
in which there is a chiral algebra, which is either the Vira-
soro algebra or an algebra extension of it, obtained from
OPEs of a finite set of Abelian conformal fields, and a finite
set of primary fields, defined generally as conformal fields
that generate irreducible highest-weight representations of
the chiral algebra �by operator products�.17,18 Examples of
nontrivial chiral algebras include the affine Lie algebras. At
many places we will need to assume that the CFT is rational,
as is the combined one that includes the charge part. Irratio-
nal examples will be discussed at the end of the paper.

The conformal blocks are multisheeted functions when
the exponents such as 2h�−h�* are not integers and because
of non-Abelian fields �. The multisheetedness due to frac-
tional exponents from � is no worse than in the case of the
Halperin functions �Eq. �1.6�� and produces only a phase
factor when these are exchanged or encircle a �, so not a
linearly independent function of the particle coordinates �as
the latter vary over some open set that lies on a single sheet�.
Finally, a labels a basis for the space of linearly independent
conformal blocks associated with a given correlation func-
tion; the range of a is the dimension of the space of blocks,
which can be calculated for the case of CFT on the sphere by
repeated use of the fusion rules. By definition, this is the
number of linearly independent functions of all the variables
z and w as they vary over some open set. When viewed as
many-particle wave functions, we would instead count the
number of linearly independent functions of the particle co-
ordinates z for fixed w. In general, the latter number might be
less than the number of blocks �for example, when N=0�.
However, in examples these numbers do coincide when the
particle number N is large enough, and we will assume this
from here on, as large N is the case of interest anyway. More
generally, of course, one could have more than two types of
primary field in the correlator, which could represent the par-
ticles and more than one type of quasihole, such could result
from use of the OPE starting from one type of “basic” quasi-
hole.

In CFT, correlation functions are constructed from com-
binations of blocks and their conjugates, for example,

	��z1, z̄1� ¯ ��zN, z̄N���w1,w̄1� ¯ ��w1,w̄1��CFT

= �
a

�Fa�w1, . . . ;z1, . . . ��2, �1.15�

where the sum is over the basis for the space of blocks. Such
an expression is supposed to represent a single-valued corre-
lation function of local operators in a CFT; the local opera-
tors ��z , z̄� and so on that appear here differ from the chiral
versions ��z� that appeared before, and are related roughly

by ��z , z̄�=��z��̄�z̄�, but also require the sum over the
blocks. The diagonal form given is single valued if the
monodromy of the space is given by unitary matrices Bab in
the basis used. Such a diagonal form is always available in a
unitary theory and even in nonunitary rational theories, such
as the Virasoro minimal models of Belavin, Polyakov, and
Zamolodchikov �BPZ�.17,19 More generally, when the CFT is
formulated on a surface of higher genus, the number of

blocks is in most cases larger than one even when no fields
are inserted in the correlator. For N, n�0, the single label a
labels the full space of blocks. A diagonal theory, in which
all correlators are given by diagonal expressions like that
above exists in most cases, is valid for surfaces of any genus;
it is referred to as the diagonal modular invariant theory,
where modular invariance refers to the case of the torus �ge-
nus 1�, with no fields inserted. At this point we should em-
phasize that what we call a correlation function �or cor-
relator� here is really a partition function for the CFT on the
given surface, with fields � and � inserted at specified points.
This differs from the more usual use of normalized correla-
tion functions, in which one divides by the partition function
for the case of no field insertions. For example, when � is a
basic field of the theory, described by an action S���, the
theory can be described by a functional integral,

Z =� D���e−S���, �1.16�

and the un-normalized correlation function is

	��z1, z̄1� ¯ ��zN, z̄N���w1,w̄1� ¯ ��w1,w̄1��CFT

= Z�w1,w̄1, . . . ;z1, z̄1, . . . �

=� D�����z1, z̄1� ¯ ��w1,w̄1� ¯ e−S���, �1.17�

whereas usually one would define the correlation function to
be Z�w1 , w̄1 , . . . ;z1 , z̄1 , . . . � /Z. Even leaving aside a factor of
the form exponential of minus a free energy proportional to
the area of the surface, this makes a difference for genus �1
because the denominator is in most CFTs a sum of more than
one modulus-square conformal blocks. The exceptions to the
latter are “holomorphic” CFTs, in which the only primary
field of the chiral algebra is the identity operator 1; an ex-
ample is the current algebra or Wess-Zumino-Witten theory
for the Lie group E8 at level 1.

As an example of the conformal blocks and their use as
trial wave functions, we give the MR state, for the case of no
quasiholes, in which � is a Majorana fermion field, with
conformal weight h�=1 /2. The ground-state trial wave func-
tion for the sphere or infinite plane contains the conformal
block,1

	��z1���z2� ¯ �Ising = Pf
1

zi − zj
, �1.18�

where the Pfaffian is defined for any even-by-even antisym-
metric matrix with matrix elements Mij by

PfMij = A�M12M34 ¯ MN−1,N� , �1.19�

where the antisymmetrizer A sums over all permutations that
produce distinct pairings �i , j� times the sign of the permuta-
tion. For quasiholes, one uses1 �=�, the spin field of the
critical Ising model; 1, �, and � are the only primary fields in
the Ising �or Majorana fermion� CFT. The scaling dimen-
sions are h�=1 /2 and h�=1 /16. Explicit conformal blocks
for this case will be quoted later in the paper. The fusion
rules for this CFT �other than for products with the identity
1� are
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� � � = 1, �1.20�

� � � = � , �1.21�

� � � = 1 + � . �1.22�

The fusion rules imply that the number of conformal blocks
for n quasiholes on the sphere is 2n/2−1 and n must be even.
Other examples include the Read-Rezayi �RR� states,20 in
which the field �=�1, one of the parafermion currents in the
Zk parafermion CFT; these fields are good examples of
simple currents. One can also consider QH systems in which
the particles carry SU�2� spin greater than 0, and then inner
products involve the inner product of spin states as well as
spatial integrals.

We may now define the overlap integrals or inner prod-
ucts of the trial states with wave functions �a as

	�a�w1, . . . ,wn���b�w1, . . . ,wn��

= Zab�w1, . . . ,wn�

=� �
i=1

N

d2zi�a�w1, . . . ;z1, . . . ��b�w1, . . . ;z1, . . . � .

�1.23�

�The coordinates and the integration measure are written for
the plane, though the definition applies to other geometries
with modifications that are hopefully obvious. We do not
imply that the overlap matrices Zab�w1 , . . . ,wn� are holomor-
phic in the w’s.� The difference between Zab and Z above
should be noted: both are sesquilinear in conformal blocks,
but Z�w1 , . . . ,z1 , . . . � depends on z’s as well as w’s and is a
diagonal sum of modulus-square conformal blocks, while
Zab is integrated over z’s but not summed over the indices a,
b.

From the discussion we now see that when conformal
blocks are used as �or in� trial wave functions as described
above, then the holonomy under adiabatic transport will
equal the monodromy provided that the overlap matrix
Zab�w1 , . . . ,wn� is proportional to �ab with proportionality
constant independent of the positions w, asymptotically for
large separations of the w’s, in a basis for the conformal
blocks in which the braiding matrices B are unitary. This
orthonormality of the conformal blocks is then the desired
statement generalizing screening in the Coulomb plasma.
�MR noted in Abelian examples such as the Laughlin states
that when conformal blocks are used as trial wave functions,
the gauge is such that the Berry connection vanishes, and the
holonomy is given entirely by the monodromy.�

Let us also point out here that the so-called shift for the
ground state on the sphere or disk geometries can be ob-
tained from the CFT as well. The shift S in the number of
flux N	 piercing the sphere is defined by

N	 = �−1N − S . �1.24�

The flux N	 can be obtained from the degree of the wave
function in each coordinate zi, which itself can be obtained
by letting zi→� and extracting the leading power of zi �ne-
glecting the Gaussian factor�. The CFT contributes −2h� to

this, as particle i and the N−1 remaining particles must fuse
to give the identity.20 The charge sector contributes
�−1�N−1�. Then the shift is

S = 2��−1/2 + h�� . �1.25�

We write it in this form because when the charge sector is
interpreted as a CFT also,1 the conformal weight of the field
contributing to the particle is �−1 /2, so that S /2 is simply the
total conformal weight of the field representing the particle,
including the charge sector.

D. Bose-Einstein condensates and paired states

Some similar trial wave functions also have applications
outside of the QH effect. Let us start again with the simplest
case, that of a Bose-Einstein condensate �BEC�, with n�0
vortices included in infinite space with no background poten-
tial. A trial function for this is similar to the Laughlin func-
tion divided by its modulus �but with the particle-particle
factors completely removed�,

�
i,l

�zi − wl�
�zi − wl�

. �1.26�

Unlike the Laughlin states, in such a condensate, while the
average charge �or number� density is uniform, there are
large �Poissonian� fluctuations in the density or in the num-
ber in a subregion. This is connected with the infinite com-
pressibility of this BEC in noninteracting particles. One may
wonder if the vortices possess fractional statistics. It is
simple to perform the adiabatic calculation using expressions
similar to those of Arovas et al.9 There is a part of the ho-
lonomy phase factor related to the expectation of the charge
density times the area of the loop enclosed by the path,
which is related to the Magnus force on the vortex. When
vortices are exchanged, there is a correction due to the
charge deficiency at the vortex. However, for this trial func-
tion, the latter is clearly zero, as the vortices disappear from
the density calculation when the modulus square is taken.
Thus, the vortices are bosons. The screening effect of the
Coulomb plasma that arose on taking the modulus square,
which produced a net deficit of charge around each quasi-
hole, which was so important in the discussion of the QH
functions, is simply absent here.

However, for a BEC, the trial wave function above is not
very physical. For one, it has an unpleasant singularity at the
locations of the vortices. Even for noninteracting particles, it
does not solve the Schrödinger equation �a function that does
is �i,l�zi−wl�, which is not normalizable; the situation is bet-
ter for trapped atoms in, e.g., a harmonic potential when the
LLL can again be used�. Further, in an interacting Bose su-
perfluid, the circulation of the fluid around the vortex pro-
duces a “centrifugal” force effect, and due to the finite com-
pressibility of the fluid there is a long-range tail in the
deficiency of density compared with the background, going
as ��2 /r2, where r is the distance from a vortex and � is the
healing length �this result may also be obtained from a
Gross-Pitaevskii equation analysis �see Ref. 21� and shows
that the simple form above is not even valid asymptically
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outside the vortices�. As pointed out by Haldane and Wu,22

this leads to a charge deficit in a circle of radius R centered at
the vortex that increases logarithmically with R. Thus, the
fractional statistics phase is not path independent; it depends
on the separation of the vortices. �Compared with the QH
case, it also depends differently on the signs of the vorticities
since the deficiency of particle number at a vortex is inde-
pendent of the sign of its vorticity; the above wave function
represents vortices all with positive vorticity.� Clearly, this is
connected with being in a phase of matter that is not “topo-
logical,” due to the existence of gapless Goldstone �density�
modes of the superfluid, as required by the broken symmetry.
Haldane and Wu22 also pointed out that if the interaction
between the particles falls off slower than 1 /r2 �in which
case a neutralizing background potential will be required�,
then the fluid exhibits screening, and as for the trial function
above, there is no net charge accumulated at the vortex and
the net phase for exchange of two vortices is zero �in the
borderline case of 1 /r2 interaction, a nonzero result is pos-
sible�.

In this paper we will consider BCS paired states of fermi-
ons in addition to QH states. In these, the vortices carry
vorticity in multiples of half the usual unit due to the pairing.
If the fermions are not coupled to any gauge field �either the
electromagnetic field or the Chern-Simons �CS� field that
arises in composite particle theory23�, then the fermion wave
functions must be single valued even in the presence of vor-
tices, while the local gap function �or condensate wavefunc-
tion or pairing function� must wind in phase by 2� on mak-
ing circuit around a minimum-vorticity vortex. The charge
sector contribution to the adiabatic statistics is expected to
come from viewing the system as made of composite pairs of
particles, and the pairs behave as bosons, similar to the BEC.
The point we wish to emphasize4 is that, like the BEC wave
function above, the “nice” trial wave functions that will be
considered here do not include the result of the self-
consistent calculation of the gap. That is, the gap function for
the pairing should be calculated by solving self-consistency
conditions from BCS mean-field theory that incorporates the
presence of the vortices. This is difficult, and in general these
details should not be relevant to the topological properties of
a topological phase. The result of such a calculation should
be similar to the hydrodynamic or Gross-Pitaevskii calcula-
tion for the Bose superfluid, and �for short-range interaction
of the fermions� the density deficiency at the vortices and
consequently the charge sector contribution to the adiabatic
statistics will not be well defined. Again, the neutral paired
fermion superfluid is a gapless phase with a Goldstone mode
if there is no long-range interaction. Thus, while there may
be a non-Abelian contribution to statistics from the paired
wave functions, as discussed in Ref. 4 and the present paper,
the Abelian contribution is not well defined; in this sense,
these systems are not in a topological phase. The same ap-
plies to other gapless degrees of freedom, for example, when
spin-rotation symmetry is broken. This should be kept in
mind when considering the use of non-QH paired systems
for topological quantum computation, such as the half-flux
vortices in He3.24 These will most likely only be successful if
the Abelian phases drop out of computations. �Even in QH
systems, the Aharonov-Bohm phase is an inconvenience.�

For interactions falling slower than 1 /r2, with a neutral-
izing background added, the contribution to adiabatic statis-
tics from the charge sector is well defined but is zero. Thus
for interacting electrons with 1 /r Coulomb interactions, only
the effects other than the charge sector will be left. These can
be calculated using the trial wave functions if there are no
other Goldstone modes in the system apart from the charge
mode.

Returning to trial paired states in the presence of vortices
but without the self-consistent calculation of the gap func-
tion, one can make a singular gauge transformation as a
function of the fermion coordinates that turns the trial state
into one with a gap function that does not wind in phase,
with the many-particle wave function for the fermions
changing in sign on making a circuit around the vortex. If all
the vortices have positive vorticity, the transformation is
multiplication by the inverse square root of the above BEC
trial function. Then for this second gauge choice, it was
shown in Ref. 4 that the long-distance behavior of a p+ ip
paired state of spinless or spin-polarized fermions is the
same as that of the MR trial state, as given by the Ising
conformal block �or Pfaffian� above. More generally, we
might view conformal blocks, now without the charge sector
factor �charge, as trial wave functions for Abelian anyons in
zero magnetic field. These represent superfluid states of
anyons, and we will include this possibility in the following
discussion. We should point out that this relation of QH wave
functions to those for particles �possibly of different, though
still Abelian, statistics� in zero magnetic field is precisely the
idea of “composite particles,”23 here specialized to compos-
ite particles in zero net magnetic field. Later we will argue
when performing the calculations of overlaps for the QH trial
functions that the charge part may as well be removed, im-
plying that the results also have application to particle sys-
tems in zero magnetic field, consistent with the composite
particle point of view. However, as we have just seen for the
boson case �which is related to composite bosons23�, in prac-
tice there can be important differences in the behavior in the
charge sector that distinguishes these two types of physical
systems.

For such trial functions �conformal blocks� that are not
single valued in the particle coordinates, some technical is-
sues must be dealt with in order to discuss the adiabatic
statistics of the vortices. The monodromy of the functions is
well defined if one keeps track of all the z’s and w’s. But for
our purposes we wish to move w only, with z’s fixed, and the
result depends on the precise path taken relative to the z’s
due to the square roots in the trial function �this generalizes
directly to particles that are Abelian anyons�. As we wish to
compare with holonomy calculated by integrating out the
particles in each infinitesimal time step, this dependence on
particle positions is unacceptable, even though it leads only
to an ambiguity in sign in the present case �more generally,
to some root of unity�. This effect was not present for the QH
trial wave functions above, which included the charge sector
and were single valued in the particle coordinates �and the
particles were bosons or fermions�. �We note that the Berry
connection is well defined even for the nonsingle-valued
wave functions because the dependence on the particle coor-
dinates is just a square �or other� root, and the phase change
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cancels in the overlap �thus relies on the particles obeying
Abelian statistics�.� One solution when the charge sector is
removed from the QH wave functions to obtain the blocks
considered here is to retain the gauge-transformation phase
factor so that the functions are single valued in the particle
coordinates, which amounts to using the original gauge.
Then we expect still to obtain the charge sector contribution
that is the area enclosed by the loop �because the particle
density is uniform�, in addition to the contribution of the
conformal blocks. Another simple solution, which we adopt
here, is that when the exchange of vortices is made along a
path C that is contractible to a limit point on the intersection
of some diagonals, then we may define it as made along a
different path, homotopic to the original in the vortex �or
quasihole� configuration space, which does not enclose any
particles. This is acceptable for the monodromy as it does not
require well-separated vortices �or quasiholes�. This ap-
proach is not available in the case of exchange by noncon-
tractible paths, for example, on a surface of nontrivial topol-
ogy, but we will not enter into this in this paper.

The preceding applies to fermions that either are not
coupled to a gauge field or are but the penetration depth for
the gauge field is large. If the penetration depth is instead
small and we consider exchange of vortices at separations
larger than the penetration depth, then there is a circulating
pure-gauge vector potential outside a penetration depth from
the vortices, and the gap function is covariantly constant.
This corresponds to the use of the second gauge choice
above. The calculation of adiabatic statistics may be made
well defined by the gauge transformation technique as de-
scribed above.

E. Earlier work

There have been various earlier steps toward demonstrat-
ing that non-Abelian adiabatic statistics occurs in trial QH
wave functions based on conformal blocks and in certain
BCS paired states. The idea that in the MR wave function the
holonomy equals the monodromy was re-emphasized
�though not using this terminology� by Nayak and Wilczek
�NW�,25 who also emphasized that this generalizes screening
in the plasma mapping for the Laughlin states. They also
found explicitly the two conformal blocks corresponding to
any even number N of particles and n=4 quasiholes. Even
though they did not find these in the form of Majorana fer-
mion zero mode states on the quasiholes �which was found at
around the same time in Ref. 26�, they guessed that this
interpretation was correct for any number of quasiholes. This
led them to conjecture the form of the braid group represen-
tation in the monodromy, which apart from Abelian factors
�i.e., tensor product with an Abelian representation of the
braid group� can be viewed as an image of the braid group in
the spinor representation of the rotation group in n
dimensions.25 This representation of the braid group was
known27 and was also known to occur in the Ising CFT �its
structure is described in more detail in Ref. 28�. A similar
argument was spelled out in greater detail in Ref. 24 after the
work of Read and Green4 on the Majorana zero modes in
p+ ip paired states. However, the argument gives only the

monodromy of the states �modulo Abelian factors�, and it is
not clear if adiabatic transport is actually considered in Ref.
24 �no expression for the Berry connection appears there�.
Another argument of NW is somewhat similar to the one we
will give in Sec. V below.

Adiabatic transport of quasiholes or vortices in the paired
state was considered further more recently in Ref. 29 and
especially clearly in Ref. 30 �Appendix�, where it is shown
that the Berry connection is proportional to the identity ma-
trix, thus proving that the holonomy is given by the mono-
dromy found by NW up to some Abelian factor. Other ap-
proaches to the problem for the MR QH state should also be
mentioned. Gurarie and Nayak31 used another Coulomb gas
method from CFT to represent the overlap integrals. For the
case of only two quasiholes, they succeeded in obtaining the
vanishing of the Berry connection and hence that the ho-
lonomy equals the monodromy in this case. For four quasi-
holes their result depended on some assumptions, the validity
of which does not appear to be obvious. Other groups32,33

formulated field-theoretic arguments but seem to assume that
the edge theory is the expected CFT. Tserkovnyak and
Simon34 evaluated the holonomy numerically for two and
four quasiholes by Monte Carlo methods, finding agreement
with the expected result, at some degree of accuracy.

For most other states, such as those of Read-Rezayi,20

much less has been shown. But there is a series of spin-
singlet trial states due to Blok and Wen35 for particles of
SU�2� spin k /2 �k=1,2 , . . .; k=1 is Halperin’s Abelian spin-
singlet state �see, e.g., Ref. 1��, in which the CFT is SU�2�
level k, which have many nice properties. These authors
were able to show that the Berry connection vanishes, and so
holonomy equals monodromy, for these states by using the
Knizhnik-Zamolodchikov equation from CFT �Ref. 17�, and
making an assumption that screening holds in an SU�2� gen-
eralization of the Coulomb plasma, in a manner closely par-
allel to the work of Arovas et al.9 The screening assumption
implies that the trial ground state has short-range spin corre-
lations. We will comment on this further in Sec. V below. For
recent further results on monodromy of blocks in the RR
series, see Refs. 36 and 37.

We conclude from this survey that with few exceptions
existing results in the literature are either only partial ones
for the MR state �not calculating the Abelian factors�, or else
depend on unproven assumptions, or apply only to particular
states. By contrast, the results presented below for the MR
state are complete in that they yield the full holonomy for up
to four quasiholes or for the ground states on a surface of any
genus. An argument that we invoke frequently, which is sup-
ported by renormalization group �RG� arguments herein, is
that the charge sector factor of the QH wave functions can be
dropped without jeopardizing the results for holonomy in the
CFT sector; this is related to conventional lore about com-
posite particle methods and has of course also been used by
others, for examples, Refs. 29 and 30. The results for quasi-
holes rest on an assumption that screening occurs in a certain
very conventional two-component plasma, which will be ac-
cepted by most physicists. The arguments given in Sec. V
apply to any trial state given in terms of conformal blocks as
explained here and show that holonomy equals monodromy
under some general conditions that can be checked for each
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particular trial state as a well-posed physical question in two-
dimensional field theory. Further, there is a simple easily
checked criterion �relevance or irrelevance of a perturbation�
that may provide important clues as to whether or not the
general conditions hold.

Now we turn to earlier work on adiabatic variation in the
aspect ratio of a QH system on a torus. In the complex plane,
the torus is defined by identifying points under z→z+L and
z→z+L�, where � is in the upper half plane Im ��0; thus
the upper half plane is the parameter space on which we may
study adiabatic transport. This was considered for the filled
LLL in an elegant paper by Avron et al.6 They showed that
there is a contribution that is not holonomy but a curvature
�anholonomy or field strength� of the Berry connection �vec-
tor potential� on the upper half plane. �This is somewhat
analogous to the Aharonov-Bohm phase that is proportional
to the area enclosed by a loop in the calculation of Arovas et
al.9 for moving one quasihole.� For the case of the filled
LLL, the result is proportional to the total flux through the
torus.6 Physically, for a homogeneous many-particle fluid
state, this adiabatic curvature divided by the system area rep-
resents the Hall viscosity, here denoted ��A�, a nondissipative
transport coefficient38,39 that is known in plasma physics but
often overlooked elsewhere in fluid dynamics; ��A� is the
only coefficient of viscosity that can be nonzero in a two-
dimensional isotropic incompressible fluid �but must vanish
if time-reversal symmetry is present�.6 The result for the
filled LLL can also be extracted from the detailed single-
particle results of Lévay;40 this paper clarifies many aspects
of this problem. More generally, for the state in which the
lowest � Landau levels are filled �� integer�, the result ��A�

=��n̄ /4 is quoted for integer �, ����1 in Ref. 38, again
using results from Ref. 40 �n̄ is the particle density n̄
= ��� / �2��B

2�; � and the magnetic length �B are set to 1 else-
where in this paper�. �Note that following comments of
Tokatly and Vignale7 we have corrected the coefficient to
1 /4 to account for apparent typos in Ref. 38.�

A recent paper7 has argued that the result in Ref. 6 gen-
eralizes to an arbitrary QH state in the LLL to give ��A�

=�� / �8��B
2� for arbitrary �possibly negative� values of �,

independent of the state �this paper7 and references therein
use the Hall viscosity in an interesting hydrodynamic ap-
proach to collective modes in QH fluids�. Unfortunately, the
end of the calculation uses the incorrect argument that all
particles are close to the x axis. The single-particle results of
Lévay40 can be applied to obtain a seemingly similar result.
He found, for the Berry calculation in the N	-fold degenerate
space of single-particle states in a single Landau level �N	 is
the number of flux piercing the torus�, that the Berry connec-
tion and its curvature are proportional to the identity matrix
in this space, with a coefficient related to the kinetic energy
of the Landau level. This implies �e.g., by using the Slater
determinant basis� that for the space of all many-particle
states with all the particles in a single Landau level, the
Berry connection and curvature are again proportional to the
identity matrix and so in this sense are independent of the
state. �This generalizes further if we consider a space con-
sisting of all the many-particle states with a given number of
particles in each Landau level.� However, this adiabatic
transport is not what should be considered for a quantum

fluid state, in which because of the presence of interactions
we take a family consisting of a single ground state �as con-
sidered in Ref. 7� for each value of � or more generally a
space of “degenerate” states for each � but generally not the
full space of many-particle single Landau-level states. This is
an example of the general setup for adiabatic transport, in
which a family of subspaces within a common Hilbert space
is considered, as discussed above in Sec. II B. �The
�-dependent Landau-level states themselves arise in this way,
as all are subspaces of the space of square-integrable func-
tions on the torus with given boundary conditions.� The cur-
vature of the Berry connection definitely does in general de-
pend on the choice of a subspace for each value of � �though
not on the gauge, which is the basis for the subspace� and
cannot be reduced to a calculation that ignores restriction to
the subspace. Hence the result that is independent of the state
chosen, as claimed in Ref. 7, cannot be as general as was
stated. Later, we will show that the correct result depends on
the form of the ground state, not only on the density, though
it is universal within a topological phase. �We will also find
related results for paired superfluids. We are not aware of any
earlier results for Hall viscosity of paired states.�

From Lévay,40 the result in Ref. 7 can be viewed as the
correct one for noninteracting particles in the LLL. Also,
using Lévay’s results for noninteracting particles but at non-
zero temperature T and going to high temperature using clas-
sical equipartition of energy, we find that the result agrees
with that in Ref. 39, which is ��A�=kBTn̄ / �2�c�, where �c is
the cyclotron frequency.

F. Structure of paper

In Sec. II, we first review the essentials of paired states at
the BCS mean-field level and then specialize to ground states
on the torus. We calculate the normalization factors, then
examine the monodromy under modular transformations and
then the curvature and holonomy of the Berry connection for
changes in the aspect ratio �; this determines the Hall viscos-
ity of BCS paired systems, for which we also give a simple
direct calculation. We also discuss higher genus surfaces and
the strong-pairing phases. In Sec. III, we examine similar
questions for the Laughlin QH states, relate the Hall viscos-
ity for trial states given by conformal blocks to the confor-
mal weight of the field for the particle, and conclude the
general discussion for Hall viscosity. In Sec. IV, we present
direct arguments for the non-Abelian adiabatic statistics of
two and four quasiholes in the MR state on the sphere or
plane in the thermodynamic limit. The calculations work by
“doubling” �taking two copies� of the system with the charge
part removed and using an argument that a plasma is in a
screening phase. In Sec. V, we present general arguments
that amount to necessary and sufficient conditions for trial
wave functions given by conformal blocks to describe a to-
pological phase with adiabatic statistics given by the mono-
dromy of the blocks. The condition is that related correlation
functions in two dimensions should go to a constant, as in an
ordered phase. We discuss numerous examples in this light.
Cases not obeying the condition are argued to be gapless
phases or critical points. We argue that use of nonunitary
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rational CFTs in our way cannot produce such a topological
phase if there are any negative quantum dimensions in the
theory �which follows if there are any negative conformal
weights�. The argument assumes that the twist in the theory,
defined adiabatically, is also the same as in the CFT, which
has not been shown. In the Appendix we discuss this, which
is the last step in deriving a modular tensor category from the
construction, and show that the consistent twists are very
limited, so that the argument does go through in at least one
family of examples.

II. PAIRED STATES IN A CLOSED FINITE SYSTEM

In this section, we consider the p+ ip paired states on
compact two-dimensional surfaces �no boundary�. The setup
was already described in Ref. 4 �see also Ref. 30�, but we
review some essential steps and add a few points. The basic
case, other than the sphere, is the torus or equivalently peri-
odic boundary conditions on a parallelogram in the plane.
The other cases, surfaces of genus higher than one, require
more work to set up, and we will be more brief. For all these
problems, we can show starting from the general pairing
problem that at long wavelengths the orthonormalized wave
functions �within the BCS mean-field formulation� are the
conformal blocks of the Majorana fermion �Ising� CFT. This
allows us to calculate explicitly the adiabatic transport of the
states as the aspect ratio of the torus is varied; this leads to
the Hall viscosity and the modular transformation group. We
also consider the generalization to other paired phases of
fermions, including the strong-pairing phases.

A. General equations for pairing

We begin with BCS mean-field theory.41 The effective
grand-canonical Hamiltonian for the fermions is, in the most
general case �we assume for the present that the fermions are
in a finite set of orbitals labeled by Greek indices like 
,
taking values 
=1, . . . ,M�

Keff = �

,�

�h
�c

†c� +

1

2
��
�c


†c�
† + �̄
�c�c
�� . �2.1�

Here the creation and annihilation operators, c

† and c
,

which are adjoints of one another, obey the canonical anti-
commutation relations �c
 ,c�

†�=�
�, �c
 ,c��=0. The

M�M matrix h must be Hermitian, h̄
�=h�
 �the overbar is
complex conjugation�, and represents the usual kinetic en-
ergy and any one-body potential terms, while � is an anti-
symmetric M�M matrix, �
�=−��
, and corresponds to
the gap function. The former condition ensures that Keff is
Hermitian, while the latter means that there are no redundant
components of �.

It will be convenient to write everything in terms of a
2M-component column vector of field operators C, in which
the first M components are c
, the remaining M are c


† . Then,
up to an additive constant,

Keff =
1

2
C†� h �

− �̄ − h̄
�C =

1

2
C†HC . �2.2�

The 2M-dimensional vector space can be viewed as a tensor
product of M-dimensional space with a two-dimensional
“particle-hole” space. Then we may use a tensor product
notation for matrices, with Pauli matrices ��, �=x, y, z,
acting in the two-dimensional space. Then the 2M�2M ma-
trix H obeys

H† = H = − �xHT�x, �2.3�

where superscript T is transpose, �x=�x � 1M, and 1M is the
M�M identity matrix.

We will now diagonalize Keff and find the ground state by
performing a Bogoliubov transformation. First we note the
anticommutation relations for C in terms of 
,
�=1, . . . ,2M,

�C
,C�� = �x,
�,

�C
,C�
†� = �
�. �2.4�

To diagonalize the Hamiltonian, we require creation and an-
nihilation operators for quasiparticle modes, �r, �r

†

�r=1, . . . ,M�, which we combine into a 2M-component col-
umn vector �̃, similar to C. These operators �̃ must obey the
canonical anticommutation relations of the same form as
those for C above. If we define explicitly,

C = � c

c† � = U�̃ = �ū v

v̄ u
�� �
�† � , �2.5�

where u and v are complex M�M matrices, then requiring
C and �̃ to satisfy the canonical anticommutation relations,
we must have

ūvT + vu† = 0,

ūuT + vv† = 1M . �2.6�

Given the above form for U, these equations are equivalent
to UU†=12M, and it follows that U−1=U†=�xU

T�x. These
imply that U is an element of the Lie group O�2M�. We note
that the condition U†U=12M leads to additional relations,

uTv + vTu = 0,

u†u + v†v = 1M , �2.7�

which may be useful, but are equivalent to those above as we
are dealing here with finite matrices for which the right and
left inverses of a matrix are equal.

To make Keff diagonal, we require that

Keff − K0 =
1

2
�̃†�E 0

0 − E
��̃ =

1

2
�̃†Ẽ�̃ , �2.8�

where E is an M�M diagonal real matrix, Ẽ is a
2M�2M matrix, and K0 is the ground-state energy, where
by “ground state” we mean the state annihilated by all �r.
The conditions for E to be diagonal, which can be found by
commuting �r with Keff, are the matrix equations �a complete
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eigenvalue problem� HU=UẼ or more explicitly

h̄u + �̄v = uE ,

�u + hv = − vE , �2.9�

which are the Bogoliubov–de Gennes �BdG� equations for
this problem. �The BdG equations may look more familiar if
one takes the rth column of each of these, which gives the
eigenvalue problem for the rth eigenvalue Er, for
r=1, . . . ,M.� We notice that the equations for ū, v̄, which are
the complex conjugates of these, are in fact the same by
replacing ū→v, v̄→u, and E→−E. This can also be applied
to an individual column of u, v, say the rth, to effectively
exchange the corresponding Er with −Er.

The BdG equations are not easy to solve in closed form in
this general case. Fortunately we do not require these general
solutions. For the moment, all we need is the form of the
ground-state wave function. We will concentrate on the case
in which the ground state contains only states of even par-
ticle number. The ground state can be written in the un-
normalized BCS form,

��� = exp�1

2�

,�

g
�c

†c�

†��0� , �2.10�

where �0� is the vacuum, which is annihilated by all c
’s, and
g is an antisymmetric M�M matrix. The condition that all
�r annihilate ��� yields the relation

uTg = − vT, �2.11�

as a matrix equation, and so g=vu−1 by taking the transpose
or by using the first of Eq. �2.7�. The wave function of the
ground state is then a Pfaffian up to an overall sign,

��
1, . . . ,
N� = 	0�c
1
. . . c
N

��� = � Pfg
i
j
. �2.12�

Note that for any state ���, with wave functions � defined in
this manner for each N-particle subspace, the norm square is

	���� = �
N

�

1,. . .,
N

���
1, . . . ,
N��2/N!. �2.13�

We now obtain the normalization of the ground-state
wave function. To calculate 	� ���, we expand the exponen-
tials and use Wick’s theorem. With the help of some simple
combinatorics, we obtain

	���� = exp
1

2
Tr ln�1M + g†g� = �det�1M + g†g� .

�2.14�

Using the second of Eq. �2.7�, we obtain

uu† = �1M + g†g�−1. �2.15�

Hence �det uu†�1/4��� is normalized, a generalization of the
usual normalization for BCS theory in momentum space

�see, e.g., Refs. 4 and 41�. Also the expectation value N̄ of
the particle number N=�
c


†c
 is

N̄ = Tr v†v = Tr g†g�1M + g†g�−1. �2.16�

By writing the BdG equations in terms of Ê=uEu−1 in
place of E, one finds that

g = �̄−1�Ê − h̄� , �2.17�

and then by eliminating Ê, g obeys a matrix quadratic equa-
tion,

� + gh̄ + hg + g�̄g = 0, �2.18�

so that g can be found without first solving for E or Ê. �This
is similar to a diagonal equation in Ref. 42, p. 68.� This
equation may also be obtained more quickly by applying Keff
to ���; whence one also finds that the ground-state energy is

K0=−Tr �̄g /2.
In some situations of interest, h is a constant multiple of

the identity matrix, say h=−�. In this case the BdG equa-
tions �Eq. �2.9�� can be analyzed further. By multiplying the
first of Eq. �2.9� on the right by �E−�1M� and the second on

the left by �̄, then eliminating v, we obtain

uE2 = ��21M + �†��u . �2.19�

Here we used also −�̄=�†, and we note that �†� is Hermit-
ian and positive. Thus we see that the columns of u are the
eigenvectors of �†�. Similarly, the columns of v are the
eigenvectors of ��†. It follows that the diagonal entries of
E2 are greater than or equal to �2. In fact, a standard result
from linear algebra allows a complex antisymmetric matrix
� to be written in the form

� = wTDw , �2.20�

where w is unitary and D is an antisymmetric M�M block-
diagonal matrix of �M /2� ��x� means the largest integer �x�
2�2 blocks of the form �
�y, where �
 �
=1, . . . , �M /2��
obey �
�0 and for M odd also a single 1�1 block contain-
ing 0. The transformation can be considered as a basis
change among the orbitals C only or as a Bogoliubov trans-
formation with u=w and v=0, which brings H to a form
with � replaced by D, so that the gap function links orbitals
in pairs only �similar to the case of BCS theory for a trans-
lationally invariant system in k space, where the gap func-
tions link k and −k only�. It follows that the eigenvalues in
E2 are �2+�


2 with multiplicity 2 for each 
 and an addi-
tional �2 if M is odd.

Taking the positive solution for E, we have

E = w��21M + �†�w−1, �2.21�

and the positive square root of a positive Hermitian matrix
can be defined through spectral theory. At the same time, we
also have

E = u−1Êu = u−1��21M + �†�u , �2.22�

and consequently g is

g = �̄−1��1M + ��21M + �†�� , �2.23�

which solves the quadratic equation for the present case,
which is
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� − 2�g + g�̄g = 0. �2.24�

This solution leads to

g†g = �� + ��2 + �†����†��−1�� + ��2 + �†��

= �� + ��2 + �†��2��†��−1. �2.25�

The two expressions for E are consistent because we can
write the polar decomposition of u, u= �u�w�−1, where �u� is
defined as �u�=�uu†= �1M +g†g�−1/2 and w� is unitary. Then
we see that �u� commutes with ��21M +�†�, and we can take
w�=w. As E is positive, it follows that the solution for g
describes the lowest-energy ground state.

Next we will pass to a continuum limit, in which the finite
matrices are now operators as in an infinite-dimensional
single particle Hilbert space. This applies to systems in con-
tinuous space and also for the large distance limit of a lattice.
In all cases, our interest will be in scales larger than the
coherence length, which can be thought of as the character-
istic size of a Cooper pair �and which we will assume does
not depend significantly on position�. Then the terms in H
will be assumed, first for the translationally invariant case, to

be of the form h=k2 / �2m*�−� and �= �̂�kx− iky� when writ-
ten in momentum space; at present m* �the effective mass of

the fermions�, � �the chemical potential�, and �̂ �the magni-
tude of the gap function� are constant. We have assumed for
� the characteristic form for px− ipy pairing, as in Ref. 4 �the
coefficients of px and py are the same, but a different nonzero
ratio could be removed by a rescaling once and for all�. Then
in position space these become differential operators; to rep-
resent these as functions of two positions r1, r2 as in the
above formalism, with 
 replaced by r= �x ,y� everywhere,
one would consider them as integral kernels by including
suitable � functions. They are

h = − �2/�2m*� − � ,

� = − 2i�̂� , �2.26�

where ��� /�z� 1
2 ��x− i�y�. In fact, the k2 term in h can also

be dropped for our purposes even at �=0 which is the tran-
sition point between weak and strong pairings.4 The behavior
of both operators is implicitly assumed to change at large
wave vectors, so as to include suitable physical cutoffs, in-
cluding the coherence length. For long-wavelength purposes,
the above results for h=−�, a constant, are now applicable.

B. Periodic boundary condition ground states

The case of periodic boundary conditions was already
considered in Ref. 4, so we will be brief and just make some

additional points. For h=−�, �̂ both constant, we can apply
the above results in position space. From here on, we use

units in which ��̂�=1 in this case. Then as g acts from the left
on c†, use of the standard Fourier transform definitions, and
by comparison with

Keff = �
k
�− �ck

†ck +
1

2
��k

*c−kck + �kck
†c−k

† �� , �2.27�

we obtain �k=kx− iky, and

gk = �� + ��2 + �k�2�/�kx + iky� , �2.28�

which agrees with Ref. 4 up to an unimportant minus
sign.4 In position space, for ��0, we find g�r1 ,r2�
�g�r1−r2��2� / �z1−z2� for �r1−r2��1 / ���, where
z1=x1+ iy1, etc. For distances less than of order 1 / ���, the
behavior changes.4

This behavior of g�r�, which is what appears in the many-
particle wave function �the Pfaffian�, might surprise us as we
usually think of the fermions as forming bound Cooper pairs,
whereas the integral of our �g�r��2 over infinite space di-
verges. However, the usual physical way to think of these
pairs is to examine the order-parameter function 	c�r1�c�r2��,
which is a function of r1−r2 only. This is the Fourier trans-
form of 	ckc−k�=u

k
*vk=−�k /Ek �where Ek=��2+ �k�2�. Us-

ing the same approximations, this is analytic near k=0, and
so it has no long-range tail at distances �O�1 / ����, though it
does at shorter distances. If �=0, one finds the same behav-
ior �1 / �z�z�� as �z�→� �as for g�r� in this case�. This func-
tion is normalizable, and so the size of the Cooper pair is still
the coherence length �0 1 / ��� that must be defined using
shorter-distance or larger wavelength behavior of the pairing
�note, however, that these arguments show that if one at-
tempts to use the expectation of �r�2 in this function to define
the size of a pair, one encounters a logarithmic divergence at
�=0�. Then in the topological �weak pairing, ��0� phase of
interest, the interesting effects will be transmitted by the
long-range behavior of g�r�, yet this does not show up if one
looks at the natural order parameter as above. This is to be
expected for a topological property of a phase.

We now consider the ground states on the torus, as this is
a warm-up problem for the issues of most interest in this
paper. Here we can take the torus to be the r plane, modulo
translations by two linearly independent vectors �1, �2, with
�1 along the positive x axis and of length Lx. If we identify
these vectors with complex numbers, then the first becomes
Lx, and we define the second to be Lx�. We assume that
Im ��0 and define Ly =Lx Im �. When we vary the aspect
ratio � we will assume that LxLy is fixed. First we assume
that the fermions obey a periodic boundary condition
c�r+�1�=c�r+�2�=c�r� and that there is no vector poten-
tial. Then from the underlying physics that produces p+ ip

pairing, we can assume that there is a ground state with �̂
constant. In the weak-pairing phase ��0, this has odd par-
ticle numbers N in all components of the state.4 By boosting
all the fermions by a momentum of order 2� /Lx, we can
imagine that there is also a low energy state with a net cir-
culation around the x cycle parallel to �1 or similarly for the
y cycle parallel to �2 or both. In terms of the small wave-

vector behavior of the gap function �, these involve �̂�r�
that winds by 2� along the x cycle or the y cycle or both,
respectively. Because the change in the state is small, locally,
these should exist as low energy states.
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In the case when �̂�r� varies with position, some gener-
alization of the above expressions is necessary. The most

important possible variation is in the phase of �̂�r�, though
the magnitude also varies in some important situations. Then
in either case it becomes

� = − i��̂�r�,�� , �2.29�

which involves the anticommutator of one-body operators.
Thus the effective Hamiltonian becomes

Keff =� d2r�c†�r�hc�r� +
1

2
�c†�r��c†�r� + c�r��̄c�r��� .

�2.30�

In the present section we can see that � is antisymmetric by
integrating by parts. We can also see that Keff is gauge in-
variant under

c�r� → ei!�r�c�r� ,

�̂�r� → e2i!�r��̂�r� , �2.31�

with no need to include a vector potential. The physical mo-

tivation for the form of �, at least for �̂ constant in magni-
tude, is to ensure this gauge invariance and antisymmetry.
Thus these forms are valid at long wavelengths whether the
superfluid is neutral �no U�1� vector potential� or charged
�coupled to the scalar and vector potentials of electromagne-
tism or a Chern-Simons �CS� gauge potential in the CS for-
malism for the fractional quantum Hall �FQH� effect�. In the
charged or CS cases, the vector potential would enter in the
higher-derivative terms that we neglect here. �We correct
here some slight mis-statements about the role of the vector
potential in Ref. 4.�

From the form of �=−i��̂�r� ,��, we can see that in the

states in which �̂ winds in phase around the torus, instead of
k pairing with −k, k is paired with −k shifted by a small
amount. These states correspond to the minimum quantized
amounts of vorticity or circulation of the superflow around
the two cycles �we do not call this flux as there is no vector
potential present at the moment�. They can be generalized
further to states with m1, m2 units of quantized circulation
around the two cycles. These states do not all have the same
energies in the present situation because there will be contri-
butions to the total energy which can be expressed as a
Ginzburg-Landau �GL�-type functional of �, and this energy

density will presumably include a term like ���̂�2 �we as-
sume that the gap function, which after all is actually a func-
tion in k space, can be adequately characterized by a single
complex number for this purpose as in the usual GL theory
for s-wave paired states�. This term arises from the extra
kinetic energy of the fermions in these states, for example.
For example, for the case m2=0, the total energy cost will go
as m1

2Ly /Lx multiplied by constants independent of system
size. When m1, m2 are both even, these states occur at odd
particle numbers in the weak-pairing phase, while in the
other cases �and in all cases in the strong-pairing phase �
�0� they occur at even particle numbers.

An alternative point of view is also useful. As mentioned
in Sec. I D, for each of the winding states, we may perform a

gauge transformation to bring �̂ back to a constant, which
will presumably be close in magnitude to that in the �0,0�
ground state. Acting on the fermions, this is a phase change
by −�m1,2 along the two cycles and produces a correspond-
ing change in the boundary condition. Thus the boundary
conditions on the fermions can be described by whether or
not there is a sign change around each of the two cycles. We
will write the boundary condition as " if the corresponding
m is even and # if it is odd. Thus there are four possible
boundary conditions corresponding to the four values of
�m1 ,m2� mod 2. For each of the four choices, there is a tower
of states in which the winding numbers relative to the lowest
energy state in the tower are 0 �mod 2�. We note that the
gauge transformations used here are “large” transformations
�though not singular anywhere�, as for m1, m2 not both zero
they are not continuously connected to the trivial transforma-
tion by a path in the space of gauge transformations.

Returning to the original gauge �boundary condition�, for
superfluids in which a U�1� vector potential is present, the
same winding states still exist, but their energies are now
shifted because of the possible holonomy of the vector po-
tential along the two cycles �again, this effect is due to the
entrance of the vector potential into the larger wave-vector
aspects of the physics�. This holonomy is the usual gauge-
invariant notion of the flux of the vector potential threading
the two cycles on the torus. Although the holonomies for the
two cycles can take any real values, when they are equal to
��m1 ,m2� for some integers m1, m2 �in units of hc /e in or-
dinary units�, then the corresponding winding state has the
lowest energy, and this energy is independent of �m1 ,m2� by
a �large� gauge transformation argument. This is referred to
as flux quantization.41 When the gauge field is viewed as an
additional quantum degree of freedom, all of these states are
distinct in the combined Hilbert space of particle and elec-
tromagnetic field states. Note that physical states can be
viewed as invariant under gauge transformations that are
continuously connected to the identity, but not under large
gauge transformations, because the holonomies represent
real physical flux.

In the QH applications, the physics is slightly different. In
this case the vector potential is not a truly independent de-
gree of freedom but instead is tied to the total momentum of
the fermions. Further this momentum space is compactified;
it is topologically a torus.43 While the different winding
states corresponding to the four choices � for each cycle are
still distinct valid ground states4 �when the signs are not both
" they lie on the boundary of the Brillouin zone in
pseudomomentum43�, it appears that the towers of winding
states over each of these are not distinct states but can all be
identified with the lowest one.

In the gauge-transformed view of the �m1 ,m2� winding
states, whether a vector potential is present or not, the long-
distance part of the pairing function g is independent of the
vector potential �if present�, as we have shown, and so the
long-distance wave function only depends on m1, m2
�mod 2�, that is on the signs �. The pairing functions g in
the four cases have been determined previously, and in the
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weak-pairing phase at scales larger than 1 /� are essentially
Jacobi elliptic functions �except for some slight complica-
tions in the "" case�.4 At large lengths �i.e., separation
�r1−r2� of the particles�, ga in boundary condition a is 2�

times the inverse of �̄, and thus of �̄, up to a constant factor
independent of the system size, aspect ratio, and boundary
condition. These functions may be determined using com-
plex analysis arguments, and for m1, m2 not both zero
�mod 2� are �up to such a constant�

gm1,m2
�r��� $

%�m1+1�/2,�m2+1�/2�z/Lx����%1/2,1/2�0���

Lx%1/2,1/2�z/Lx���%�m1+1�/2,�m2+1�/2�0���
,

�2.32�

where m1, m2=0 ,1 and %a,b�z ��� are elliptic theta functions
with characteristics, defined by

%a,b�z��� = �
n

ei���n + a�2+2�i�n+a��z+b�. �2.33�

We note that %1/2,1/2�z ��� is the odd theta function �odd under
z→−z�, and it has a zero at z=0 and points related by trans-
lation by 1 or �, while the others that we use are even about
z=0 �see, e.g., Ref. 44�. We define �%1/2,1/2�0 ���
= ��%1/2,1/2�z ����z=0. Thus the elliptic functions on the right-
hand side of Eq. �2.32� have a simple pole with residue 1 at
z=0 and the required �anti�periodicities. For m1, m2 both
zero, we have instead

g0,0�r��� $
�%1/2,1/2�z/Lx���
%1/2,1/2�z/Lx���

+
2�i Im z/Lx

Im �
�2.34�

�with the same proportionality constant as before�, which is
periodic but not analytic. The nonanalytic term cancels in the
ground states with odd particle number,4 in which the k=0
state is occupied by an unpaired fermion. That is, the wave
function for N fermions is the product of g’s for the pairs,
times 1 /�A for the unpaired fermion �A=Lx

2 Im � is the area�,
antisymmetrized over all fermions. For each pair i, j, the
nonanalytic term is proportional to Im zi−Im zj. It breaks
into terms Im zi �independent of zj� and the same with i, j
interchanged. The former of these two sets j in the constant
mode, which is already occupied by at least one other par-
ticle, so this contribution vanishes on antisymmetrization.
�For a long proof, see Ref. 30.� Hence all such terms give
zero, and the nonanalytic term can be dropped for all pairs;
the wave function of course is still periodic.26

One further step will be useful for later purposes. The
factor 1 /Lx in each pairing function can be rewritten as
�Im ��1/2 /A1/2, where A=Lx

2 Im � is the area.
Now we turn to the norms of these paired states in the

gauge transformed point of view. From the general theory
above, the factor that is needed in the state to normalize it is

�det�1 + g†g��−1/4 �2.35�

�up to an overall phase�, which equals

�det �†��1/4

�det��†� + �� + ��2 + �†��2��1/4 . �2.36�

In our case, �=−2iD and �†=−�̄=−2iD̄ �here D is �, with
the understanding that it acts on functions of the chosen �an-
ti�periodicity�. On passing to momentum space, we find that
these expressions are identical to those in Ref. 4. For long
wavelengths, the denominator is nonsingular and we can ig-
nore it; it depends exponentially on the area of the system
but not on its aspect ratio � because effects of finite size are
exponentially decaying corrections �formally this is shown
by applying Euler-Maclaurin methods to the logarithm of the
product of factors and noting the analytic behavior in k near

k=0�. But the numerator is det D̄ times its conjugate �times a
constant� and is nonanalytic near k=0. With a momentum
cutoff of order �, this product can be evaluated �for
Lx�1 /��. The discreteness of k is important here, and hence
the boundary conditions enter. For the three cases other than
"", k=0 is absent from the product and we consider these
first. The logarithm of the product is

1

4�
k

ln�k�2 = LxLy� d2k

�2��2 ln�k�1/2 + ¯ , �2.37�

where the subleading terms represent the corrections due to
the discreteness of the sum. The first �integral� term is again
extensive �proportional to the area LxLy� and independent of
� and will be discarded; this corresponds to renormalizing
the determinant.

At this stage it is helpful to realize that for each of the
three boundary conditions stated, the product of interest,

det�DD̄�, can be interpreted as the partition function of a
massless Dirac fermion on a Euclidean torus. �The operators

D̄ and D are parts of the massless Dirac operator in two
Euclidean dimensions �see Ref. 4.� The square root is the
partition function of a massless Majorana fermion, which has
half as many degrees of freedom. This theory arises in con-
nection with the two-dimensional Ising model on a torus at
criticality. The finite-size corrections have been computed in
that context �Ref. 45 or see, e.g., Refs. 17 and 46�. To de-
scribe these, we introduce some functions Fm1,m2

of q=e2�i�

that correspond to the boundary conditions, m1,2=0 ,1
�mod 2�,

F11 = q−1/48�
n=0

�

�1 + qn+1/2� ,

F10 = q−1/48�
n=0

�

�1 − qn+1/2� ,

F01 = �2q1/16−1/48�
n=1

�

�1 + qn� . �2.38�

These products are convergent for Im � sufficiently large,
and it is convenient to take the limit of large Lx� at fixed �.

For the "" boundary condition, the ground state of the
paired superfluid is at odd fermion number, and there is an
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unpaired fermion occupying the k=0 state.4 The normaliza-
tion of the ground state is given by a similar product but with
k=0 omitted. The interesting part is then related to the
function46

F00 = �2�Im ��1/4q1/16−1/48�
n=1

�

�1 − qn� . �2.39�

�The �2 here could be dropped, though not in F01.�
In each of the four cases, the partition function of the

Majorana fermion field theory with fixed boundary condition
is �Fm1,m2

�2. The normalizing factor for our paired wave func-
tions is �Fm1,m2

�, up to an overall phase and factors indepen-
dent of � and the boundary conditions. We now notice that
the phase can be chosen so that the normalizing factors are
simply the respective Fm1,m2

themselves, which are holomor-
phic in � �except for the factor �Im ��1/4 in F00�. We view

these as the chiral partition functions, proportional to �det D̄

�with the zero mode deleted for ""�. As D̄ is antisymmetric,

this can be viewed as a Pfaffian, PfD̄. Note that we are say-

ing that �det D̄ is holomorphic in � �again, except for the
factor �Im ��1/4 in the "" case�.

These partition functions can also be conveniently calcu-
lated from a Hamiltonian point of view of the �nonchiral�
massless Majorana field theory in imaginary time.17 Then
�Fm1,m2

�2 are given by

Tr qL0−c/24q̄L̄0−c/24 �&− � ,

Tr�− 1�F̂qL0−c/24q̄L̄0−c/24 �− + � , �2.40�

where L0� L̄0 are proportional to the Hamiltonian �with the
energy of the ground state in finite size for # spatial bound-
ary condition subtracted off� and momentum of the system,

F̂ is the fermion number, c=1 /2 is the central charge, and in
the first two cases the trace is over states in the sector with
either the # or " boundary condition in the space direction,
respectively. The factor of �2 in F01 arises because for "
spatial boundary condition there is a zero energy mode
shared between right- and left-moving fermions that can be
occupied at most once, giving two states. These functions
arose in the same way as partition functions of edge Majo-
rana fermion modes of the MR state on the cylinder,47 which
emphasizes again the relation between bulk and edge of the
QH states. For the final function �F00�2 for "", one must

consider the trace weighted with �−1�F̂ as for �F10�2, but with

fermion operators �̄� inserted also, so that the zero mode
does not give a zero answer. This treatment of the zero mode
produces the factor �Im ��1/4.

The wave function of the N-particle component of the
normalized BCS state is then, in the three even cases, m1, m2
not both zero,

Fm1,m2
���Pfgm1,m2

�ri − r j��� . �2.41�

We emphasize that the normalization is correct �up to a
�-independent constant at least� even on passing to the fixed-
particle number components, provided the particle number is

chosen close to �say, within �N of� the expected value in the
BCS ground state �which we assume is large� by standard
arguments about the equivalence of canonical and grand ca-
nonical approaches. For these even cases, these functions are
precisely the three conformal blocks for N Majorana fermi-
ons on the torus, for all even N including N=0, whereas the
function without the factor Fm1,m2

is the normalized chiral
correlator, in which the block is here divided by the corre-
sponding one for N=0 �see the discussion in Sec. I C�. For
m1=m2=0, there are similar statements for odd N, but the
normalized chiral correlator involves dividing by the N=1
function F00, which seems less natural. Note that the function
F00 itself is the conformal block for N=1, a single Majorana
fermion on the torus, which is independent of the coordinate
z1.

Now we introduce the familiar fact that the parametriza-
tion of torii of given area by � is redundant: infinitely many
different �’s describe the same torus up to an isometry. The
transformations from one to another of these are of the form
�→ �a�+b� / �c�+d�, where � a b

c d � is a matrix of integers of
determinant equal to 1. These matrices form a group,
SL�2,Z�, called the modular group. �The transformations
arise by changing to a different basis for the lattice generated
by �1, �2.� SL�2,Z� is generated by the elements T= � 1 1

0 1 �
and S= � 0 −1

1 0 �, which correspond to the transformations T: �
→�+1 and S: �→−1 /�; it can be defined abstractly as the
group generated by elements S, T with relations �ST�3=S2,
S4=1 �where 1 is the identity element�. Note that the action
on � of any matrix in SL�2,Z� is unchanged by multiplying
it by −12, so that strictly speaking the group of modular
transformations on � is the quotient PSL�2,Z�
�SL�2,Z� /Z2, where Z2= ��12�, defined by generators S, T
with relations �ST�3=S2=1 �we will not distinguish between
S and T in SL�2,Z� and their images in PSL�2,Z��.

Given our states �m1 ,m2 ,�� on the torus for each � and for
each boundary condition �m1 ,m2� �the system size will not
play a role here, provided �Lx, �Ly are large, and will be
dropped from the notation�, we can consider the effect on
them of modular transformations. This is a warm-up exercise
for the statistics calculation later. First we consider the
monodromy of the states viewed as functions of �. Starting
from any state �m1 ,m2 ,��, we can vary � along a path to
reach either �+1 or −1 /�, keeping �m1 ,m2� fixed. Note that
�m1 ,m2� are defined using the parametrization of the torus
determined by �. The final result is a torus equivalent to the
original one, but the boundary conditions in terms of the
original � are now different. The effects are as follows: for T
�m1 ,m2�→ �m1 ,m2−m1� and for S �m1 ,m2�→ �m2 ,−m1�.
When reduced mod 2, these also describe the effect on the
boundary conditions around the two cycles that are important
in the long-distance part of the state. The three even cases are
permuted by these transformations, while the odd �""� case
maps to itself �it was clear this must be so because fermion
number is conserved by these operations�.

If we consider the winding numbers only mod 2, then the
three even states form some representation of the modular
group, while the odd state is a one-dimensional representa-
tion. First we consider the normalizing factors Fm1,m2

. The
transformations of these under monodromy, simply compar-
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ing Fm1,m2
��+1� or Fm1,m2

�−1 /�� with Fm1�,m2�
���, are

known;17 the action of T is easily found to be

F11�� + 1� = e−2�i/48F10��� ,

F10�� + 1� = e−2�i/48F11��� ,

F01�� + 1� = e2�i/24F01��� , �2.42�

while the action of S is

F11�− 1/�� = F11��� ,

F10�− 1/�� = F01��� ,

F01�− 1/�� = F10��� . �2.43�

Thus the coefficients in these transformations form unitary
matrices, which generate a unitary representation of the
modular group. The sum �m1,m2

�Fm1,m2
�2 �over m1,2=0 ,1, not

both zero� is a modular invariant and is the partition function
of the critical Ising model.

The function F00 is �2�Im ��1/4 times the Dedekind eta
function,

���� = q1/24�
n=1

�

�1 − qn� , �2.44�

which is a modular form of weight 1 /2 �with multiplier
system—see, e.g., Ref. 48� for the modular group: ���+1�
=e2�i/24����, ��−1 /��=�−i�����. As Im�−1 /��=Im � / ���2,
�Im ��1/4���� transforms purely by phases under the modular
group, like the other Fm1,m2

above, though in this case the
phase depends on �. The significance of these facts will be
explained below.

Next we turn to the transformation of the pairing func-
tions g under modular transformations implemented simply
by monodromy. The transformation of the various % func-
tions can be easily obtained,44 and for z=0 it is similar to that
of ���� �i.e., the weight is 1 /2� but also involves the appro-
priate permutation of boundary conditions. For general z, the
%’s are said to be automorphic forms under the larger group
of translations of z and modular transformations that act on
both z and � �Ref. 44�; for example, one has

%1/2,1/2�z�� + 1� = ei��/4%1/2,1/2�z��� ,

%1/2,1/2�z/��− 1/�� = − �− i��1/2ei�z2/�%1/2,1/2�z��� .

�2.45�

In the ratio of %’s giving the pairing function, most such
factors cancel, the exception being due to the derivative of
%1/2,1/2 in the numerator. Consequently, one finds for all m1,
m2 that the pairing functions transform under the generators
S, T simply by the permutation of boundary conditions, al-
ready described above, and by a factor of � / ��� in the case of
S. The factor of � / ��� arises from the interplay of the elliptic
function and the factor �Im ��1/2, similarly to the case of ����
discussed above. Let us point out that the net number of
factors �Im ��1/4 in the N-particle component of the wave

function is just N, for all cases, including the "" boundary
condition in which N is odd. These factors are essential in
order that the monodromy matrices be unitary, as they clearly
must be when orthonormalized states are analytically contin-
ued.

The interpretation for the phases in the transformation un-
der S is then that, apart from the N- and �-independent fac-
tors arising from the Fm1,m2

’s, the phase �� / ����N/2 is con-
nected with the rotation of the geometry that brings the torus
back to an equivalent one under S; the rotation angle is
−arg �, and the factor for each particle reflects the conformal
weight 1 /2 for each Majorana fermion in the conformal
block. Put another way, each Cooper pair carries angular
momentum −1, and thus each particle effectively carries �or-
bital� angular momentum −1 /2. This is true even for the
unpaired particle in the case of N odd, though there the factor
arises in the BCS point of view through the normalization
factor. No such phase arises from T as no rotation of the
system is involved.

Thus we have determined the monodromy representation
of the modular group on our ground states. Readers are cau-
tioned that because the full states depend on �m1 ,m2� as in-
tegers and not just mod 2, we cannot say that the represen-
tation on the states is three dimensional in the case of paired
superfluids. In the QH case, this would be true, but there one
must also consider the charge sector or Laughlin factors in
the wave functions, which we will do in the following sec-
tion.

C. Hall viscosity and adiabatic modular transformations

Finally we are ready to consider the more physical opera-
tion of adiabatically dragging the states to perform a modular
transformation of �. Because of the intrinsic interest of the
result, we will present two arguments that both give the same
result. In the first, we will take the long-distance forms de-
rived above and assume that they apply at all length scales
�down to a short distance cutoff, so that the state can be
normalized�. The functions are then conformal blocks, and
an elegant calculation is possible. In the second argument,
we instead consider a general p− ip paired state and show
that the result can be obtained quite directly in the language
of the pairing function. Thus the second argument is very
general and applies even for the strong-pairing phase, for
other paired states, and even in higher dimensional space.

Now we begin the first argument. We have already con-
structed for each � a set of four ground states that are ortho-
normal and depend holomorphically on �, except for a factor
�Im ��N/4. The transition functions are determined by the S
and T transformations given above. The adiabatic transport
can be considered separately for the one odd and three even
cases, as these two types clearly cannot mix with one an-
other; here we will denote the four as �a��� for brevity.

We can now apply the reasoning of Sec. I B, varying �
instead of quasihole coordinates. If the wave functions were
completely holomorphic in �, then the Berry connection
would vanish. As they are not holomorphic, this is not the
case, but as in the quasiparticle transport calculation, the
nonholomorphic dependence takes a simple form, and one
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can easily take it into account while still exploiting the ho-
lomorphy of the remaining more complicated factors in the
wave function. �We should also point out here that the inte-
gration measure should be independent of �. If we write
z=Lx�'1+�'2�, where '1 and '2 are in the unit interval �0,1�,
then the integration measure for each ri becomes
d2ri=Ad'1d'2, and the variation in � is always performed
with A fixed. The crucial point is that in this parametrization,
the wave functions are still holomorphic in � up to the same
factor as before.� Then for the Berry connection we have

A�,ab = i	�a����b� = i��	�a��b� −
iN�� Im �

4 Im �
	�a��b� ,

�2.46�

where we used the holomorphy of � up to a known factor.
Because the states are orthonormal, this reduces to

A�,ab = A�̄,ab = −
N�ab

8 Im �
. �2.47�

�In the paired states with indefinite particle number, N can

clearly be replaced by its quantum average N̄.� The result
happens to be the same as in Ref. 6, in which the filled LLL
state has the same form, �Im ��N/4, times a function holomor-
phic in � �however, we will see that it is something of a
coincidence that the power of Im � is exactly the same�. Fol-
lowing the reasoning of that reference, the curvature �or field
strength� of this connection, which is −N / �2 Im ��2, corre-
sponds to a Hall viscosity of

��A� =
�n̄

4
. �2.48�

Here we restored � to obtain physical units for viscosity and
n̄ is the average particle density. We emphasize that the vis-
cosity came out independent of the aspect ratio � and system
size Lx, as is appropriate for an intrinsic local property of a
fluid.

We may now also consider modular transformations ap-
plied adiabatically. Because of the curvature of the Berry
connection that we just calculated, the adiabatic effect �ho-
lonomy� depends on the path taken in the upper-half plane.
To remove this effect, we can consider special paths that
enclose vanishing area. That is, the “moduli space” of dis-
tinct torii is the upper half plane, Im ��0, modulo the action
of PSL �2,Z�, which is generated by S and T. As S sends � to
−1 /�, we see that �= i is a fixed point of S. We may consider
adiabatic transport along a path lying in the fundamental
domain �Im ���1 /2, ����1, which connects two points on
the unit circle that are mapped to one another by S. If the
path is a semicircle centered at i with radius shrinking to
zero, then it implements the S transformation but the line
integral of the Berry connection along the path vanishes �we
note that the Berry connection is smooth at i�. Consequently,
for this limiting path, the holonomy is once again given
solely by the monodromy of the conformal blocks. We may
make a similar argument for T using a straight path from
−1 /2+ i Im � to 1 /2+ i Im � and let Im �→�. Then once

again, the line integral of the Berry connection gives zero
and in the limit the action of T by holonomy is the same as
the monodromy.

These results then fully characterize arbitrary modular
transformations implemented adiabatically. To describe the
results succinctly, we can check the defining relations of the
modular group in our representation. This requires that we
compose S and T operations. To do so, it is convenient to
view all group elements as implemented by paths in the up-
per half plane that start and end at the same point, which we
will take to be �=ei�/3. To reach the points i and 1 /2+ i� at
which we defined S and T above, we follow a path along the
unit circle �Re �=1 /2�, apply S �T�, and retrace the path
afterward. Then the Berry phases related to the Hall viscosity
cancel. �In similar calculations for QH states, a gauge trans-
formation is sometimes required as part of the adiabatic
transport �holonomy�, because of a net rotation of space, to
return to the original basis set. But for the operations �ST�3

and S2 we wish to check, the rotation is by �, under which
commonly used gauge choices are invariant, and this simpli-
fies the calculation.� We find then that as holonomy equals
monodromy, we can read off the transformations and verify
that �ST�3=S2=1 in the present case. Thus we do have a
representation of the modular group.

In the argument so far, we treated the long-distance wave
function as if it were valid for all particles, and so wave
functions are just conformal blocks. One may wonder if the
result is different when the form of the pairing functions is
different at short distances or just how general �or universal�
the result is. For this reason we now include a second argu-
ment that shows that the result for the Hall viscosity is, in
fact, completely general. The adiabatic modular transforma-
tions are then also invariant within a given topological phase.

We will calculate the Berry connection in the upper-half
plane directly from the normalized BCS ground states. As
the different boundary-condition states are orthonormal and
the final result is diagonal, we will simply drop the index a
for simplicity. Using the expressions for the normalized BCS

ground state ��̃�= �det�1+g†g��−1/4��� �note that this may
differ from the �-dependent family of states used above by a
�-dependent phase�, we obtain

A� =
i

4
Tr�g†��g − ���g†�g��1 + g†g�−1. �2.49�

We evaluate this in k space, in which case g is a diagonal
function of k, and the values of k are determined by
kx+ iky =2�i�n2−n1�� / �Lx Im ��. The values of n1,2 are
n1=m1 /2 �modulo integers� and similarly for n2 �for 00, i.e.,
"" boundary conditions, n1, n2 both zero is omitted from
the sum�. Now for a p− ip state, the gap function �k is of the
form kx− iky times a function of �k�2, while the kinetic energy
is a function of �k�2 only. Hence the pairing function is of the
form �kx+ iky�−1 times a function of �k�2. Further, the only
dependence on � is through the discrete values of k. In A�,
we see that the �� acting on the function of �k�2 cancels
between g and g† contributions, and the only remaining term
is from the prefactor �kx+ iky�−1 in g. The result then reduces
to
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A� =
i

4 �
n1,n2

n1

n2 − n1�

g†g

1 + g†g
. �2.50�

As Lx→� with � fixed, the leading part of this is

A� = −
A

8 Im �
� d2k

�2��2

g†g

1 + g†g
= −

N̄

8 Im �
, �2.51�

which agrees with the previous result. We should mention
that the result here for "" boundary condition has N−1 in
place of N, as the unpaired fermion is not counted by
Tr g†g�1+g†g�−1=N−1 for "", and this is a discrepancy
with the calculation in terms of conformal blocks. This is
because we were somewhat sloppy in the last step, replacing
the sum by the integral, and a more careful treatment of the
region near k=0 would lead to similar calculations as the
preceding argument. But in any case, in the thermodynamic
limit this discrepancy is negligible.

We can see from this calculation that the Hall viscosity is
unchanged throughout the weak-pairing phase and is the
same in the strong-pairing phase. For different angular-
momentum values in the pairing and even for mixtures of
different values, it generalizes easily to give � /2 times the
average angular momentum per pair times half the particle
density. A similar form also holds for pairing in higher space
dimensions, in which the direction of the orbital angular mo-
mentum of the Cooper pairs is a vector. Thus the Hall vis-
cosity is a consequence of the net orbital angular momentum
of each pair about its center of mass. The effect appears to be
overlooked in standard references42 on He3.

D. Higher genus surfaces and mapping class group

The discussion for the torus generalizes to oriented sur-
faces �without boundary� of higher genus G �genus 1 being
the torus�. The setup was discussed in Ref. 4. The fermions
should experience a net magnetic field of G−1 flux in order

that the ground state contains no vortices. That is, �̂, which
can be defined within coordinate patches, is nonvanishing
everywhere. The gap function � is then a part of the Dirac
operator on the surface. It depends on a choice of a boundary
condition, which can be either " or # for each of the 2G
cycles on the surface; we will label these by a and write �a.
Of these 22G boundary conditions or “spin structures,”
2G−1�2G+1� are “even” and the remaining 2G−1�2G−1� are

“odd.” In the odd cases, the Dirac operator �̄a has one zero
mode �a holomorphic function, really a section of the
bundle�, and in the even case it has none. Consequently,
there is a paired ground state with even particle number in
the even cases and with odd particle number in the odd

cases.4 The pairing function ga is proportional to 1 / �̄a, as for
the plane, sphere, and torus. The general theory for h=−�
pairing still applies, and so the important long-distance part
of the normalizing factor in the ground-state wave functions

can be taken to be �det �̄a �with the zero mode deleted in the
odd cases�. This again is the �chiral� partition of a massless
Majorana fermion field, and the normalized N-particle wave

functions are chiral partition functions with N insertions of
the Majorana field �, which are essentially the conformal
blocks of the Majorana CFT.

The last statement contains the word “essentially” be-
cause one further point was neglected. We saw for the case
of the torus �G=1� that the chiral partition function �without

insertions�, �det �̄a, tends to a limit which is a conformal
block, apart from a factor of the form of the exponential of
the area times a constant independent of the parameter �; this
factor is all that remains of the cutoff. For G�1, the corre-
sponding statement does not quite hold. There is an addi-
tional residual dependence on the scale size A1/2 of the sys-
tem �relative to the cutoff scale�. It is given for a general
conformal field theory by a factor Ac�/24, where c is the cen-
tral charge �c=1 /2 for the Majorana fermion CFT� and � is
the Euler characteristic of the surface. This originates from
the trace anomaly, which relates the expectation value of the
trace of the stress tensor, Tzz̄, of the CFT, which generates a
change in scale, to c times the local curvature of the mani-
fold evaluated.17 When integrated, the latter gives the Euler
characteristic �=2−2G of the surface �see, e.g., Ref. 49,
which includes also the more general case of a surface with a
boundary�. Notice that this result applies to the sphere, with
G=0. More generally, there is a dependence on the local
cutoff scale given by the exponential of c times the Liouville
action;50,51 this is independent of the boundary condition
choice labeled by a. Such factors are not expected to con-
tribute to the holonomy, when we vary the geometry holding
the area A constant, so we ignore them.

A genus G�1 surface endowed with a complex structure
is described by 3G−3 complex parameters called moduli, in
place of the single � for G=1.51 The moduli space MG of
inequivalent surfaces of genus G is described by a domain
denoted TG �Teichmuller space� in C3G−3 modulo the action
of a group (G of equivalences analogous to the modular
group called the mapping class group �or Teichmuller modu-
lar group�: MG�TG /(G.52,53 The structure of (G is difficult
to describe for G�1, especially for G�2. The conformal
blocks are holomorphic in the moduli up to a factor analo-
gous to �Im ��1/4 which is raised to the power N �when con-
sidered at fixed A�. While the explicit functions are difficult
to obtain, we expect that the curvature of the Berry connec-
tion is again given by the Hall viscosity, which is indepen-
dent of the genus of the surface, and that the representation
�which is actually projective and unitary� of the mapping
class group defined by the holonomy of the adiabatic trans-
port is the same as the monodromy representation, up to
path-dependent phases determined by the Berry curvature.

E. Generalizations and strong-pairing phase

In this section we briefly consider other paired states of
fermions from a similar point of view, temporarily leaving
behind trial wave functions that are conformal blocks. The
paired states we consider are states that �except for �=0� are
fully gapped and result from a gap function that is a rota-
tional eigenstate in momentum space, like the p+ ip state
above. These include pairing of any odd angular momentum
� for spinless or spin-polarized fermions. In the weak-pairing
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phase, the ground state on the torus can be normalized by a

factor �det �̄a, where again a labels the possible boundary
conditions. By the same argument as above, this equals
�PfD̄��. This is clearly equivalent to � Majorana fermions.
For � odd, as required here, these phases are non-Abelian, as
pointed out in Ref. 4. However, since all the Majorana fer-
mions see the same boundary condition, the theories are not
simply direct products of � copies of the Majorana fermion
theory above, rather, they possess a hidden SO��� symmetry.
Similarly, fermions with spin or other multicomponent fer-
mions have other possibilities, such as the 331 p-wave states
related to the Dirac fermion, which is Abelian. Another case
is spin-singlet pairing for spin-1 /2 fermions, where the an-
gular momentum � of the pairing must be even. In the weak-
pairing phase, the long-wavelength normalization factor for

the ground states on the torus is �det D̄��. This may be
viewed as 2� Majorana fermions, and there is a hidden
SO�2�� symmetry �thus SO�4� for �=2, the d+ id-wave case;
the argument given here is more direct than that given in Ref.
4�. These cases are all Abelian. The hidden symmetries under
SO�M� for some M are present in the topological properties
of the bulk of the paired states �e.g., in counting numbers of
conformal blocks� but may be fully or partially broken by the
dynamics at the edge.

By contrast, in the corresponding strong-pairing phases,
the pairing function g is nonsingular at k→0 �and short
ranged in coordinate space�, and normalization factor �2.36�
has no singular behavior at k=0. Moreover, all four ground
states occur at even particle number. Thus the ground-state
wave functions are concentrated on configurations in which
all fermions have positions equal in pairs �within a coherence
length�, and the long-wavelength part of the ground-state
wave functions is trivial. These correspond to conformal
blocks in a CFT that is trivial �except for the charge sector�.
The orthonormal ground states are not holomorphic in � but
have � dependence related to the Hall viscosity already dis-
cussed above. They also have nontrivial monodromy �and
hence also holonomy� in as far as they are simply permuted
by modular transformations, without the phase factors that
originated from the nontrivial normalization factors Fa �un-
der T�. This is not the same as possessing no holonomy
whatsoever. We also point out here that the normalization
factor is nonsingular at k=0 at the transition point �=0,
even though g has weakly singular behavior. �The leading
singular behavior in g at k→0 cancels in g†g; possibly there
is some subleading effect.� Thus this point appears to have
the same holonomy as the corresponding strong-pairing
phase. Of course, adiabatic transport is presumably irrelevant
here because the excitation spectrum of the fermions is gap-
less at the transition point.

The general framework for describing topological phases
is that of modular tensor categories �MTCs� �Refs. 53–55�
�strictly, for QH systems, this is for bosons; some modifica-
tions are required for QH systems of fermions, which are not
fully modular whenever the chiral algebra of the CFT con-
tains the fermion, becoming a chiral superalgebra1�. For
paired s-wave superfluids �when viewed as a fully gapped
topological phase, such as when a Coulomb interaction is
present�, Kitaev argued56 that the correct MTC is the “toric

code” or Z2 gauge theory, with Abelian fusion rules corre-
sponding to the group Z2�Z2, and we find that this applies
here for strong-pairing phases �without the charge sector�
also; it accounts for the four ground states. Other than the
identity or trivial quasiparticle, this theory contains two qua-
siparticle types that are bosons, call them “electric” and
“magnetic” charges �these charges do not refer to particle
number�, and one that is a fermion, under exchange of a type
with itself. Adiabatically making a circuit of a magnetic
around an electric charge gives a phase of −1, and hence the
composite of an electric with a magnetic charge makes the
fermion, which picks up a −1 factor under a circuit around
either an electric or a magnetic charge. �This behavior was
calculated from trial wave functions in a lattice model that
resembles the strong-pairing phase.57�

When the charge �particle number� sector is included to
make a QH system, from say the p+ ip state, the filling factor
is �=1 /Q, where Q is a positive integer, and is even when
the particles are fermions and odd for bosons. It was argued
in Ref. 4 that the strong-pairing phase is equivalent to a
Laughlin phase of charge 2 bosons at filling factor 1 / �4Q�.
This relation predicts the statistics of the family of fraction-
ally charged excitations generated by the quasihole of charge
1 / �2Q� under fusion; those of particle number m / �2Q� have
fractional statistics phase m2� / �4Q� under an exchange. The
fusion rules for this theory are Z4Q. However, at first sight it
does not appear to account for the excitation that consists of
an unpaired composite �neutral� fermion, which exists in this
phase as well as in the weak-pairing phase. Under adiabatic
transport in a circuit around the quasihole of charge 1 / �2Q�
�corresponding to the vortex in the paired state�, the neutral
fermion should pick up a phase −1 �in the weak-pairing
p+ ip phase, this follows from the calculation in Sec. IV; we
will assume this here in general and also in the strong-
pairing phase�, and this phase clearly does not come from the
charge sector.

These statements can, however, be reconciled. The neutral
fermion times the quasihole of charge 1 gives us back the
underlying particle �a boson if Q is odd and a fermion if Q is
even�. Further, using the assertions just made, this particle is
local with respect to all the quasiholes �that is, a phase +1 is
produced by a circuit of one around the other�. Therefore,
quasiparticles that are related by fusion with the particle
should be identified. This leaves a total of 4Q distinct types,
with fusion rules, charges, and statistics as in the charge
sector part alone �however, the formal charge which was
defined mod 2 equals the actual particle number charge only
mod 1�. Usually we would have said that the particle is in the
chiral algebra, which leads to such identifications. However,
in the CFT of the edge excitations, the bulk particle does not
appear �and is not part of the chiral algebra�, and the theory
is simply that for the charge sector as in Refs. 4 and 26. We
believe this is the correct description of the strong-pairing
phases that involve pairing of composite fermions. �For spin-
singlet phases, the fermion carries spin 1 /2, but this does not
affect the MTC properties.�

III. HALL VISCOSITY OF THE LAUGHLIN STATES

In this section we calculate the Hall viscosity of the
Laughlin states. Using the ideas already presented above, the
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main point is to evaluate the normalization of the Laughlin
states on the torus, up to constants independent of the size Lx
and aspect ratio �. We will find that the result is again given
by a spin density, where in this case the spin of each particle
is Q /2, the conformal weight of the field representing the
particles in the CFT point of view1 �these states include the
filled LLL, with Q=1, as a special case,6 providing a check
on the calculation�. We discuss the general situation for QH
states and adiabatic modular transformations.

The key to obtaining the normalization of the Laughlin
states in this sense is the plasma mapping from Laughlin’s
original paper,8 which here will be generalized to the torus.
Thus we will rely on the physical argument that screening
holds in the plasma when Q is not too large. Most of the
calculation is aimed at establishing that the wave functions
on the torus58 have modulus squared that is the Boltzmann
weight in a plasma with a neutralizing background, with con-
trol over Lx- and �-dependent factors that are commonly
omitted. Then the normalization integral equals e−Af0�Q�, in-
dependent of �. A particular issue to be dealt with is the
neutralizing background charge �indeed, if the plasma were
neutral when only the mobile charges were considered, the
results would be almost immediate, as we will describe
later�. We will first obtain the Boltzmann weight for N point
charges Q and 
−1N=M2 �M integer� smaller charges of
−
Q on the torus. The latter will be fixed on the points of a
grid. As 
→0, these become the uniform background. By
taking this limit carefully, we can determine the necessary
normalizing factors. Even though the potential due to the
neutralizing background appears to be a constant because of
translational symmetry, its dependence on � has to be evalu-
ated, with the area A fixed at the correct value for N particles.

The Boltzmann weight for a Coulomb plasma in two di-
mensions can be obtained from a 2D conformal field theory,
the �nonchiral� free massless scalar field .17,46 Its partition
function is given by the functional integral,

Z =� D��e−S��, �3.1�

where the action is

S =
1

8�
� d2r���2. �3.2�

The normalization is such that the two-point function in the
plane is

	�r��0�� = − ln�r�2. �3.3�

Some of the important operators in this theory are the elec-
tric charges, given by Oe�r�=eie�r�/R for some charge e �R is
a parameter that will be used later�. These have conformal

weights h= h̄=e2 / �2R2�.
We now consider this theory on the torus of side Lx and

aspect ratio � as before. The field  will be compactified,
which means that the configurations  to be integrated over
must be allowed to obey generalized periodic boundary con-
ditions �for convenience, we write z for r, even though the
fields are not holomorphic�,

�z + Lx� = �z� + 2�Rn , �3.4�

�z + Lx�� = �z� + 2�Rn�. �3.5�

Here R�0 is a parameter, the compactification radius. The
meaning of this is that, if �	 is an electric field in two
dimensions, these boundary conditions allow for electric
fields that circulate the system, without any source. This is
important in obtaining periodic correlation functions when
charges are present. A general field configuration for these
boundary conditions can be written as

 = nn�
cl + ̃ , �3.6�

where nn�
cl is a fixed solution to the boundary conditions, say

nn�
cl = 2�R Im� z�n� − n�̄�

Lx Im �
� , �3.7�

while ̃ is a periodic function. For any n, n�, we have

G�r� = 	̃�r�̃�0�� = − ln�E�z/Lx���
Lx

�2

. �3.8�

The function E�z /Lx ���,

E�z��� =
%1�z���

�z%1�0���
e−��Im z�2/Im �, �3.9�

where we have used the more familiar notation %1�z ���
=−%1/2,1/2�z ���, is periodic up to phase factors and is called
the prime form for the torus �or else this name is used for the
ratio of %’s without the Gaussian�. The function G�r� is
Green’s function for the Laplacian on the torus, defined as
the inverse of −�2 in the space orthogonal to its zero mode,

− �2G�r� = 4����r� −
1

A
� . �3.10�

At short distances, it is asymptotically the same as in the
plane.

Now we evaluate the �un-normalized� correlation function
of N charges e=Q at positions zi and N /
 charges −
Q at
positions wk, where it is convenient to choose N /
=M2, with
M�0 an integer. We take R2=Q=�−1. �The terminology for
the charges thus agrees with that used earlier, with R2 as the
temperature.� We will assume that Q is even, and we will
recover the Laughlin states for bosons. The states for fermi-
ons require a slightly different sum over boundary condi-
tions, and one eventually obtains a unitary representation of
a subgroup of the modular group,47 whereas in the bosonic
case one obtains a representation of the full modular group
�hence the correlation functions we are calculating are invari-
ant under these respective groups�. The un-normalized cor-
relation function can be evaluated by standard
techniques,17,46 including a Poisson summation which re-
places the n� sum by a sum over integers m. Omitting some
algebra, we obtain
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�
i

OQ�zi��
k

O
Q�wk��


= �
e

��e�z1, . . . ,w1, . . . ��2,

�3.11�

where e runs over the Q integer values −Q /2+1, −Q /2+2,
. . ., Q /2, and

�e�zi,wk��� =
%e/Q,0�QZ/Lx�Q��

����
e−�Q�Im Z�2/A�

i�j

E�zij/Lx���Q

��
ik

E��zi − wk�/Lx���
Q�
k�l

E�wkl/Lx���

2Q

� Lx
−NQ/2−
NQ/2, �3.12�

where Z=�izi−
�kwk, zij =zi−zj, and wij =wi−wj �compare
Ref. 59�. The evaluation of the sums over n, n� has led to a
sum of modulus squares of functions �e that we will see are,
when 
→0, essentially the Q Laughlin ground states on the
torus. The sums over n, n� render the correlation function
doubly periodic in the zi variables, though not in the wk vari-
ables, because of the fractional values of the corresponding
charges which enter through Z. Hence we should be careful
to specify precisely the positions wk. We will assume that
�kwk=0.

Now we relate the functions �e to the standard forms for
the Laughlin states on the torus26,58 and take the 
→0 limit.
First we deal with the Gaussian factors. As they stand, all of
them actually cancel. This was expected for a conformal
block of a collection of charges with zero total charge. But
we wish to separate out the wk’s and take a limit. So let us
assume that �kwk=0 and omit the ik and kl Gaussian factors.
The others then simplify to

exp�− �NQ�
i

�Im zi�2/A� = exp�−
1

2�
i

�Im zi�2� ,

�3.13�

which is the usual Gaussian in the LLL in the Landau gauge
�we used N /A=� / �2�� �note that we tacitly selected a gauge
when extracting �e from ��e�2��. In addition, the factors
%1�zij /Lx ���Q and the center-of-mass factor %e/Q�QZ /Lx �Q��
also occur in the Laughlin states.26,58 The periodic Laughlin
states can be defined for arbitrary phases in the boundary
condition in each direction,58 and we have obtained particu-
lar values of these phases, which depend on �kwk, so that
other values are also available if desired. Thus the zi depen-
dence of these functions is exactly that of the Laughlin
states.

We can also see that the powers of Lx become
A−NQ/4−
NQ/4�Im ��NQ/4+
NQ/4. As 
→0 �with N fixed�, this
yields a power of A times �Im ��NQ/4, in which the exponent
is related to the conformal weight Q /2 of each OQ that rep-
resents the particles in the same way as in the paired states.
The correlation function is modular invariant, and this entails
that the vector of functions �e transforms by a unitary ma-
trix. As we saw in connection with the paired states, the
factors Im � do not transform by phases under S, and there
must be modular forms of nonzero net weight to compensate
them in order that the transformations involve � / ��� �to the

power of conformal weights�. Noting that the prime forms
contain �z%1�0 ���=2�����3,44 we can extract ����2 from
each E, which is a net factor ����NQ+
NQ, and this combines
with the power of Im � to give the expected transformation
behavior. �Another way to see this is to realize that each
factor �E�z /Lx ��� /Lx�2 must be modular invariant when the
area is held fixed, so that E�z /Lx ��� /Lx must be invariant up
to a phase, and the exponent of � / ��� is related to conformal
weight.� The remaining factors, including the e-dependent
one in the center of mass, are all ratios of the form % /����,
which transform with weight zero. Now we want to show
that, of these remaining factors, the product of those that
depend on wk tends to 1 as 
→0 �up to �- and
Lx-independent factors�.

As we already stated, the uniform neutralizing back-
ground will be simulated by placing the charges on a grid,
for which we choose the lattice sites Lx�n1+n2�� /M, for in-
tegers n1 and n2. The ratio %1 /� of interest can be written as

Ê�z��� =
i%1�z���
����

e−��Im z�2/Im � = e−��Im z�2/Im �e2�i�/12�ei�z

− e−i�z���
n=1

�

�1 − e2�in�+2�iz��1 − e2�in�−2�iz� ,

�3.14�

using the product formula for %1.44 Then we can show that

�
n1=0

M−1

�
n2=0

M−1

Ê�z + �n1 + n2�

M
���

= e−i� Re ��M−1��2M−1�/6−i�M�M−1�Re z−i��M−1��3M−2�/2

�Ê�Mz��� . �3.15�

Similar results, but differing by a phase, hold if any of the set
of M2 points on the grid in the complex plane are shifted by
integers or by integer multiples of �; this is actually needed if
we use the above choice of a set of wk such that �kwk=0.
However, these phases are not important. We now apply the
above formula, with z replaced by zi /Lx for each i, in the
above expression for �e. In that case, it must be raised to the
power 
Q=NQ /M2. Ignoring the overall phase, we see that

Ê�Mzi /Lx ���1/M2
vanishes when zi is at any of the points on

the grid but �roughly speaking� tends to 1 as M→� away
from these points. This is a little crude, as the points of the
grid themselves depend on M. If we rescale zi so that the grid
points in the zi plane are independent of M, then the state-
ment is clear. Moreover, for large M, the fraction of the
plane �or of a unit cell� of the grid at which the function is
smaller than 1−) �for any ) in �0,1�� is of order �1−)�2M2

for
large M, which is exponentially small in M. Without the

rescaling, it follows that Ê�Mzi /Lx ���1/M2
tends to 1 at almost

every zi, that is except on a set of measure zero; the latter set
is essentially the set of points Lx�a1+a2�� where a1 and a2
are rational numbers.

The factors containing wkl can be handled similarly, with
both wk and wl on the grid. There is the slight complication
that k= l must be excluded. This can be handled by taking the
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derivative of identity �3.15� at z=0 and extracting a factor
�z%1�0 ��� from both sides.

Putting all these results together and dropping phase fac-
tors and �-independent factors �including A�, we find that the
wave functions are

�e�zi,wk��� =
%e/Q,0�QZ/Lx�Q��

���� �
i�j

�%1�zij/Lx���
����

�Q

� ��Im ��1/4�����NQ exp�−
1

2�
i

�Im zi�2� ,

�3.16�

which essentially agrees with Refs. 26 and 58 up to
z-independent factors, and we emphasize again that different
boundary condition phases on the particles can be incorpo-
rated by changing the value of −limM→�
�kwk in Z. This
was derived for bosons �Q even�, but the result is similar for
fermions �Q odd�.

Let us now summarize and complete the calculation of the
Hall viscosity. Form �3.12� for the wave functions �before
the M→� limit� shows that for particles at separations much
less than Lx, the interactions in the plasma are independent of
the system geometry, as they should be. Hence the sum of
the norm squares reduces to e−Af0�Q�, independent of the ge-
ometry. The other form �Eq. �3.16�� exhibits the effect of a
modular transformation �in particular S� most clearly. Also, it
shows that the dependence on � is holomorphic, apart from
the power of Im � and the Gaussian. Using zi=Lx�'1i+�'2i�,
we see that

e−�1/2��Im zi�
2

= e−�N	 Im �'2i
2

, �3.17�

which differs only by a phase from ei�N	�'2i
2
. Hence by using

an appropriate gauge choice, the wave functions are holo-
morphic in � except for the explicit factor �Im ��NQ/4. We
have actually calculated only the sum of the modulus squares
of the wave functions, while we want to show that the set is
orthonormal. Because the set transforms by unitary matrices
under modular transformations �by monodromy� and these
form an irreducible representation, we can borrow an argu-
ment from Sec. V below and conclude that they are, in fact,
orthonormal �up to a constant�. Alternatively, we can obtain
orthonormality from the known fact that the functions are
mutually orthogonal, which follows as they have distinct
quantum numbers under certain translations under which
they are eigenfunctions.43 Then it follows from use of center-
of-mass translations, which map them to each other, that they
have the same normalization constant and so are orthonormal
up to a common constant.

By a similar calculation as the first one in Sec. II C, it
now follows that the Berry connection on the space of Q
states as a function of � and its curvature are proportional to
the matrix 1Q. The value of the Hall viscosity of the Laughlin
states is finally

��A� =
�Qn̄

4
, �3.18�

where the density here is n̄=1 / �2�Q�B
2� if we restore �B

which is 1 elsewhere. The result agrees with the special case
Q=1 �the filled LLL� which was treated in Ref. 6 by using a
Slater determinant of single-particle wave functions; there
should be a version of the Vandermonde determinant identity
for the torus, which will show that the wave functions them-
selves are the same up to Lx- and �-independent constants.
For Q�1, the result disagrees with a more general result that
was claimed recently in Ref. 7. Further, adiabatic modular
transformations can be performed using the ideas of Sec. II C
and are given by the monodromy up to the path-dependent
phases.

Finally, we address the more general QH trial states that
include a conformal block from a CFT. On the torus, the
charge part is similar to that in the case of the Laughlin states
above, the differences being in the center-of-mass factor,
which plays only a minor role here anyway, and in the ex-
ponent Q which more generally is replaced by �−1 �while the
denominator Q of the filling factor still appears in the center-
of-mass factor�. Under modular transformations, the confor-
mal blocks behave as automorphic forms, and at fixed area a
factor Im � must be included to an appropriate power, so that
the S transformation acts by unitary matrices that include
factors � / ��� to the total conformal weight of the fields. This
is rather more clear for these blocks than for the Laughlin
states, where we had to deal with the neutralizing back-
ground. For general blocks, the factor Lx

−h� must appear for
each particle by scaling considerations. This produces the
desired power of Im � when written in terms of A, which is
fixed. �The paired states in Sec. II C are an example, in
which h�=1 /2 for Majorana fermions.� Hence it becomes
clear that the full functions always include the factor

�Im ��N��−1/2+h��/2 �3.19�

times a function holomorphic in �. More generally, the trial
functions with quasiholes included contain similar factors
depending on their total conformal weight �including the
charge sector�. Under monodromy, S is given by �-dependent
phases because of these factors and �-independent coeffi-
cients from the center-of-mass factors, which are also
N-independent and occur even for N=0, in which case the
wave functions are the conformal blocks for the CFT �includ-
ing charge sector� on the torus with no particle insertions. We
will argue in Sec. V that these trial wave functions are or-
thonormal at large N, at least in some cases. The arguments
presented here then show that the Hall viscosity is generally
given by

��A� =
���−1/2 + h��n̄

2
. �3.20�

This will be a universal result within a topological phase
when the trial functions represent such a phase. We empha-
size that the result here, and that for the paired states, is
always a certain constant times the average “conformal spin
density.” For the trial QH states given by conformal blocks,
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the conformal spin of each particle is just its total conformal
weight, �−1 /2+h�. This explains why the p+ ip paired state
and the filled LLL both gave the same Hall viscosity �when
written in terms of density�: both involve the same conformal
weight, 1 /2 �the value for Dirac or Majorana fermions; for
the filled LLL, the associated CFT is the Dirac fermion
theory, which appears, e.g., as the theory on the edge�.

We recall that the conformal spin also enters in the shift
S. More generally, in nonchiral CFTs, the conformal spin of
a field is the holomorphic minus the antiholomorphic confor-
mal weight, which equals the conformal weight in a chiral
theory. For � filled Landau levels, the result38,40 can also be
viewed as the average spin per particle, where the spin arises
from the cyclotron motion �in the Nth Landau level, N
=0,1 , . . ., it is �N+1 /2���, and this appears also to agree
with the classical non-zero-temperature result.39 For other
topological QH phases of matter, such as the hierarchy or
composite fermion phases, the conformal spin density in the
ground state can be readily calculated by utilizing the pre-
ceding results, and the average spin per particle always
equals half the shift. For the gapless Fermi-liquid-like
phases,60 for which, in the simplest cases ��=1 /Q with Q
even�, trial wave functions are related to Laughlin wave
functions, we expect that the Hall viscosity takes the same
form as in the Laughlin states as calculated here; however, as
these phases are gapless, other components of viscosity may
be nonzero also. Note that “spin” here always refers to or-
bital effects, as we ignore the intrinsic spin of the electrons.
We expect similar effects involving the “real” or intrinsic
spin of spinful particles.

It is worth emphasizing that the value � times density is
the natural quantum of viscosity, in any dimension, and so is
analogous to e2 /h for electrical conductance or �kB

2T /� for
thermal conductance. Values of components of the viscosity
tensor in a quantum fluid �or of a conductivity tensor in two
dimensions� at some temperature might be either larger or
smaller than this value, but the nondissipative part is quan-
tized at zero temperature �in the sense of taking a universal
value� throughout a topological phase and helps characterize
the phase. However, viscosity relates to momentum trans-
port, and so the Hall viscosity probably does not mean much
if translational symmetry is violated at short length scales,
say by impurities, unlike electrical conductivity, which re-
lates to charge transport, and charge conservation is not vio-
lated by impurities �similarly for thermal conductivity�.

IV. ADIABATIC STATISTICS CALCULATION

In this section we present direct arguments for the adia-
batic statistics of two and four quasiholes in the MR state on
the sphere or plane in the thermodynamic limit. The calcula-
tions work by doubling �taking two copies� of the system,
which turns the problem �the Ising or Majorana fermion
CFT� into an Abelian one, the Dirac fermion CFT, which can
be bosonized, meaning turned into a neutral Coulomb plasma
without a uniform background charge density. �The Abelian
problem can be viewed in the QH context as the 331 state
which applies, for example, to bilayer systems, but with the
charge part removed.� It is straightforward in the Abelian

problem to argue that various blocks are orthonormal �up to
a w-independent constant� for well-separated quasiholes, as
well as holomorphic in w, and that will conclude the argu-
ment. Readers who prefer a more conceptual approach that is
also more general �and avoids doubling� may prefer to skip
this section and go to the following one.

We will consider here only the trial wave functions with
the charge sector removed. These presumably correspond to
the long-distance behavior of the p+ ip paired state in the
presence of vortices, though this has not been shown directly
from the point of view of BCS theory. Arguments that the
charge part can be dropped from the QH trial wave functions
for the present purposes are considered in more detail in Sec.
V below. The trial wave functions will be written in terms of
conformal blocks from conformal field theories. We will first
recall the relation of two copies of the Majorana fermion
field theory to a Dirac theory, beginning with zero quasi-
holes, then progressing to two and finally to four quasiholes.

The relation of the MR Pfaffian wave function �with
charge sector removed� to the Ising �or Majorana� CFT was
reviewed in the Introduction. Here we will also need the
similar relation for the Dirac CFT. The Dirac fermion CFT is
defined using the fields �, �† with the OPEs

�†�z���0� �
1

z
+ ¯ , �4.1�

��z���0� � 0 + ¯ �4.2�

�and similarly for �†�†�, in which as usual omitted terms
tend to zero as z→0. These expressions then also give the
chiral correlators for the fermion fields using Wick’s theorem
�and note that the fields anticommute�. The theory can be
related to two Majorana fermion field theories �1, �2 by
writing

�†�z� = ��1�z� + i�2�z��/�2, �4.3�

��z� = ��1�z� − i�2�z��/�2. �4.4�

The relation also works in the presence of spin fields ��; by
definition, the Dirac fields acquire a change in sign on con-
tinuation around the location of a spin field. More precisely,
these are defined by the OPEs

�†�z��−�0� �
1

z1/2�+�0� + ¯ , �4.5�

��z��−�0� � 0 + ¯ , �4.6�

and similarly with �†↔�, �+↔�−. The spin field �+ ��−�
carries charge 1 /2 �−1 /2� in units where �† has charge 1 and
�� both have conformal weight 1 /8. �The U�1� charge is
also referred to as pseudospin in the bilayer context.� In
terms of the two Majorana theories, the Dirac spin fields
become the product �1�2 of the Majorana �Ising� spin fields,
which were defined earlier.

The basic property we wish to exploit is the relation of the
Dirac fermion theory to a Coulomb plasma. In field theory
language, this is bosonization, in which by introducing a
chiral scalar field ��z�, we represent �†�z�=ei��z�, ��z�
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=e−i��z�. We note that this is the chiral version of what we
had for Q=1 �the filled LLL� in Sec. III �but now with � as
this is not the charge sector�. Then the spin fields are repre-
sented by ���z�=e�i��z�/2 �all these fields are present in the
modular-invariant Q=4 bosonic theory in Sec. III�. These
relations imply that conformal blocks in the Dirac theory can
be written as Coulomb gas functions, that is, as products.
This is exemplified by the Cauchy determinant identity. The
conformal block for Dirac fermions on the plane with N�’s,
N�†’s, at zi, i=1, . . . ,2N, with i even for �, i odd for �†, is

	�†�z1���z2� ¯ ��z2N��Dirac

= det
1

zi − zj

= �− 1�N�N−1�/2

�
i�i�

�zi − zi�� �
j�j�

�zj − zj��

�
i,j

�zi − zj�
, �4.7�

in which in the matrix with entries 1 / �zi−zj� and in the prod-
ucts, all i’s run over odd values and all j’s over even values;
we are not concerned about the overall sign. The last equality
is the determinant identity and exhibits the block as a Cou-
lomb gas Boltzmann weight, similar to those discussed ear-
lier. In terms of the Majorana fermion theories, the determi-
nant becomes a sum of products of Pfaffians,

det
1

zi − zj
= 2−N�

S1

PfS1

1

zi − zj
PfS2

1

zi − zj
. �4.8�

Here the sum is over the distinct subsets S1 of �1,2 , . . . ,N�
with an even number of elements, �S1�=N1, and S2 is the
complement, S1�S2= �1,2 . . . ,N�; S1,2 refer to type 1 and 2
Majorana fermions. PfS1,2

denotes the Pfaffian with the indi-
ces i, j, ranging over the set S1,2. Evaluating a Pfaffian re-
quires an ordering on the index set to fix the overall sign; S1,2
are viewed as inheriting the lexicographic ordering from
�1,2 , . . . ,N�.

The sum over different numbers of Majorana insertions
�1 and �2 in the last expression is clearly inconvenient. To
remove the technical difficulty, we will treat all the states
grandcanonically, which is natural anyway for the paired
states, as in Sec. II. To do this, let us introduce fermion
creation operators c↑

†, c↓
†, for particles with pseudospin in two

space dimensions, with canonical anticommuutation rela-
tions. These are related to two copies of the spinless fermion
creation operators �as in Sec. II� by

c↑
† = �c1

†�r� + ic2
†�r��/�2, �4.9�

c↓
† = �c1

†�r� − ic2
†�r��/�2, �4.10�

similar to those for the 2D fermion operators �1,2 �and again,
local in r�. �If we think of the Dirac theory as part of the 331
QH states, then c↑ and c↓ represent fermions in the two layers
with definite U�1� “pseudospin” values, while c1, c2 are simi-
lar to the even and odd combinations of the pseudospins that
are also sometimes used,26 except for the factor of i which
will be convenient here.� Now using the vacuum �0� annihi-

lated by the c↑,↓ operators, an un-normalized BCS state with
pairing only between ↑ and ↓ has the form

��↑↓� = e�d2rd2r�M�r,r��c↓
†�r�c↑

†�r���0� , �4.11�

and the 2N-particle wavefunction is

��r1, . . . ,r2N� = 	0�c↑�r1� ¯ c↓�r2N���↑↓� = detNM �ri,r j� ,

�4.12�

where we have used the same convention that i is odd and j
is even as in the wave functions above. In this case, the norm
square of any state �not only a paired state� ��↑↓� with equal
numbers of ↑ and ↓ particles is computed from the
2N-particle functions � as

	�↑↓��↑↓� = �
N
� �

i

d2ri

���r1, . . . ,r2N��2

�N!�2 �4.13�

�which also generalizes to N↑�N↓, in which one divides by
N↑!N↓!�. For the paired states above, this norm square re-
duces to det�1+MM†�.

For these fermions, M�r ,r�� need not have any particular
symmetry in general. If we choose M�z ,z��=� / �z−z��
�switching to z’s corresponding to r’s�, where � is a fugacity
similar to the chemical potential in Sec. II, then we obtain
the above wave functions. If we now use the relation to
fermions of types 1 and 2, then the two types decouple in
��↑↓�, which equals the �tensor� product of two BCS states
for spinless fermions, as in Eq. �2.10�, with g=M,

��↑↓� = ���1 � ���2. �4.14�

Clearly, this is consistent with the normalizing factors for
these states also. In carrying out integrations over space in
these states, we will disregard boundary conditions and the
integration domain, but one can think of them as performed
on the sphere, with suitable changes in the details of the
functions to include rotational symmetry and so on. The vor-
tices will always be separated by much less than the system
size, and we consider the thermodynamic limit at fixed den-
sity. In addition, short distance divergences as fermions come
together must be cut off; this will not be shown explicitly.
Because the leading term in the OPE is independent of the
positions of other fields �including the vortices�, the cutoff
effects should have no effect on the results.

With these few remarks, we have completed the explana-
tion of the relation of the Dirac and doubled Majorana theo-
ries and conformal blocks �wave functions� without spin
fields �vortices�. We should point out that the removal of the
charge sector was technically necessary to obtain the tensor
product form of paired states. If the charge sector were in-
cluded in the wave function for ↑ and ↓ particles �as in the
331 states�, it would couple the 1 and 2 particle types to-
gether, and the system would not factor into decoupled MR
states �however, one might argue that this does not matter
along similar lines to arguments for dropping the charge sec-
tor�.

Now we turn to the introduction of spin fields. The sim-
plest functions to write down are those in the Coulomb gas
form. For N↑↑ particles �with labels i odd�, N↓↓ particles
�with labels j even�, with n+ +1 /2 charges �or �+’s� at posi-
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tions wk, k odd, n− −1 /2 charges �or �−’s� at positions wl, l
even, and with 2N↑+n+=2N↓+n− for charge neutrality, the
conformal block �times � to the power half the number of
fermions� is

��N↑+N↓�/2

�
k�k�

�wk − wk��
1/4 �

l�l�

�wl − wl��
1/4

�
k,l

�wk − wl�1/4

�

�
i,k

�zi − wk�1/2�
j,l

�zj − wl�1/2

�
i,l

�zi − wl�1/2�
j,k

�zj − wk�1/2

�

�
i�i�

�zi − zi�� �
j�j�

�zj − zj��

�
i,j

�zi − zj�
. �4.15�

The z-dependent factors can also be obtained from a gener-
alization of the Cauchy determinant identity. For N↑=N↓, the
same block is equal to �up to a sign�

�
k�k�

�wk − wk��
1/4 �

l�l�

�wl − wl��
1/4

�
k,l

�wk − wl�1/4
det M�zi,zj� , �4.16�

where M�zi ,zj� is given by

M�zi,zj� = �

�
k

�zi − wk�1/2�
l

�zj − wl�1/2

�
l

�zi − wl�1/2�
k

�zj − wk�1/2

zi − zj
. �4.17�

This is easily proved as the w-dependent factors in M can be
taken outside the determinant. Hence, apart from a function
of w’s only, the grand-canonical state takes the BCS form
��↑↓�M�� for this M. This special case of N↑=N↓ will be
sufficient for our purposes but can be generalized if required.

Now we can address the normalization �or overlap� inte-
grals for the grand-canonical states with N-particle compo-
nents �Eqs. �4.15��. For the self-overlap, we can note that the
sum �over N� of the integrals is simply the partition function
of a Coulomb plasma, with some “impurities” inserted at the
wk’s �note the factors 1 / �N↑!N↓!� are essential for this�. For
the values of the exponent used here, the plasma is in a
screening phase. Then if the impurities at wl are far apart
compared with the screening length, the overlap integral
takes the form

e−Af0−�n++n−�f�, �4.18�

similar to that for the case with a neutralizing background.
Here f0 and f� are constants and A is the area of the system.
Note that this is independent of the positions and of the
charges of the spin fields.

Though the Dirac theory is Abelian, we can nonetheless
obtain not just one but a set of functions from it by choosing

a set of positions w1 , . . . ,wn++n and varying the assignment
of which are +1 /2 and which are −1 /2 charges. This gives us
�

n++n−

n+
� distinct states. We can form the overlap matrix for

these states, and so far we discussed the diagonal elements.
For the off-diagonal overlaps, let us suppose we take the
overlap of two states in which the charge assignments are the
same except for one +1 /2 and one −1 /2 which are switched
in one state compared with the other. Then the phase of the
integrand winds by �2� as one fermion is carried around
just one of these two locations �by monodromy� instead of
the integrand being purely real in all previous cases. We want
to argue that when these locations are far apart compared
with the screening length, the overlap goes to zero because
of the oscillations of phase.

One way to see this is to consider the sine-Gordon formu-
lation of this Coulomb plasma, which is represented by a
field theory with action

S =� d2r� 1

8�
����2 − 2� cos �� , �4.19�

in which the screening is due to a term −2� cos � added to
the action of the �nonchiral� scalar field �. In this phase one
can consider the latter term as simply producing a mass term
�by expansion of the cosine around a maximum�. In this
language, the phase winding corresponds to the two w’s in
question being locations of magnetic charges, which produce
a “vortex” in �, instead of electric charges. That is, �
changes by �2� on going around a magnetic charge. This
should be viewed as allowed in the functional integral over
� by identifying values �+2� with �. But as the cosine
term tries to pin � to a multiple of 2�, all of this winding
has to be accomodated by a “domain wall” on a straight line
connecting the two vortices �with exponentially decaying tail
off the wall�. The system then incurs a positive domain-wall
free energy proportional to the length of the wall �when these
vortices are separated by more than the screening length,
which is also the thickness of the wall�, which means that the
overlap we were computing decays exponentially with sepa-
ration. This argument clearly generalizes to any of the off-
diagonal overlaps. Hence the matrix of overlaps Zab �in the
language of Sec. I C� is proportional to the identity, and as
the wave functions are holomorphic in w’s we can obtain the
holonomy of these states under adiabatic transport of the w’s
by reading it off from the monodromy of the wave functions,
that is, from the factors �wk−wk��

�1/4, where the exponent
depends on the signs of the charges.

The main problem now is to relate the conformal blocks
of the Dirac and doubled Majorana theories with spin field
insertions. Once we do so, we can use the orthonormality of
the blocks in the Dirac CFT to infer the same for the blocks
in the Majorana CFT, which will complete the argument.

First we will consider the simple case of only two vortices
�spin fields� at positions w1 and w2. Above, we took +1 /2 at
w1 and −1 /2 at w2. If we compare with the similar state with
these charge assignments reversed, which means in the wave
functions that we exchange w1 and w2 and take the sum of
the two states �with a certain phase relation to be determined
in a moment�, then the normalization changes only by a fac-

NON-ABELIAN ADIABATIC STATISTICS AND HALL… PHYSICAL REVIEW B 79, 045308 �2009�

045308-25



tor of �2 when the spin fields are far apart using the above
argument. Now in the form of the functions as paired states,
we can write for M�z ,z��,

M�z,z�� = M̃�z,z�� + L�z,z�� , �4.20�

where M̃ is antisymmetric, M̃�z� ,z�=−M̃�z ,z��, and L is
symmetric, L�z� ,z�=L�z ,z��. Moreover, for the case here of

n+=n−=1, M̃ is symmetric under the exchange w1↔w2,
while L is antisymmetric. Explicitly,

M̃�z,z�� =
1

2
�

�z − w1�1/2�z� − w2�1/2

�z − w2�1/2�z� − w1�1/2 +
�z − w2�1/2�z� − w1�1/2

�z − w1�1/2�z� − w2�1/2

z − z�
,

�4.21�

and

L�z,z�� = �
w1 − w2

2 �
l=1,2

��z − wl�1/2�z� − wl�1/2�
. �4.22�

Now when we sum the states over the exchange of w1,2, the
phase is chosen so that if the factor �w1−w2�−1/4 is omitted,
the functions are simply added. Then in the expansion in
many-particle wave functions, all terms with an odd number
of L’s drop out. L�z ,z�� is nonsingular as z→z�. Thus, in the
language of Ref. 26, in the terms containing L’s some ↑↓
pairs are broken, and the unpaired ↑ fermions occupy a mode
with constant wave function �as do the ↓ fermions�. But as
only even numbers of L factors can appear in our state, the
mode must be occupied by more than one ↑ fermion, and so
these terms vanish on antisymmetrization �i.e., by Fermi sta-
tistics�.

The wave function of the state thus has the form of the

above paired state, with the antisymmetric M̃ in place of M.
Hence, it is equal to the tensor product of two paired states of

spinless fermions containing the same g=M̃. The form of
each of these paired states is therefore

�w1 − w2�−1/8���M̃��1,2. �4.23�

The form of M̃ is simply � times the propagator for the
Majorana fermion in the presence of two spin fields. The
factor �w1−w2�−1/8 has exponent equal to minus twice the
conformal weight 1 /16 of the spin field, and the N-particle
wave function is exactly the conformal block for N Majorana
fermions and two spin fields �here N is even�.1 Because the
doubled version of this state is normalized for well-separated
spin fields and holomorphic, we can conclude the same for
this state. Hence we can read off the phase for adiabatic
exchange of the two vortices, e−i�/8. This is a simple phase
factor yet does not come from the charge sector of a QH
state, which was removed here. This contribution was ex-
pected and emphasized early on1 and previously derived by a
different method.31 We note that the same result can be ob-
tained for N odd instead of even. This is obtained by taking
the linear combination of the two charge assignments for w1,
w2 in the Dirac theory that is orthogonal to that used above,
in which case all the terms with exactly one L survive and

give rise to blocks in the Majorana theory that all have odd
particle number N �these are nonvanishing in the presence of
a positive number of spin fields�. These correspond to occu-
pying the zero mode with one fermion.26

For the case of four vortices in the paired state, we use
similar but more involved arguments. We begin by introduc-
ing notation for the six states with n+=n−=2. We will write
the BCS states previously called ��↑↓�M�� as ��13,24�, and
the remaining five are obtained by permuting the indices;
thus the first two subscripts are the positions of the +1 /2
charges, and the last two are the positions of the −1 /2
charges. The grand-canonical states are in full

��13,24� =

�
k�k�

wkk�
1/4 �

l�l�

wll�
1/4

�
k,l

wkl
1/4

��13,24� , �4.24�

in which again k, k�=1,3 and l, l�=2,4 and five other states
obtained by permuting the indices; these form an orthonor-
mal set when the spin fields are well separated. Once again,
we can make use of the decomposition of M�z ,z�� into anti-
symmetric and symmetric pieces under z↔z�, called

M̃�z ,z�� and L�z ,z��, respectively. These are, respectively,
even and odd under exchange of all of the coordinates of
+1 /2 with coordinates of −1 /2 charge spin fields, that is,
w1↔w2, w3↔w4. Explicitly,

M̃�zi,zj�13,24

=
1

2
�

� �z − w1��z − w3��z� − w2��z� − w4�
�z − w2��z − w4��z� − w1��z� − w3��1/2

+ �z ↔ z��

z − z�
.

�4.25�

L is nonsingular as z→z� for symmetry reasons. When we
write the states using types 1, 2 of fermions instead of ↑, ↓,

each M̃ term involves types 11 or 22, while each L term
involves types 12. Hence if we sum and form the combina-
tions like

��13,24� + ��24,13� �4.26�

�and two similar ones�, then these are sums of states that
contain only even numbers N1 and N2 of the 1, 2 fermions.
They are symmetric under exchanging 1 with type 2 fermi-
ons. There are just two Majorana conformal blocks for even
fermion number �and also two for odd fermion number�. We
are able to show that these three states in the doubled theory
are constructed from the symmetrized tensor products of the
two states in each of the spinless theories that produce the
Majorana blocks �similar to the construction of the triplet of
spin 1 states from the symmetrized tensor product of two
spins 1 /2 in angular-momentum theory�. This is sufficient to
deduce the orthonormality of the two Majorana blocks for N
even.

Explicitly, the two conformal blocks for four spin fields
and N fermions �N even� in the Majorana theory were found
by NW,25 who used a related doubling technique. The ex-
pressions are
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�N/2F0,1/2 =
1

�1� �1 − x
� w13w24

w12w32w34w14
�1/8

� �PfM̃�zi,zj�13,24� �1 − xPfM̃�zi,zj�14,23� ,

�4.27�

where x=w12w34 / �w13w24� is a cross ratio and the upper sign
is for 0 and the lower for 1 /2. For N=0, in which case the
Pfaffians are replaced by 1, these two blocks were found in
Ref. 61 �see also Ref. 46�. From these, the four-point spin
correlation function of the critical Ising model is
�s=0,1/2�Fs�2. The same combination should give the correla-
tion function in the presence of fermion �energy operator�
insertions. Then if we are to obtain holonomy equal to mono-
dromy of these blocks, these states should be an orthonormal
pair.25 We will denote the two grand-canonical states corre-
sponding to these N-particle wave functions by ���.

The relations of the Majorana and Dirac blocks, when
there are no fermions, also dictate what the relations must be
when fermions are present, most conveniently for the grand-
canonical forms. After a considerable amount of algebra, we
can verify that

� w13w24

w12w32w34w14
�1/4

���13,24� + ��24,13��

= � + �1 � � + �2 + �− �1 � �− �2, �4.28�

� − w14w23

w12w42w43w13
�1/4

���14,23� + ��23,14��

= � + �1 � � + �2 − �− �1 � �− �2, �4.29�

� − w12w34

w13w23w24w14
�1/4

���12,34� + ��34,12��

= � + �1 � �− �2 + �− �1 � � + �2. �4.30�

The left-hand sides of these are three orthonormal states �in
the usual sense�, and it is then easy to see that �+ �1 and
�−�1 are an orthonormal pair �in the usual sense� and of
course similarly for type 2 fermions. As we have explained,
this implies that the holonomy for an adiabatic exchange of
well-separated vortices in the paired states of spinless fermi-
ons equals the �non-Abelian� monodromy.

Finally, we can consider more than four quasiholes at the
level of counting arguments. For n=6, similar to n=4, the
number of symmetrized tensor products of Majorana confor-
mal blocks with N1,2 even equals the number of Dirac blocks
with n+=n−=3 when they are symmetrized between " and
# spin fields �i.e., both numbers equal 10�. In this case a
similar argument may go through. But for n�8, the use of
n+=n−=n /2 and N↑=N↓ and symmetrization produces a set
of orthonormal states, the number of which is less than the
number of Majorana blocks �with N1,2 both even� symme-
trized between 1 and 2. We are then forced to consider all
particle numbers together. In the Majorana theory, there are
2n/2−1 blocks for N even, and to these we can add the number
for N odd. The square of this is 2n, the total number of blocks
in the Dirac theory if we allow all possible assignments of

the charges on the spin fields, with the numbers N↑ and N↓
chosen to ensure neutrality. The functions must agree be-
cause of the interpretation of the Dirac theory as the doubled
Majorana theory, and hence we expect that a version of the
argument goes through for all values of n.

V. GENERAL CONDITIONS FOR HOLONOMY TO
EQUAL MONODROMY

In this section we discuss general conditions for the ho-
lonomy of trial wave functions given by conformal blocks,
including those for QH systems that include the charge sec-
tor, to equal their monodromy. In view of the preliminary
discussion in Sec. I, it is sufficient to find general conditions
for the conformal blocks to be orthonormal in the basis in
which the monodromy matrices are unitary. After giving the
general arguments, we turn to examine a number of ex-
amples and discuss nonunitary and irrational CFTs.

A. Relevant and irrelevant perturbations of the CFT

We begin with the functions �a from Sec. I C, which
include the charge sector, or with the functions
Fa�w1 , . . . ;z1 , . . . � which are the blocks of the CFT with the
charge part removed. In either case, we can view these as
related to a perturbation of an underlying CFT by some op-
erators �viewed within two-dimensional field theory�; here
by the underlying CFT we mean including the charge sector
contribution, which as we mentioned is a massless scalar
field .1 Then the particles are represented by �e�z�
=ei��−1�z���z�, where �= P /Q is the filling factor �if we view
the CFT with the charge sector removed as a theory of Abe-
lian anyons, then these particles are represented by � alone�.
Similarly, the quasiholes are represented by some fields
	�z�=eiqqh�z���z� �or just by �, respectively; it should be
clear how to generalize to include several types of quasi-
hole�. �These “fields” are really “chiral vertex operators.”17�
Here  has two-point function 	�z��0��=−ln z, qqh is de-
termined by single valuedness of �a in the particle coordi-
nates, and the charge �particle number relative to the ground
state� of the quasihole is −qqh

��. The functions �a are re-
produced as a chiral correlator of these fields together with
the background charge-density factor,

exp�− i� d2z����z��/�2��� . �5.1�

The approach to handle this factor is discussed in MR �Ref.
1� �for the functions Fa, the background charge density is
omitted�.

The overlap integrals Zab represent the inner products of
these �a, viewed as quantum-mechanical states of N par-
ticles �there are similar ones without the charge sector�. It is
convenient to introduce a grand-canonical point of view62 as
in the previous sections. Then the overlap integral can be
written formally as an expression
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Zab = e��d2z�̄e�z̄��e�z� exp�− i� d2z�����z��

+ ̄�z���/�2���	̄�w̄1�	�w1� ¯ � , �5.2�

where the expectation is taken in the underlying CFT and the
notation for a choice of blocks is suppressed. The fields with
bars over them are antiholomorphic partners of the chiral

fields. Expanding the exponential in �̄e�e gives a series of
integrals over N particles, N=0,1 , . . .. For the plane the
background charge is correct as written, but for the sphere
one should define the series with the appropriate background
charge, spread uniformly on the sphere, for each particle
number, so as to ensure total charge neutrality �related to the
total number of magnetic-flux quanta through the sphere in
the QH effect�. For a given �real� value of �, the dominant
terms in the sum cluster around some value of N, and we
choose � so that this is large, and the fluctuations in N will
be of order �N. In some cases, the correlator due to the
noncharge part will be nonzero only for N congruent to some
number, modulo another constant �for example, N even for
the case of no quasiholes in the MR state�.

Leaving aside the background charge density for a mo-
ment, the overlap integral has a form similar to a correlator
in a perturbed CFT. In fact, the diagonal sum �aZaa is the
�un-normalized in the sense of Sec. I C� correlator in the
diagonal version of the underlying CFT, perturbed by adding

the term ��̄e�e to the Lagrangian. For example, omitting the
charge sector, if � were a Majorana fermion, this term would
be the mass term that drives the continuum theory of the
Ising model off its critical point. For the charge sector, we
have in addition the background charge density, which we
will view as also part of the perturbation. This notion of a
perturbed CFT will be crucial to our approach from here on.

In general, given a CFT and a perturbation, the basic
question is whether the perturbation is relevant, irrelevant, or
marginal. This analysis �and even referring to it as a pertur-
bation� presupposes that the perturbation is weak, i.e., that
the coefficient � is small. Let us once again ignore the charge
sector entirely for a moment or assume that it has been re-

moved. Then the perturbation is by the operator �̄�. It is
relevant if its scaling dimension 2h� is less than two, irrel-
evant if this is greater than two, and marginal if it is two.
This is because the scaling dimension of � is the codimen-
sion d−2h�=2−2h�, and the perturbation is relevant if the
codimension is positive because the coefficient grows under
renormalization group �RG� rescaling transformations to ap-
proach larger length scales, with the opposite for the irrel-
evant case. For marginal perturbations, one must go to higher
�nonlinear� order in � to see whether it grows or shrinks
under the RG on going to larger length scales. If the pertur-
bation is relevant, then a crossover length scale �×
��−1/�2−2h�� can be defined. We should note that the confor-
mal blocks are singular as two �’s approach one another,
diverging as z−2h�+�* as discussed in the Introduction. This
may be strong enough that a cutoff must be introduced by
cutting tube-shaped regions out of the integration along these

diagonals and also along those at zi=wl, with radius, say, ).
Then the limit )→0 requires renormalization of the opera-
tors. We are suppressing dependence on ) from these expres-
sions by holding it fixed. The parameter � may be viewed as
defined at the cutoff length scale, and the crossover length ��
is defined in units of ). Then �� is much larger than ) when
� is small �and relevant�. For our purposes, �� can be viewed
as the typical spacing of the insertions of �̄� in the integral.
Note that while the conformal blocks are viewed as confor-
mally covariant, conformal, and in particular scale, invari-
ance of the correlators is violated by the presence of the
perturbation.

It is now clear that in general we will need to examine the
relevance of the perturbation. When the charge sector is in-
cluded, the situation is different. The perturbation is certainly
relevant, but the scaling dimension of ei��−1�+̄� in the un-
derlying CFT, which is �−1, is apparently of little importance.
From the basic example of the Laughlin state,8 we know that
the modulus-square of the Laughlin wave function is a one-
component plasma with a background charge density, which
is in a screening phase when the exponent q is larger than
about 70. For larger values of �−1, a crystalline state is
formed. A scaling analysis does not seem to be of much use
in finding this physics. �We note that Ref. 25 �Sec. 8� began
to formulate arguments about the relevance of the perturba-
tion but incorrectly states that �e has negative scaling dimen-
sion.� In contrast, for the two-component plasma, which is
charge neutral without a background, the physics is the
Kosterlitz-Thouless theory,63 which at small � �“fugacity”� is
determined by the relevance of the perturbation; when it is
relevant �which would be �−1�2 if we use the same conven-
tions but include charges in the opposite sign instead of the
neutralizing background�, the plasma arrives at a screening
phase. This was emphasized in Ref. 64 in a context similar to
the present one.

For the more general cases when the CFT includes more
than the charge sector and the operator �e contains ��1, it
appears that as long as � is such that the charge sector is in
the screening phase when � is ignored, this will still be true
in the presence of �. The correlators in the CFT with the
charge sector removed do not contain high powers of z as
one ��z� is moved away to large distance and so are unable
to affect the screening properties very much �except perhaps
near the transition to the crystal�. This is generally taken for
granted in treatments of trial wave functions in the fractional
QH effect.

It is now natural to adopt the following analysis. To con-
sider the effect of the perturbation of the underlying CFT,
including the charge sector, we begin by noting that if �−1 is
less than about 70, the RG flow will be to screening behavior
of the charge sector. This sets in by the time the screening
length is reached; this scale is of order the particle spacing
for filling factors not too far �say within a factor of 10� from
1. On large scales, we then should consider how the remain-
ing CFT degrees of freedom behave. The operators � are still
attached to the charges in the plasma. If this were ignored,
we would integrate over the positions of the �’s as if the

charge sector were absent. Then the scaling dimension of �̄�

would come into play. Because the insertions of �̄� are, in
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fact, on the charges in the plasma, fluctuations in the density
of the �̄�’s, which would be Poissonian if there were no
plasma, are, in fact, suppressed if one looks at a length scale
larger than the screening length. In the presence of the charge
sector, the screening length is the scale from which the RG
analysis must be started rather than the scale ) which tended
to zero. As this scale is similar to the spacing of particles and

thus of �̄� insertions, this corresponds to a fugacity for the

�̄� insertions of order 1. In this situation, it is hardly surpris-
ing that the fluctuations in the number density of insertions
are not Poissonian. This is somewhat like a lattice model

with �̄� on each lattice site. In effect, the strength of the
perturbation in the CFT �with the charge sector removed� is
here of order 1.

We are then forced to consider the effect of the perturba-

tion by �̄� when its strength is of order one rather than
small. When the perturbation is weak, the RG flow will carry
the system back to original CFT if the perturbation is irrel-
evant or marginally irrelevant. If the perturbation is relevant,
the flow will usually carry the system to a different RG fixed
point �possibly passing close to other fixed points along the
way�. If the perturbation is strong, the RG flow might be to a
different fixed point �or phase of the 2D theory� than when it
is weak. In particular, a perturbation that is irrelevant when
weak might still lead to a flow to different phase when
strong. An example is the Kosterlitz and Thouless �KT�
theory again, according to Kosterlitz’s RG flow diagram for
the two-component plasma.63 On the other hand, a perturba-
tion that is relevant when weak seems unlikely to lead to a
flow back to the original CFT when it is strong. RG flows
that travel in a cycle back to the original fixed point are very
unusual and impossible in unitary theories according to the c
theorem.65 Thus a perturbation that is relevant for small �
should lead to a flow away from the original CFT toward
another fixed point also when it is strong, possibly to the
same one as starting from weak �. If a perturbation that is
irrelevant when weak does flow to a different fixed point
when strong, it may be difficult to identify what fixed point
that is.

Thus the simplest assumption to make for the QH systems
would be that the behavior of the system viewed as a CFT

without the charge sector, perturbed by �̄� with coefficient �
of order 1, is the same as for the same perturbation with �
small. In that case, if � is irrelevant, the system flows back to
the original CFT, and if � is relevant it flows to the same
fixed point different from the starting CFT, even though the
perturbation is not weak. We note that this point of view is
essentially a generalization of what has been used success-
fully in studying composite particle approaches to the QH
states, in which the charge sector is factored off, and results
for composite particles in zero magnetic field �to correspond
to the present case� are used as a “mean-field”
approximation.23 But we will learn from simple examples
later that this plausible assumption can fail in practice, in that
even for cases in which � is irrelevant �when weak�, there
can be flows to some other fixed point. So we will not pro-
ceed by using this assumption. On the other hand, if there are
systems in which we are willing to use the conformal blocks

without the charge sector as trial wave functions �with cutoff
) much less than the particle spacing�, then the relevance or
irrelevance of � comes directly into play. �In real non-QH
systems, there could be similar problems also, for example,
for paired states in the weak-pairing phases. But for the
paired states as studied in Sec. II, this difficulty does not, in
fact, seem to occur.�

B. Long-distance fixed point

Whether or not the simplest assumption for the effect of a
perturbation holds when its strength is of order one, we can
analyze the possible results for the holonomy at large length
scales. If we refer to the starting CFT as the short distance or
ultraviolet �UV� fixed point, then we will now be considering
the possible long-distance or infrared �IR� fixed point
reached at large length scales �possibly after the RG flow
passes near other fixed points at intermediate scale�. There
are generally two classes of IR fixed points to consider. One
is a “massive” fixed point, in which all correlations go to
constants with exponentially decaying corrections. The other
is a fixed point that contains “massless” degrees of freedom,
corresponding to a critical theory, possibly a conformal field
theory. In this there are power-law correlations, though we
should point out that the power could be zero, and in all
cases there will be power-law subleading corrections also.
We emphasize that these terms are applied here to the behav-
ior of two-dimensional �2D� field theories. A further possi-
bility is that of exponentially growing correlations. This can-
not happen in a unitary theory but may be allowed in
nonunitary theories; in nonunitary CFTs, one finds power-
law correlations that increase with distance �negative scaling
dimensions�, so it is not clear that exponentially growing
behavior is ruled out in the massive cases. This would prob-
ably indicate an instability of the vacuum of the 2D theory.
We will not have much to say about this possibility.

1. Massive IR fixed point

We can consider the cases with or without the charge
sector together. In order to obtain holonomy equal to mono-
dromy for the trial functions given by conformal blocks �pos-
sibly including the charge sector on both sides of this rela-
tion�, we need the overlap integrals Zab to approach �ab at
large separations of the w’s �up to a w-independent factor�.
We now interpret this in terms of the RG flow of the under-
lying CFT. The behavior is very much like correlation func-
tions approaching a constant in the perturbed phase, where
the correlation functions would however be �aZaa �as noted
in Ref. 25, where the role of more than one conformal block
is neglected at this point�. Thus we will suppose that the RG
flow goes to an IR fixed point that is massive, which is one
in which correlations go to constants or to zero, with expo-
nentially small corrections at finite separation. �No power-
law corrections are possible in the absence of massless de-
grees of freedom in the IR fixed point theory.�

We wish to consider then the behavior of the overlap ma-
trices Zab in such a phase. Important conditions are placed
on the possible behavior of these by the monodromy proper-
ties they possess. It is easy to see that they inherit the mono-
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dromy properties that they had in the starting CFT �in which
in the conformal blocks, the fields �e or � were either omit-
ted entirely or located at fixed positions�. That is, under a
braiding operation, either exchange of identical quasiholes or
a circuit of one type of quasihole around another one, the
overlap changes by

Zab → �
c,d

�M†�acZcdMdb, �5.3�

where Mab is the monodromy matrix, describing the corre-
sponding effect on the conformal block. Now as noted
above, �aZaa is a correlation function of local operators,
which goes to some constant. As the braiding matrices are
unitary, it is invariant under monodromy. �If the braiding
matrices in the monodromy were not unitary, it would be
impossible for the holonomy in the quantum-mechanical
theory to equal the monodromy.� In a pure phase �in the
sense here of 2D statistical mechanics�, this correlation ap-
proaches �l	�̄�w̄l���wl��, a product of the expectation values
of the local operator. If the perturbed phase is not pure, this
factorization may not hold, but the value of the correlation
approaches the product of the expectations that would hold
in one of the pure components of the phase when the phases
are related by symmetry �for example, the low-temperature
phase of the Ising model�. More generally, all the compo-
nents of Zab can be considered as �linear combinations of�
correlation functions of some operators. Nontrivial mono-
dromy �5.3� implies that the operators are not all mutually
local. �Notice that Abelian factors in the braiding drop out of
this argument.� In this situation, it is well known that the
correlator cannot go to a constant. Thus, if the phase were
pure, it should reduce to a product of expectation values of
the various operators. As each expectation value is indepen-
dent of the locations of the other operators, the product can-
not have the required monodromy. Consequently, the over-
laps must go to zero at large distances �exponentially�,
except for combinations that are invariant under all allowed
braiding operations, which can survive as constants.

The simplest example of this is the Ising model again, in

which �̄� �for � the Majorana fermion� is the perturbation.
The Ising order operator is ��w , w̄�, and there is also the
disorder operator ��w , w̄�; these two fields are dual to each
other. Under a circuit of one around the other �along a path
containing no others of either type� in a correlator containing
both, the monodromy is a factor −1. The fields are mutually
nonlocal and cannot both have expectation values in the
same phase. � has a nonzero expectation in the low-
temperature phase, while � has one in the high-temperature
phase. On the sphere, there are 2n/2−1 conformal blocks for
the chiral �, so 2n−2 components Zab in the overlap integral
matrix. In fact, there are these many blocks both for even and
for odd fermion numbers in the blocks �for n�0�, while n
must be even. In correlations of �’s and �’s in the critical
theory ��=0�, there are 2n possible choices �either � or �� of
the field at each wl. However, interchanging the types � and
� leads to the same functions by duality, so there are only
2n−1 distinct functions. Further, in the absence of any fermi-
ons �N=0�, the number of �’s and of �’s must both be even
�this is because fusion of the nonchiral � and � produces

either a � or a �̄ �Ref. 19�. More generally, the number of
�’s plus N must be even and �hence� also the same for �’s.
Hence there are only 2n−2 distinct nonzero functions. This
essentially shows that the terms in Zab correspond to the
various ways to choose order and disorder fields in the cor-
relator. In more detail, in the grand-canonical version of the
perturbed partition function, both even and odd N occur. The
odd values of N drop out if we sum the cases �, −�. The
counting of functions still works, but one cannot say if it is
the � or the � that has an expectation value. The only non-
zero limit of large separation corresponds to the correlator of
all �’s �or all �’s�, and this is equal to the trace �aZaa. If one
does not sum over the two signs of �, but instead fixes this
sign, then it turns out that the two functions �N even or odd
but close in value� are nearly equal, and so for one sign of �
they cancel, leaving a correlation function that decays with
distance �exponentially, with the correlation scale of order

the separation of �̄� insertions�. For the other sign of � they
add. This is how the distinct behavior of, for example, ��
and �� correlations in either the high- or low-temperature
phase arises. Duality acts by turning � to � and � to � and
reversing the sign of �.

Returning to the general argument, if the overlap matrix
approaches a non-zero constant at large distances, then this
must be invariant under monodromy. Now suppose that the
unitary monodromy representation of the braid group on the
conformal blocks is irreducible �as it is in many CFTs�. It
now follows from Schur’s lemma that the only possible in-
variant form for the overlap matrix is a constant times �ab
�here we view the matrix Zab as a map of the vector space of
conformal blocks into itself, defined in the given compo-
nents�. If the representation is not irreducible, then we can
find a �unitary� change in basis of the space of conformal
blocks so that the representation is block diagonal with irre-
ducible diagonal blocks. If the blocks are mutually noniso-
morphic as representations of the braid group, then the over-
laps of vectors in distinct blocks vanish, and the same
argument then applies to the overlap matrix of vectors from
the same block. It is not obvious that the constant multiply-
ing each of these is the same. If some of the distinct braid
group irreducibles occur more than once, then the overlap
matrix can only be reduced to a direct sum of tensor products
of the identity matrix on each irreducible times a Hermitian
matrix of overlaps of size given by the multiplicity of that
irreducible. By a choice of basis that preserves the braid
group action, these matrices �and hence the full overlap ma-
trix� can be made diagonal. The diagonal w-independent con-
stants in this matrix are expected generically to be nonzero,
so that they can be absorbed into rescalings of the conformal
blocks, though this may be forbidden in conformal field
theory, and it is possible that there are deeper reasons why
the constants must be equal. From the point of view of the
blocks as trial wave functions, rescaling them so that they are
all normalized is harmless and by hypothesis can be done
independent of w.

This completes the argument because when the overlap
matrix Zab is proportional to the identity, so the basis is
orthonormal, as well as holomorphic in w, the Berry connec-
tion vanishes, showing that holonomy equals monodromy. In
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particular, for the Ising �or MR� example, this shows that the
expected non-Abelian statistics occurs, using only known
properties of the massive Ising �Majorana� field theory. Gen-
erally, we have shown that the condition that the IR fixed
point of the two-dimensional theory is massive �or that cor-
relation functions of the � insertions go to nonzero constants
with exponentially decaying corrections� is a sufficient con-
dition for holonomy to equal monodromy. It is also a neces-
sary condition as a nonvanishing Berry connection is un-
likely to have no effect on the holonomy.

The question of whether or not the braid group represen-
tation is irreducible is not crucial for the argument, as we
have seen, but is nonetheless worth a comment. In many
familiar CFTs, it is irreducible, including in those for the
entire RR series. More generally, we may make a connection
with whether a theory or QH state is universal for topologi-
cal quantum computation. The latter reduces to the question
of whether the braid group representations �for increasing
numbers of quasiholes� are dense in U�M�, where M is the
dimension of the space of blocks �more accurately, as the
U�1� factors cannot be dense, it is whether it is dense in the
group PU�M� of unitary matrices modulo phase factors�. If
the representation is dense, then it is certainly irreducible.
Thus in all cases of interest for universal quantum computa-
tion, the representation is irreducible.

We should add some further remarks on the case in which
the monodromy matrices M are not unitary. This occurs
when the correlation functions in the CFT are not the sum of
modulus squares of the blocks �i.e., a positive-definite ses-
quilinear form is used to form the norm square of the vector
of blocks, and the basis choice brings this to standard form�
as assumed above, but some terms appear with a minus sign
�this may occur in nonunitary CFTs�. In this case, the mono-
dromy matrices are pseudounitary. If the blocks form an ir-
reducible representation of the braid group, then the invari-
ance of the large-separation limit of the overlap matrix Z
under monodromy forces it to be a nonpositive sesquilinear
form also �proportional to the same one as in the correlation
functions�. But the overlap matrix is a positive-definite form
by construction because of the positive-definite inner product
in quantum mechanics, and so no such long-distance form is
possible. This contradiction means that the hypothesis of a
flow to the massive fixed point is untenable in such a case.
Of course, as mentioned earlier, it is also impossible for the
necessarily unitary holonomy to be equal to any nonunitary
monodromy.

We also wish to make a comment regarding the mapping
class �or modular� group and the so-called twist operation on
quasiholes. This latter is an essential part of the structure of
a modular tensor category �or even just a ribbon category� or
of a topological phase or topological quantum field theory
�TQFT� in 2+1 dimensions. It is effectively a counterclock-
wise rotation of a quasiparticle about its center. For a quasi-
particle of a definite type 
, the twist *
 is expected to be
given by e2�ih
, where h
 is the conformal weight of the
corresponding field in the CFT �including the charge sector�.
This cannot be produced using braiding only, which trans-
lates quasiparticles without rotating them �we generally con-
sider doing so in the plane, which is flat�. It is nonetheless a
physical operation on quasiparticles that can be obtained
adiabatically, as we will now explain.

First, we point out that for any non-negative number of
quasiparticles at marked points on a surface of genus G�0,
there is a more general mapping class group of diffeomor-
phisms that preserve the complex structure. It is generated by
the “Dehn twists,” which are obtained by cutting the surface
along a closed simple curve, making a 2� rotation and re-
joining; the closed curves can be noncontractible cycles ei-
ther wrapping around a handle or enclosing some number of
marked points. Thus the twist of a single quasiparticle is one
of these. In the absence of any marked points, this mapping
class group reduces to that mentioned in Sec. II D; with
marked points, it includes the braid group for the plane as a
subgroup. Further, in the presence of marked points, their
coordinates �modulo complex analytic transformations� can
be viewed as moduli.

Now the idea is to calculate the effect of any Dehn twist
adiabatically by deforming the metric of the surface until one
reaches a metric equivalent to the one we started with. This
involves a generalization of what was done when we varied
the aspect ratio of the torus. While we will not attempt to
write down explicit expressions, we expect that the confor-
mal blocks depend holomorphically on the moduli, except
for simple contributions in the charge part and some that
relate to the conformal weight of each insertion, when writ-
ten with the infinitesimal area element of the metric held
fixed �these will produce effects involving the Hall viscos-
ity�. Moreover, the monodromy of the functions will gener-
ate a unitary “monodromy representation” of the mapping
class group �strictly, it will be projective, so we should pass
to a covering group�. This can be used to show that the
conformal blocks are orthonormal for each deformed metric
by a similar argument as for the braid group. Then adiabatic
transport around a closed loop in the moduli space, which
corresponds to implementing an element of the mapping
class group, should produce holonomy equal to the mono-
dromy up to a phase related to Hall viscosity that depends on
the path taken in moduli space. Applying this to the twist, we
expect to show that after removing the Hall viscosity part
�much like removing the phase related to the Magnus force
from the statistics calculation�, the twist * for each quasipar-
ticle type will be the same as in the underlying CFT �includ-
ing the charge sector�. This seems very likely to succeed in
view of the analogy with the argument for the statistics given
here and would essentially complete the derivation of the
TQFT from the trial wave functions given by conformal
blocks when the 2D theory flows to a massive IR fixed point,
up to some remaining details that will be discussed in the
Appendix. Unfortunately, the explicit calculation must wait
for another occasion.

There is an easier alternative approach, but it yields in-
complete information. We can follow the techniques of Secs.
II C and III and consider modular transformations of the
ground states on the torus, implemented adiabatically. When
the hypothesis of a massive fixed point holds, we then find
that �as in the CFT� the modular transformations obey
�ST�3=S2=C, where C, which obeys C2=1, is the “charge-
conjugation” permutation matrix that exchanges type 
 with
its antiparticle 
*. The eigenvalues of the T matrix are given
by *
e

−2�ic/24, where c is the central charge. Unfortunately,
we do not have an adiabatic calculation of the central charge
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at present. If we know which eigenvalue corresponds to the
identity object, which has twist *=1, then the problem is
solved. In general we can still check the values of the ratios
of the twists for distinct quasiparticles, and these clearly
agree with the CFT �including the charge sector�.

2. Massless IR fixed point

Now we turn to the case in which the IR fixed point is
massless and thus scale invariant. We note that such a theory
must in many cases be conformally invariant as well, for
example, in unitary cases 72. Then for a CFT we can again
apply the machinery of conformal blocks, etc. We begin here
by considering the case in which the perturbation is irrel-
evant �or marginally irrelevant�, so that the IR CFT is the
same as the one with which we began �with the charge part
removed�. It will be convenient throughout to ignore the
charge sector, which behaves exactly as in the other cases.

The irrelevance of the perturbation implies that the over-
lap matrix Zab of interest approaches at large separations of
the quasiholes the product of conformal blocks for the �
fields �without � insertions�,

Zab → Fa�w1, . . . �Fb�w1, . . . � . �5.4�

Thus it certainly does not approach a constant.
In this situation, we need more general expressions for the

Berry connection than those we used when we assumed that
the states �a were orthonormal. Let us write

Z = N−2 �5.5�

as matrices �N is Hermitian and we choose signs so that it is
positive�, so that �a��a�w��Nab are orthonormal. Then using
the holomorphy of ��a�w��, we find the matrix equations

Aw = − i�NN−1, �5.6�

Aw̄ = iN−1�̄N , �5.7�

in which we suppress the index l on A and on � /�wl. These
generalize expressions for the case of a single block in Ref.
10, in which there appears to be a sign error.

On applying this to the limiting form of Z in the present
case, we see immediately that when there is more than one
block, there is a problem because while N−1=Z1/2 exists, its
inverse N does not. Let us ignore this for a moment by
considering the two-quasihole case, for which there is
always only a single block, which has the form F1�w1 ,w2�
= �w1−w2�−2h�. Then a short calculation shows that the Berry
connection is nonzero, and in the holonomy the path-ordered
exponential exactly cancels the monodromy of the function.
�One can normalize the blocks, and then the cancellation is
exactly the same as occurs if one starts with a trivial example
and makes a gauge transformation to obtain both the connec-
tion and the monodromy.�

Hence the adiabatic exchange of any quasiparticle type
with itself is trivial. If the trial wavefunctions represent a
topological phase of matter, then the quasiparticle properties
are described by a modular tensor category �when the under-
lying particles are bosons, the fermion case should be simi-
lar�. It is possible to show that the only �unitary� MTC in

which the exchange of two identical quasiparticles is trivial
for all quasiparticle types is the trivial MTC containing only
the identity or trivial quasiparticle 66. This shows that if the
wave functions in one of the present cases describe a topo-
logical phase, then it is trivial. This is the opposite extreme
from holonomy equal to monodromy.

This however is not the whole story. As the IR fixed point
CFT is massless, one in general expects that there will be
irrelevant �and possibly also marginally irrelevant� operators
that decay to zero at large length scales. In the situation at
present, in which the perturbation of the UV theory is irrel-
evant, these can include the same perturbation we began
with. But there will be others also, especially because our
perturbation is not small. In general, there is always an irrel-

evant operator TT̄, where T and T̄ are the components of the
stress tensor; this operator has scaling dimension equal to
four. Thus there will, in fact, generally be nonzero correc-
tions of the form

Zab = Fa�w1, . . . �Fb�w1, . . . ��1 + O� 1

r2�� , �5.8�

as r→�, where r stands for �wk−wl� for all pairs k, l, and if

there are other irrelevant operators more relevant than TT̄,
then the correction factor will decay as an even slower
power. �The correction term will not exhibit the factorized
form of the first term.� When this is included in a calculation
of the Berry connection, the matrix N may be well defined
for any number of conformal blocks, and the resulting Berry
connection will take the form �A��O�1 /r�+O�1 /r3�. In par-
ticular, for two quasiholes, there will be corrections to the
trivial holonomy which decay as 1 /r2.

More generally, even if the perturbation is not irrelevant,
the IR fixed point might be a nontrivial massless theory dif-
ferent from the underlying CFT. If so, then the overlap ma-
trices will possess power-law corrections �even if the leading
behavior is going to a constant�. If the leading behavior is a
nonconstant power-law behavior, then the holonomy will dis-
agree with the monodromy of the blocks �which is always
that of the underlying CFT with which we started�. If the
massless theory is conformal, then there are conformal
blocks. Note that when the leading part of N exists, the
integral of the leading part of the Berry connection contrib-
utes just �minus� the logarithm of the monodromy of the
blocks of the IR CFT to the total holonomy in all cases. It is
not clear whether there will be any MTC that would contain
the resulting behavior �although the subtraction is reminis-
cent of a coset construction 17�. In all these cases there will
be power corrections to the leading results for the holonomy.

When the overlap matrix is viewed as that of trial states in
a quantum system in 2+1 dimensions, the presence of power
law corrections to the holonomy signals that the behavior is
not that of a topological phase. Such a phase is supposed to
be fully gapped, and so the holonomy should possess only
exponentially decaying corrections. The power-law correc-
tions are a clear breakdown of the screening properties we
were seeking. We conclude then that the system is gapless. It
may be in a gapless phase or it may be at a phase transition
�a subspace of codimension at least one� in the space of
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Hamiltonians for 2+1 systems �that is, if there is a Hamil-
tonian for which the trial wave functions are exact eigen-
states�. In such cases, adiabatic transport presumably does
not mean much anyway. Possibly, the trial functions simply
do not represent any respectable phase of matter in 2+1
dimensions, even one at a critical point.

3. Summary

Thus we have found that for the two main classes of pos-
sible IR fixed points, massive and massless, there is corre-
sponding behavior of the holonomy: either �i� that consistent
with a topological phase of matter and agreeing with the
monodromy of the underlying conformal field theory or else
�ii� none of these statements hold and the 2+1 system is
gapless, respectively. In general, although this is a little crude
in case �ii�, the holonomy in the adiabatic transport can be
thought of as the monodromy of the blocks, which comes
from the underlying �or UV� CFT divided by the mono-
dromy of the corresponding blocks of the IR CFT �the trivial
CFT in the case of a massive phase�. This is also reminiscent
of the normalization factors for the paired states in Sec. II,
which is a ratio referring to the underlying CFT and the large
distance behavior. Notice that we do not find, for example,
behavior like that of a strong-pairing phase which is topo-
logical but trivial �apart from the charge part�. Trial wave
functions that are conformal blocks are not known for all the
possible QH phases, so this may indicate that none can exist
for the strong-pairing type of phases. For the latter, the clos-
est one can get may be to use the trivial CFT �i.e., the charge
part only� in the UV, treating pairs or larger clusters of par-
ticles as the basic particles represented by �e. This could be
generalized to less trivial CFTs, but still applied to clusters of
particles. Finally, the third possibility, overlap matrices that
grow exponentially with distance, may mean a more gross
instability in the 2+1 particle system, so that the trial wave
functions do not represent a true phase of matter at all, in
contrast to the preceding two possibilities which are well
defined phases, even when gapless.

C. Examples

1. Abelian states

We begin with trial wave functions for some Abelian QH
phases. We focus on the simplest ones �other than the Laugh-
lin states�, which are the Halperin mm�n states for particles
that come in two species or pseudospins, which we will de-
note ↑ and ↓. The states can be applied to bilayer QH sys-
tems, with the pseudospin being the layer index. The trial
states exist for non-negative integers m, m�, n, but we will
concentrate on the cases m�=m for which there is a symme-
try under the operation ↑→↓, ↓→↑ for all particles. The trial
wave functions for the ground state �no quasiholes� are

��z1
↑, . . . ;z1

↓, . . . �

= �
i�j

�zi
↑ − zj

↑�m�
i�j

�zi
↓ − zj

↓�m�
i,j

�zi
↑ − zj

↓�ne− 1
4

�i;�=↑,↓�zi
��2.

�5.9�

The filling factor is 2 / �m+n�, and the 331 case, which means

the cases m−n=2, has been discussed above in Sec. IV.
There are two-body local Hamiltonians for which the mmn
states are exact zero-energy eigenstates �see, e.g., Ref. 26�.
On removing the charge sector, one has the fields
�↑,↓=e�i�m−n�/2, where � is a chiral scalar field, distinct
from, but obeying the same properties as, that for the charge
sector. The conformal weights for these are both �m−n� /4.
Thus the perturbation of the CFT is relevant when
m−n�4 and irrelevant when m−n�4. We have assumed
here that m−n�0. If m−n�0, the plasma is unstable.67 At
the same time, the scaling dimension of the fields in the CFT
becomes negative, and this corresponds to a nonunitary CFT.
Also, the case m=n represents a ferromagnetic state. We as-
sume m−n�0 from here on.

When the charge part is removed, this problem is the two-
component Coulomb gas in two dimensions, which was con-
sidered by KT.63 Then if the perturbation of the CFT were
weak, the KT transition occurs at m−n=4. We would then
expect flow to the original CFT in the IR if m−n�4, result-
ing in no screening, and gapless behavior, but flow to a
screening phase if m−n�4. However, for larger values of
the perturbation �in this context, called fugacity of the Cou-
lomb charges� the system can flow to the screening phase
even for m−n�4, according to the RG flow diagram of Ko-
sterlitz, illustrating a point made above.

On the other hand, if we consider the cases m�0, n=0,
including the charge part, then we see that the two compo-
nents of pseudospin decouple, and we have a product of
Laughlin states. Hence in this case, screening does occur
even when m−n=m is large �for m�70 anyway�. So in these
cases it appears that the perturbation is effectively so large
that the perturbed CFT is in the screening phase. For n�0
the plasma is again stable,67 and the widely held belief that
this plasma is in a screening phase for both charge and pseu-
dospin is consistent, at least. Consequently, these examples
form a cautionary note that the irrelevance of the perturba-
tion does not necessarily mean a flow to a massless phase.

We note that if the flow had gone back to the CFT, it
would have been easy �using standard Coulomb gas argu-
ments� to see that screening fails in the � sector, and that the
pseudospin associated with quasiholes is not localized near
the locations w, but spread over the region in between, con-
sistent with a gapless �possibly critical� phase.

2. Read-Rezayi series

We have already dealt at length with the Laughlin and
MR states. Now we address the RR series of states,20 labeled
by an integer k�0 �the other label M corresponds to addi-
tional Laughlin factors and does not enter these consider-
ations�. For all k, the CFT other than the charge part is the Zk
parafermion theory. The field � involved in representing the
particles in the conformal blocks is the first parafermion cur-
rent, �=�1, of conformal weight h�=1−1 /k. These underly-

ing CFTs are unitary. Moreover, the perturbation by �̄1�1 is
relevant for all k. However, we note that for k�2, the
field � is not equal to its own dual �or “antiparticle”� �1

† �the
adjoint taken in the two-dimensional quantum field theory�,
which instead is �1

†=�−1=�k−1. If the perturbation were
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�̄1�1+ �̄1
†�1

†, then unitarity of the theory would be maintained
by the perturbation �as it is in the Abelian examples just
discussed�. But for the perturbation we have, the perturbed
theory is not unitary, except for the cases k=1 �which is
trivial� and k=2 �the MR state�.

For the unitary perturbation �̄1�1+ �̄1
†�1

† of the parafer-
mion theory, it is generally believed that the system flows to
a massive phase, at least when the perturbation is weak and
positive.68 If this were the case here, we would immediately
conclude that the adiabatic statistics of quasiholes is the
same as the monodromy of the conformal blocks. But for the

nonunitary perturbation by �̄1�1 of the unitary underlying
CFT, we may have some concern �though the coefficient is
positive in the convention of Ref. 68�. It is possible for the
flow still to arrive at the same IR massive fixed point, with
nonunitarity only manifesting itself in the behavior of the
exponentially small corrections, and if such is the case then
all is well, and we have trial functions for a topological
phase. In support of this we can only point out that the omis-

sion of �̄1
†�1

† from the perturbation may not make that much
difference, as in any case k insertions of �1 can fuse to the
identity in an operator product, so that the other terms are not
needed for “charge neutrality,” unlike the example of the
mmn states above. In addition, we point out that for the
charge sector �and thus even for the Laughlin states�, the
perturbation is not unitary because the positive charges are
the point particles and the negative ones form a fixed uni-
form background. Nonetheless, for �−1�70, the flow is to a
screening phase, which behaves the same way as for the
screening phase in the two-component plasma which is a
unitary perturbed CFT, even though the conditions for reach-
ing the screening phase are different in the two cases. We
conclude then that the nonunitarity of the perturbation is not
necessarily a problem, and the system may well flow to the
same massive 2D theory as in the case of the unitary pertur-
bation, which would lead to the expected non-Abelian statis-
tics for all of the RR series.

3. Blok-Wen series

In the Blok-Wen series of states,35 the particles �of spin
k /2� are represented in the conformal blocks by the operator
�=	k/2, where 	s is the primary field of spin s
=0,1 /2, . . . ,k /2 in SU�2� level k current algebra �or WZW
theory�. �We have suppressed labels for the Sz component on
these fields.� The perturbation in the CFT is the spin-singlet
part of 	̄k/2	k/2. Unlike the RR series for k�2, in this case
one has a unitary perturbation of a unitary theory for all
k�0 �except for the charge part, as usual�. However, we also
notice that the conformal weight of � is h	s

=s�s+1� / �k+2�,
which is k /4 for s=k /2. Hence the perturbation is relevant
for k�4, marginal for k=4, and irrelevant for k�4. As the
perturbation is of order one, we cannot be certain of the fate
of each case. But suppose that the IR fixed point is the same
as if the perturbation were weak, as discussed above. Then
the cases k�4 lead to good topological phases. But for k
�4, the return to the underlying CFT in the IR would imply
that the models are not topological after all. We note that
Blok and Wen proved35 that the adiabatic statistics is given

by the monodromy of the conformal blocks on the assump-
tion that there was screening in the spin sector. This also
entails that there be a well-defined spin of s within a “spin
screening length” of a quasihole of the type labeled with spin
s �when the quasihole is far from any others�. The present
scenario would imply that the screening assumption breaks
down for k�4, and the statistics calculation then fails. In
effect, the trial states would not possess spin s localized near
each quasihole, instead this spin would be spread over the
region containing several quasiholes. This would mean that
the states are not topological in the spin sector but behave as
a gapless phase or possibly a critical point. For the case k
=4, further calculations are needed to establish whether the
perturbation is marginally relevant, marginally irrelevant, or
exactly marginal �when weak�. The latter two possibilities
would both lead to behavior that is not that of a topological
phase.

The notion that screening in the spin sector breaks down
for k�4 is intriguing but by no means certain. The Blok-
Wen states are something like an SU�2�-invariant version of
the mmn states above, with k in place of m−n, and corre-
sponding conformal weights and filling factor �note that
k=1 coincides with the n+1,n+1,n state�. The relation can
be made even closer by writing the SU�2� level k theory in
terms of a scalar field � and the Zk parafermion CFT. In
view of the mmn example which has screening in pseudospin
except for very large m+n, it may well be that the Blok-Wen
states are in the screening phase for spin and possess non-
Abelian adiabatic statistics.

There are other series of trial wave functions that have
been proposed for particles with spin and for which there is a
special Hamiltonian for which the trial states are the zero-
energy eigenstates.69,70 These behave similarly to either the
RR or Blok-Wen series, and we will not discuss them further.

4. Nonunitary theories and minimal models

Now we turn to further examples but start with general
remarks about nonunitary underlying CFTs. In such cases,
the perturbation by � may still be relevant, irrelevant, or
marginal when weak. We first consider the possibility of a
flow to a massive phase. This would lead to adiabatic statis-
tics given by the monodromy of the conformal blocks of the
nonunitary CFT, as we have seen. However, there are diffi-
culties with the interpretation of this scenario. We have em-
phasized previously71 that for a gapped bulk phase, the
boundary is a massless field theory that is both unitary and
conformal. If one has statistics in the bulk that is given by
the monodromy of the blocks, then the same CFT would be
expected at the edge.1 For a system with trial wave functions
given by conformal blocks of a nonunitary theory, it is not
clear what the candidate for this edge theory can be. How-
ever, there is certainly more than one CFT that produces the
same fusion rules, braiding in monodromy, etc., or in other
words the same MTC.

Here we wish to make a point that is more direct and
stronger. If the IR fixed point is massive and so the MTC for
the topological phase is that of a nonunitary UV CFT, then
under some conditions this is not compatible with any uni-
tary MTC �again, the MTC formalism applies to QH systems
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of bosons and must be modified for fermions, so the argu-
ments here are for bosons, but the fermion case will be simi-
lar; from the wave function point of view in QH systems, the
two are very similar, differing only in the number of
Laughlin-Jastrow factors�. First, we should explain that there
is a notion of a unitary MTC, which is precisely the correct
concept to describe topological phases in 2+1 dimensions
that arise from quantum-mechanical systems with a positive-
definite inner product on the Hilbert space and a Hermitian
Hamiltonian �with respect to this inner product�.54 Unitarity
of the MTC has certain consequences. For example, in any
MTC each quasiparticle type has an associated “quantum
dimension.” In a unitary MTC, all these quantum dimensions
must be positive. Next, for topological phases that originate
from trial wave functions that are conformal blocks in some
underlying CFT, the quantum dimensions can be calculated
from the CFT. �Strictly speaking, we have only so far argued
that when the IR fixed point is a massive phase, we obtain
the same fusion rules, braiding, and �probably� twist as in the
underlying CFT. There are some remaining structures used in
defining an MTC, which are needed to calculate the quantum
dimensions; the derivation of these for trial functions given
by conformal blocks is discussed in Appendix.� In nonuni-
tary CFTs, there are usually some negative quantum dimen-
sions. �It can be shown using modular transformations17 that
if any conformal weights in a rational CFT are strictly nega-
tive �h�0�, then some quantum dimensions are also nega-
tive. As a partial converse, if there are negative quantum
dimensions, then there are fields other than the identity with
h�0. It does not seem to be known whether a nonunitary
RCFT �MTC� must contain some negative conformal
weights �quantum dimensions�.� Hence, when this occurs, no
unitary MTC can describe the resulting behavior �see Ap-
pendix for further discussion�. We conclude that such trial
wave functions cannot flow to a massive phase. They must
flow to some massless field theory, either back to the original
CFT or to some other nontrivial massless theory, or possibly
exhibit exponentially growing overlaps, which may indicate
a more serious instability. We should note that for nonunitary
theories a massless �scale-invariant� theory does not have to
be conformal72 �for an example, see Ref. 73�.

As an interesting example, we consider the so-called
Gaffnian trial wave functions that have been proposed
recently.74 These are associated with one of the BPZ minimal
CFTs, which in general are denoted M�p , p��, parametrized
by a pair of coprime positive integers p, p� with p�p�.17

The Gaffnian functions are conformal blocks from the
M�5,3� minimal model, which is nonunitary. The perturbing
field � has conformal weight 3 /4, so the perturbation is rel-
evant. The fusion rule for � is ���=1, so that these states
may be considered to be paired states. Due to the relevance
of the perturbation �when weak�, we expect that the RG flow
does not lead to the original CFT, and one might expect that
the IR fixed point is massive �the trivial CFT�, which would
give the same MTC as that of the underlying CFT. But the
quantum dimensions d
 of the primary fields in a rational
CFT are given by the first row �or column� of the un-

normalized version, denoted S̃, of the modular S matrix; S
was discussed above for the Majorana theory �which is

M�4,3��, though in a different basis than here. One has

S̃=DS, where D is the global dimension determined by
D2=�
d


2 , where 
 labels the distinct quasiparticle types,
and we take the positive square root for D. For the minimal
models, the primary fields 	r,s are labeled by ordered pairs of
integers �r ,s�, with 1�r�p�−1, 1�s�p−1 �the so-called
minimal block in the Kac table�. There is an equivalence
r→p�−r, s→p−s, and each inequivalent primary occurs
just once in the theory. The conformal weights and central
charge are given by19

c = 1 − 6
�p − p��2

pp�
, �5.10�

hr,s =
�pr − p�s�2 − �p − p��2

4pp�
, �5.11�

and the modular S matrix is

Sr,s;',� = 2� 2

pp�
�− 1�1+s'+r� sin��r'p/p��sin��s�p�/p� .

�5.12�

For the first column, '=�=1, and the quantum dimensions
are dr,s=DSr,s;1,1. Now for the case of M�5,3�, we may put
r=1 also and for the Gaffnian trial states �=	1,4. One finds
that both d1,3 and d1,4 are negative, while the other two are
positive �d1,1=1 for the identity always�. This behavior is
then impossible in a unitary MTC and thus in a unitary to-
pological phase. We conclude that if the RG flow driven by
the perturbation does not lead back to the original M�5,3�
CFT, then it must go to some other nontrivial massless
theory, and either way the system is in a gapless phase as a
2+1 system �possibly, at a critical point as discussed in Ref.
74� or a worse instability takes place. We note that negative
conformal weights and hence negative quantum dimensions
occur in all the minimal models other than the unitary ones,
for which p= p�+1.

While on the subject of minimal models, we may consider
other examples along similar lines as the Gaffnian. For
p��2, the field at position �p�−1,1� �or equivalently,
�1, p−1�� in the Kac table always has Abelian statistics: the
fusion rule for it is 	p�−1,1�	p�−1,1=1, so that all these ex-
amples are paired states in the same general sense as the
Gaffnian. �For p�=2, the field at �1,1� or �1, p−1� is the
identity, so no interesting functions arise; the simplest non-
trivial example is the Yang-Lee theory, M�5,2�.17� Using this
field as �, one obtains a set of trial wave functions from
conformal blocks for any minimal model. For many nonuni-
tary cases, the perturbation is relevant, but a similar argu-
ment applies to all these nonunitary theories as for the
Gaffnian �see Appendix�. However, for the unitary minimal
models M�p�+1, p��, the scaling dimension is hp�−1,1= �p�2

−3p�+2� /4, which is relevant ��1� only in the case p�=3,
which is the MR example once again. The filling factors of
these states are determined by �−1= �p�2−3p�+2� /2 plus in-
tegers. The next simplest example in the unitary sequence is
p�=4, in which the minimal model describes the tricritical
Ising model, which has many interesting features including
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superconformal symmetry. The perturbation is by a sublead-
ing “thermal” operator )�.17 Again, in general, although the
perturbation is irrelevant when weak for p��3, it may be
that these cases flow to a massive phase, representing a
gapped topological phase in 2+1 dimensions. In general, we
are not aware of Hamiltonians for which these trial wave
functions are zero-energy eigenstates, so it is not clear
whether this approach leads to the construction of the corre-
sponding topological phases. However, Simon has informed
us that there appears to be a Hamiltonian that produces the
“tricritical Ising” state75 based in part on techniques from
Ref. 76.

Recently, some large families of functions have been pro-
posed as possible trial wave functions.77,78 It is not generally
clear if these come from any CFT, and if they do not it is not
clear whether they truly represent a topological phase. How-
ever, those in Ref. 77 include the Gaffnian and possibly some
based on other nonunitary minimal models, and so it is likely
that many of them can be ruled out �as far as gapped topo-
logical phases are concerned� by arguments similar to those
given here and in Appendix.

5. Irrational theories

In the preceding section, we considered nonunitary CFTs
but only in the context of rational CFTs, so that they still
correspond to MTCs. We recall that a rational CFT contains
a finite set of irreducible representations of a chiral algebra,
and all the representations are fully reducible to direct sums
of irreducibles.18 In this section, we will consider some
known examples in which the CFT may or may not be uni-
tary but is in any case not rational.

The examples we consider here have been studied earlier.
All of them are paired states. In each case there is a “special
Hamiltonian” for which the trial states given by conformal
blocks are the exact zero-energy eigenstates, and all were
found to be at a critical point in the 2+1 point of view. They
are �i� the Haldane-Rezayi �HR� state, �ii� the permanent
state, and �iii� the Haffnian state. First we will briefly discuss
the CFT whose conformal blocks are the trial wave functions
in each case.

The HR state79 is a spin-singlet trial wave function for
spin-1 /2 particles. The CFT �other than the charge part� is
the symplectic fermion theory with c=−2, which has the
required s1

2 symmetry.1 This central charge corresponds to
the values p=2, p�=1 in the BPZ analysis. However, for the
M�2,1� minimal model, the minimal block of the Kac table
is empty, as it is for all cases in which p�=1. The fields used
in the HR state47 are the symplectic fermion of conformal
weight 1 and the spin field of conformal weight −1 /8, which
do lie in the Kac table but are outside the �empty� minimal
block. Consequently, in this nonunitary theory, the represen-
tations produced in operator products are not fully reducible.
It was argued in Ref. 4 that the state corresponds to the
weak- to strong-pairing transition for d− id spin-singlet
paired states of fermions.

The permanent state1 is also a spin-singlet state. The CFT
is the �-� system.80 On the torus or in the presence of suf-
ficiently many quasiholes, the dimension of the space of
zero-energy states grows without bound as the system size

increases �this is because unpaired bosons can occupy zero
modes�. The CFT is nonunitary and also irrational because of
the “picture-changing operators.” This system has been ar-
gued to correspond to the transition point between the spin-
polarized Laughlin state and a spin-density wave state, with
the permanent ground state itself corresponding, in fact, to an
antiskyrmion spin texture.26,81

Finally, the Haffnian state is a paired state for spinless �or
spin polarized� particles in which spinless composite bosons
form pairs of angular momentum −2.81,82 In this case, the
CFT is unitary and consists once again of a chiral scalar �.
The particles contain �=�� which is a U�1� current of con-
formal weight 1 and is a good conformal field, unlike �
itself. Using Wick’s theorem, the correlator of � in the case
of the trial ground state is the Haffnian,

	���z1� ¯ ���zN�� = Hf� 1

�zi − zj�2� , �5.13�

where the Haffnian of a symmetric matrix M is defined by

HfMij = S�M12M34 ¯ MN−1,N� , �5.14�

in which the symmetrizer S sums over all permutations that
produce distinct pairings �i , j�, similarly to the Pfaffian �from
which the name is derived�, but without the sign of the per-
mutation. The quasihole functions contain the twist field �,
around which the � field has a square root behavior of OPE,

���z���0� � z−1/2��0� + ¯ . �5.15�

This field � features in orbifold theories based on � and has
conformal weight 1 /8.83 �There are many other possible
twist fields with other fractional-power OPEs,83 but only this
one can be used to make single-valued functions of the par-
ticle coordinates when the charge sector is included.� Like
the permanent case, this state has highly degenerate torus
ground states and quasihole states and is believed to be at a
transition point to one side of which is the Laughlin state.81

We will attempt to explain what is happening in these
examples, focusing primarily on the Haffnian, as it uses a
more familiar unitary CFT. To obtain unambiguously defined
systems, we will invoke here the special Hamiltonians men-
tioned above. Such a Hamiltonian is an operator on the par-
ticles. The detailed form for each case will not be important
here. The point is that in seeking zero-energy eigenstates of
such a Hamiltonian, we are forced to fix the OPEs of the
fields �e that correspond to the particles in a form that of
course depends on the Hamiltonian.

For the Haffnian state, the special Hamiltonian implies
that the CFT should have the OPEs of the U�1� current �
=��,

��z���0� � 1/z2 + ¯ . �5.16�

If the scalar field � were compactified with radius R, then
the scalar theory would contain such fields as exp i
� for a
discrete set of real values of 
 �integer multiples of one
value, related to R �Ref. 17��. For the orbifold of this rational
theory, there are similar fields, and the OPEs among � and �
are independent of the radius R. Because the Hamiltonian
can only determine the OPE for �, in counting states we
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must consider all possible values of R and 
. As R goes to
infinity, the exponentials of � can be expanded in powers of
�, and insertions of these appear to produce the conformal
blocks that we described as bosons occupying zero modes
�on the torus or in the presence of quasiholes�. In the limit,
the CFT is clearly not rational. However, one also expects
that only a rational theory can correspond to a topological
phase; in particular, the number of quasiparticle types should
be finite, otherwise one suspects that the system will be gap-
less.

Similar arguments apply to the symplectic fermion and
�-� systems. For symplectic fermions, being fermions, the
use of different radii does not directly apply. But there is still
an infinite set of “rational” versions in the sense of possess-
ing an extended chiral algebra that has only a finite number
of representations �though they still fail to be semisimple�.84

It is interesting also to pursue some of the other argu-
ments above in the present cases. We notice that for the HR
and Haffnian cases, the perturbing field � is weight one and
so is marginal when weak �as a perturbation of the CFT
without the charge part�. The same scaling is found in the
pairing function g of the p+ ip paired states at the critical
point4 �though then g is not meromorphic and does not cor-
respond to a conformal field theory�. If we consider this per-
turbation as weak and write ��z , z̄�=��z�+ ̄��z̄� in the
nonchiral theory, then in the action we have ��̄���. This is
the same as the unperturbed action and can be absorbed by
rescaling �. Thus there is no effect on the theory of the
perturbation �though there would be if the field were com-
pactified�. The perturbation is not only marginal, it is redun-
dant. The same argument goes through for the HR theory
also. We should note however that since the perturbation is
actually of order one, there may be concerns about the cor-
rectness of the argument. At any rate, other irrelevant opera-
tors will be generated, whereas the rescaling argument would
suggest that there are none. We cannot enter into this further
here. If we accept the argument, then the IR fixed point is the
same CFT with which we started the RG flow, and we argued
above that this must correspond to a gapless phase. This is
consistent with the quite different arguments that these states
correspond to critical points, given previously.

As a related side remark, we return to examples such as
the Yang-Lee CFT mentioned previously. The ground-state
wave functions �which contain �=1 for the CFT� can be
produced by the usual pseudopotential Hamiltonian that pro-
duces the Laughlin states, which of course are the same func-
tions. One is free to write down the functions derived from
the Yang-Lee theory, including the only nontrivial field �
=	1,2. But as functions of the particle coordinates, the trial
functions are independent of the positions w of these inser-
tions, which consequently can carry zero charge in the
charge part. Thus these trial functions are not linearly inde-
pendent of the usual Laughlin ground and quasihole states
and are, in fact, the Laughlin functions times functions of the
� locations alone �thus the theory is a direct product�. This is
why the Yang-Lee theory leads to nothing new. We notice
that the field �e �with its dual� generates the chiral algebra of
the Laughlin state,1 which never includes the stress tensor of
the Yang-Lee theory. In general, we expect that the trial func-
tions based on conformal blocks of a CFT are linearly inde-

pendent as functions of the particle coordinates only if the
particle field generates the full chiral algebra of the CFT
�including the charge sector�.

Put another way, a special Hamiltonian determines the
field �e which is part of some CFT. The CFT �including the
charge part� that one should use to analyze the problem is the
“minimal” one, that is the one with the smallest possible
chiral algebra, and that means that �e and its dual should
generate the chiral algebra. For the Haffnian and other ex-
amples above, the resulting chiral algebra is however too
small to define a rational theory �but extensions exist that
correspond to a rational theory, at least in the sense of a finite
number of types�.

VI. CONCLUSION

The main message to emerge from this work is that when
conformal blocks are used as trial wave functions, whether in
QH or other systems, the properties of the topological phase
�if any� that they represent are directly determined by, and
actually equal to, those of the underlying CFT. �This has
frequently been assumed, rather than demonstrated, in the
literature.� That is, the holonomy �such as adiabatic statistics�
is equal to the monodromy �analytic continuation of blocks�
if and only if the 2D perturbed CFT is in the massive phase.
If not, then there are signs that the system is gapless as a 2
+1 phase of matter �though we did not address Hamiltonians
for our states�.

When the trial wave functions represent a topological
phase, our results almost completely constrain it. The loose
end is that the twist �the effect of rotating a quasiparticle
about its center� should also be calculated by adiabatic trans-
port, and this has not been done. However, it should be pos-
sible by adiabatically varying the metric of the 2D surface. A
first step in this direction is the determination of the Hall
viscosity, which determines an Abelian contribution to this
transport that is present in all cases. The fact that this Hall
viscosity is itself related to the density of conformal weight
in the trial ground states strongly suggests that the conformal
weight of the quasihole field will also emerge in the twist, as
expected.

If the latter calculation is completed, it will remove the
final possible loop hole in our argument that nonunitary
RCFTs that contain negative quantum dimensions �or confor-
mal weights� do not give rise to a topological phase �or uni-
tary modular tensor category� when their blocks are used as
trial wave functions; instead they should apparently be gap-
less or suffer a worse instability.

Another loose end of this work is that the BCS trial wave
functions for states containing vortices have not been shown
to reduce to the conformal block form at large length scales.
Instead, the blocks were used directly �see Sec. IV�. It would
be desirable to show this, so as to broaden the domain of
explicit calculations to the wider class of BCS functions.

Finally, we note that the rather simple form of all these
results seems to be related to the fact that the underlying
particles are Abelian, as is the perturbing field in the CFT
point of view. It would be of interest to consider states
formed of a nonzero density of non-Abelian particles �which
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could be useful in hierarchical constructions of QH or anyon
superfluid states�, but this is clearly much more difficult to
analyze.

Note added. Recent work has tied up the loose end men-
tioned above by deriving the twist for quasiholes in the trial
states from their spin, which can be obtained by adiabatic
transport in the presence of curved space, such as on a
sphere.85 This completes the argument that conformal blocks
from any nonunitary CFT containing negative quantum di-
mensions cannot correspond to a topological phase.

ACKNOWLEDGMENTS

We are grateful for discussions with M. Freedman, A.
Ludwig, S. Simon, I. Tokatly, G. Vignale, and especially with
N. Cooper, P. Fendley, and Z. Wang. This work was sup-
ported by NSF under Grant No. DMR-0706195.

APPENDIX: REMAINING DATA OF AN MTC AND
NONUNITARY CASES

In this appendix we discuss the remaining structures
needed for the definition of an MTC, other than the fusion
rules, braiding, and twist, which have been discussed in the
main text. As we do not intend to give a full exposition of
MTCs, we cannot be entirely self-contained and must make
use of the references for full technical details. Accordingly,
this appendix is intended for readers more expert about such
matters. However, its contents are mostly general definitions,
which many readers might be willing to take on trust. We do
address the Gaffnian example again at the end.

The main goal for the definitions is to be able to calculate
the quantum dimension associated with each quasiparticle
type from trial wave functions given by conformal blocks of
some CFT. This requires that the full structure of a ribbon
category53–55 be available. �A MTC is a ribbon category in

which the S̃ matrix, which can be defined in a ribbon cat-
egory, is invertible.�

Informally, the quantum dimension for a type of quasipar-
ticle is defined as the amplitude for a process in which the
quasiparticle, of type 
 say, and its antiparticle are created
from the vacuum, separated, and then annihilated again. The
motion of quasiparticles can be assumed to be adiabatic. The
definition is not vacuous because the creation and annihila-
tion processes used have to be normalized to satisfy other
topological criteria. We note immediately that in a unitary
�i.e., quantum-mechanical� theory �in 2+1 dimensions�, the
creation and annihilation processes are adjoints to each other,
and the quantum dimension is then the modulus square of the
creation amplitude. Hence it must be positive in the ribbon
category describing a quantum-mechanical topological phase
�or unitary TQFT�. The latter corresponds to a unitary ribbon
�and modular tensor� category in the sense of Turaev.54

In the language of tensor categories, the distinct quasipar-
ticle types 
 correspond to isomorphism classes of simple
objects V
. The trivial or identity quasiparticle type 0 corre-
sponds to V0=1. More general objects can be formed by
direct sums and by tensor products, written V � W and
V � W, respectively �the notation is based on that for vector

spaces, but for us these objects do not have to be thought of
as such�. The fusion rules correspond to the decomposition
of a tensor product of simples as �isomorphic to� a direct
sum,

V
 � V� � �
�

N
�
� V�, �A1�

where we write NV for V � V �¯ with N terms V in the
sum. There are isomorphisms 1 � V�V, V � 1�V for all V.
Although the objects may not be vector spaces, the mor-
phisms �or maps� between objects, say from V to W, form a
complex vector space Hom�V ,W�.

The tensor product is in general not strictly associative,
but there are “natural” isomorphisms F between different
orders of brackets,

FU,V,W:�U � V� � W → U � �V � W� . �A2�

These may be built from the F matrices for products of
simple objects �replacing U, V, W, by V
, V�, V��, F
��. The
tensor product on either side decomposes as the same sum of
simple terms, and after choosing bases, F
�� becomes a ma-
trix in this space,55 which has dimension �),�N
�

) N)�
�

=�)�,�N��
)� N
)�

� . As there are no morphisms between distinct
V�’s, the F matrices break into block diagonal matrices F
��

�

of size �)N
�
) N)�

� =�)�N��
)� N
)�

� : F
��=��F
��
� . As a

tensor product is isomorphic to a direct sum, say
V
� V�� �)N
�

) V), the F
��
� have blocks that can be labeled

F
��,))�
� . The decomposition to blocks F
��,))�

� is well de-
fined up to isomorphisms, and these maps become actual

matrices �or simply numbers if N
�
) N)�

� and N��
)� N
)�

� equal 1�
only after fully specifying a basis. The F matrices must sat-
isfy some consistency conditions �pentagon equations�.18,53,54

Braiding is strictly defined only for two objects not sepa-
rated by any parentheses: cV,W :V � W→W � V for any V, W.
The braiding isomorphisms c may be built up from simple
components and �choosing bases� give rise to matrices c
�

�

on the sum of terms isomorphic to V� in V
� V�. In the case
of a RCFT, the eigenvalues of these can be found from the
OPE of 	
 with 	�. The braiding and F matrices must sat-
isfy the hexagon equations. For a ribbon category arising
from a CFT, the pentagon and hexagon equations are satis-
fied automatically.

The formula for the number of simple terms, which when
the ribbon category comes from a RCFT is the dimension of
the space of conformal blocks for correlators in the plane of
corresponding fields, illustrates how in an iterated tensor
product of simples, of any length, each lexicographically
valid way of inserting brackets corresponds to a labeling of
states �the labeling is only a partial labeling if some
N
�
� �1�. For each such choice there is a basis of the space of

conformal blocks. The F matrices then describe the change
between two such bases. From the physical point of view,
these basis changes are “passive” transformations, whereas
the braid and twist operations are “active.” For a CFT, the F
matrices can be read off from the behavior of the conformal
blocks. To consider this, it is useful to place all fields �or
quasiholes� 	
l

on the x axis at positions wl=xl. If three
adjacent such fields are types 
, �, and � as above, with 
 at
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x=0, � at x=1, and � at x, 0�x�1, then as x→0 one would
use the OPE and analyze the block as on the left-hand side of
the definition of F. As x→1, one analyzes as on the right-
hand side. The conformal blocks then determine the F ma-
trices. The �w-independent� linear transformation between
bases remains valid even when the wl’s are not asymptoti-
cally close together, which is useful as we want them further
apart than the screening length. In addition, they remain un-
changed in the presence of added fields �e, which are in the
chiral algebra of the full CFT �including the charge
sector�.1,47 For us, the conformal blocks are the trial states,
and we use one of these bases, as convenient, and transform
between them using the F matrices which are determined by
our choice of the trial functions themselves �elsewhere in this
paper, we did not need to specify our bases explicitly�. For
the braid group representation, all matrices must be ex-
pressed in a single basis and F moves are used to transform
this to one appropriate for an application of any desired braid
generator c or c−1.

The other structure needed in a ribbon category is the set
of duality maps. These correspond to the creation and anni-
hilation processes mentioned above. For each object V there
is �an isomorphism class of� dual object�s� V* and mor-
phisms eV: V* � V→1 �evaluation� and iV: 1→V � V* �co-
evaluation�. The order of factors in these tensor products
should be carefully noted. These maps are required to satisfy
relations �as maps V→V�

idV � eV � FV,V*,V � iV � idV = idV, �A3�

where idV is the identity morphism on V and � is composition
of maps, which act from the left. A similar relation with V
and V* interchanged, and the order of tensor factors reversed,
is also a requirement. When viewed as creation and annihi-
lation processes in space time, these relations allow us to
straighten out world lines that sometimes reverse course and
run backward �by a creation or annihilation event�. Thus for
world lines with a zigzag of this form, the zig and the zag
cancel �however, the similar identity for the mirror image
zigzag is not a consequence of these identities�. For simple
objects, we will sometimes write V



* as V
*. �Here and be-

low, for simplicity we do not explicitly write the maps
lV: 1 � V→V and rV: V � 1→V,53 which strictly should ap-
pear together with their inverses on the left-hand side of this
relation.�

Finally, we recall the twist * which is a map *V: V→V for
each object V. For simple objects V
, we can write *V


as a
number, which is e2�ih
 when a ribbon category is obtained
from a RCFT. The twist must obey

*V�W = cW,VcV,W�*V � *W� , �A4�

and also *1= id1=1, *V*= �*V�* �the latter uses the dual map,
which is the transpose matrix not complex conjugation�.

The quantum dimension for any object V can now be
formally defined as a composite map from 1 to 1 and hence
can be represented as a complex number

qdimV = eVcV,V*�*V � idV*�iV, �A5�

which obeys qdimV�W=qdimV+qdimW and qdimV�W
= �qdimV��qdimW�. For simple objects V
 we define d

=qdimV


�and note that d0=1�. The quantum dimension can
be defined more simply using maps eV� , defined by eV

=eV


c
,
*�*V

� idV



*� :V
� V



*→1and similarly iV� . Then one

has qdimV=eV�iV=eViV� . As mentioned above, in a unitary rib-
bon category, eV� �eV� is the adjoint of iV �iV�� and so
d
�0 for all 
.

Now we address these structures for our conformal blocks
viewed as trial wave functions, in the case when the flow in
the 2D theory is to a massive IR fixed point. Then we have
argued in the main text that the overlap matrix is propor-
tional to a sum of identity matrices, in a basis in which the
braid group acts by unitary transformations �for this, any one
of the bases above is suitable�, with proportionality constants
that are independent of quasihole positions w, provided they
are well separated. Again, we will consider here wl on the
real axis. The F matrices allow us to transform the basis in
this statement. We can assume that a basis exists in which the
F matrices are unitary, as otherwise there will be inconsis-
tencies. For the eV maps, we will adiabatically transport
quasiholes corresponding to V
 and V



* together but not

closer than the screening length. By definition, from far away
they can be viewed as a single quasihole of types occurring
in the fusion rule for V
 with V



*, and this must include the

identity 1, just once. �We must digress to point out that the
fusion of the negatively charged quasiholes in the QH effect
will produce a negatively charged result. But the destruction
of the underlying particle produces a quasihole of exactly
this type and is viewed as equivalent to the identity as it has
trivial braiding with all quasiparticle types.� There is also a
trial state with the pair replaced by the quasiparticle type 1,
which can also be normalized. The map eV


is a map between
these and can be defined without further consideration of any
short-scale physics of the states. It is tempting to say that the
map eV


is the map between these two normalized states
times some phase factor. But this is not generally correct,
and the reason is that the i and e maps must be normalized
by relation �A3� above. As we will see, the F matrix element
is something like 1 /d
, while e and i are like �d
.

In terms of conformal blocks viewed as trial wave func-
tions, if a quasiparticle type 
* that is suitable to be the dual
of type 
 exists for all 
, then it can be shown that
Hom�1 ,V
� V



*� and Hom�V



* � V
 ,1�, to which iV


and eV

belong, are one dimension. Then the normalization condition
allows the definition of iV


and eV

maps to be varied only by

multiplication by scalars that are inverses of each other for
each 
, which cannot change the quantum dimensions. This
is true for the CFT itself also. But the quantum dimensions
can be evaluated in the CFT, and if any is negative, then
there is no way to avoid a conflict with the quantum-
mechanical definition which leads to positive quantum di-
mensions.

Here all structures other than the duality maps were al-
ready fixed either from properties of the conformal blocks
used or by adiabatic transport that agrees with the mono-
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dromy of the blocks. However, there was some uncertainty
about * �which is independent of the choice of F’s, c, i, and
e� because the adiabatic calculation of the twist by varying
the metric has not been performed. Perhaps the system can
be rendered consistent by the presence of different values
*�V


, with the other structures which we have either defined
or calculated �c, F, i, and e� unchanged. A different choice
for the values of * on simple objects can sometimes change
the values of the quantum dimensions, making some posi-
tive, as we will see in a moment. But this cannot change the
value of the F matrices or the normalization condition for i
and e. We will see that, in many cases, no consistent choice
exists for the twist that makes all quantum dimensions posi-
tive �for the given F’s, c, i, and e�.

We already know one set of values of *V

that is consis-

tent, which come from the CFT. A different choice *� must
still satisfy relation �A4�, so that

*V
�V�
� /*V
�V�

= �*V

� /*V


��*V�
� /*V�

� . �A6�

Moreover, *1� /*1=1. This implies that the map
	
→ �*V


� /*V

�	
 is an automorphism of the ring defined by

the fusion rules �the Grothendieck ring�. This and
*�V



*=*�V


then imply further that �*V

� /*V


�2=1, so

*V

� /*V


=�1 for all 
. Now as the definition of quantum
dimension used *, if we keep c, i, and e fixed we may be able
to reverse the signs of some of the quantum dimensions.

As an example, for the Gaffnian state, where the CFT
apart from the charge sector is the M�5,3� minimal model,
the fusion rules are the same as for SU�2� level 3, and �using
the notation of SU�2� spin s, 
=s=0,1 /2, . . . ,3 /2 for the
fields�, the only automorphism is given by multiplication by
�−1�2s. This leaves d1 �d1,3 in the notation in the main text�

still negative. More generally, for the class of states men-
tioned in Sec. V C 4, in which the CFT is a BPZ minimal
model, the twist of the field 	r,s can be changed by multipli-
cation by �−1�r−1 or by �−1�s−1 or both. Using formula �5.12�
for the modular S matrix of the minimal models, for the
nonunitary cases p�p�+1 there are some negative quantum
dimensions, and one can show that not all of the negative
ones become positive under any of these changes in the twist
�indeed, additional ones are generated�. Thus the family of
trial states constructed from the minimal models, mentioned
in Sec. V C 4, fails to produce valid �i.e., unitary� topological
phases except in the case of the unitary minimal models
M�p�+1, p��.

We also record here a basis-independent relation involv-
ing the part of the F matrix that enters the normalization
condition, together with braiding and twist matrix elements,
and the quantum dimensions. The result, which is close to
Moore and Seiberg18 �and references therein� �Eqs. �7.12�
and �C.15��, is

�c0,


 �−1�c
,
*

0 �−1F


*
,00



= *
/d
. �A7�

All the factors in this expression are simply numbers. �We
note that c


*

0

c

*
0 =*


−2 and c
,0

 c0,



 =1 in any basis, so up to

some choices of basis the result says that F


*
,00



=1 /d
.� If

we can change the sign of *
 as discussed above, then d

also changes sign, while the left-hand side is invariant. The
relation is obtained by evaluating

c
,0 � �idV

� eV


� � � �idV

� c
,
*

−1 � � F


*




� �iV

� idV


� ,

�A8�

which is a map from 1 � V
 to itself, in two ways, using
relation �A3�.
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