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We study defect production in a quantum system subjected to a nonlinear power-law quench which takes it
either through a quantum critical or multicritical point or along a quantum critical line. We elaborate on our
earlier work �D. Sen, K. Sengupta, and S. Mondal, Phys. Rev. Lett. 101, 016806 �2008�� and present a detailed
analysis of the scaling of the defect density n with the quench rate � and exponent � for each of the above-
mentioned cases. We also compute the correlation functions for defects generated in nonlinear quenches
through a quantum critical point and discuss the dependence of the amplitudes of such correlation functions on
the exponent �. We discuss several experimental systems where these theoretical predictions can be tested.
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I. INTRODUCTION

Quantum phase transitions have been widely studied in
different systems for several years.1 Such transitions occur
when the ground state of a quantum system changes due to
the variation of some system parameter such as pressure,2

doping,3 or magnetic field.4 More recently, nonequilibrium
physics around such critical points has also been studied.5,6

In particular, quench dynamics through quantum critical
points has been a subject of intense theoretical study in re-
cent years. Such dynamics involves the time evolution of a
parameter ����t� in the Hamiltonian of the system which
carries it through a quantum critical point, characterized by
the correlation length exponent � and the dynamical critical
exponent z, at �=�c. Since the energy gaps between the
ground and the first-excited states vanish at the quantum
critical point, the dynamics of the system necessarily be-
comes nonadiabatic in a finite region around this point even
for an arbitrarily slow quench. This leads to the failure of the
system to follow the instantaneous ground state. As a result,
defects are produced.7–9 The scaling law for these defect den-
sities has been studied for thermal linear quenches in Ref.
10. For quantum quenches, at T=0, most of the initial studies
of defect production in quench dynamics for various quan-
tum systems have been restricted to the case of a linear
quench ��t���0t /�, where �−1 is the quench rate.6,11–23 It is
well known that for a slow linear quench, the defect density
n��−d�/�z�+1�, where d is the dimension of the system.24,25

More recently, nonlinear power-law quenches characterized
by ��t�=�0�t /���sgn�t�, where � denotes the power-law ex-
ponent and sgn is the signum function, have also been
studied.26,27 In particular, it was shown in Ref. 26, that if,
during the quench, the critical point is reached at time t=0
�t= t0�0�, then the defect density n for such a quench pro-
cess scales as n��−d��/��z�+1� �n���g��−1�/� /���d/�z�+1�,
where g is a nonuniversal constant�.

On the experimental side, trapped ultracold atoms in op-
tical lattices have provided ways to realize many interacting
quantum systems with a variety of low-temperature phases
separated by quantum critical points.28,29 These systems pro-
vide an easy access to nonequilibrium dynamics of its con-
stituent atoms and hence provide ideal experimental test beds

for quench-related studies. Defect production has already
been studied experimentally for a spin-1 Bose condensate.30

However, a detailed experimental study of nonlinear quench
dynamics has not been undertaken so far.

In this paper we study defect production due to nonlinear
power-law quenches in quantum critical systems. Our main
results are the following. First, we elaborate on the work of
Ref. 26 and provide a detailed derivation of the scaling laws
of the defect densities mentioned above. Second, we extend
the scaling law for defect production through multicritical
points, as studied for a linear quench in Ref. 22, to nonlinear
quenches. Third, motivated by the work in Ref. 21, we derive
scaling laws for defect densities produced during a nonlinear
quench when the system is taken along a gapless line during
the quench. Our results extend those in Refs. 21 and 22 and
reproduce them as special cases. Fourth, taking the one-
dimensional Kitaev model as a specific system, we compute
the correlation functions for defects produced during a non-
linear quench. We also provide a general model independent
discussion of the behavior of such correlation functions. Fi-
nally, we present a detailed discussion of possible experi-
mental systems where these theoretical results may be tested.

The organization of the paper is as follows. In Sec. II we
provide detailed derivations for the scaling laws of defect
density produced during a nonlinear quench. This is fol-
lowed, in Sec. III, by a computation of the defect correlation
functions. Next, in Sec. IV, we provide numerical studies to
corroborate our analytical results. In Sec. V, we discuss pos-
sible experimental systems where the scaling laws derived in
Sec. II can be tested. Finally we conclude in Sec. VI.

II. DEFECT PRODUCTION RATE IN A NONLINEAR
QUENCH

The density of defects produced in a quench process de-
pends crucially on the nature of the phases that the system
passes through during the quench. Such processes can there-
fore be broadly classified into three types. First, the system
may pass from one gapped phase to another through an in-
termediate gapless critical or multicritical point. Second, the
system may move along a gapless critical line in the param-
eter space so that at each point on that line the gap vanishes
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at a fixed and unique momentum.20,21 Third, the quench may
take the system from a gapped phase to another through a
gapless hypersurface in parameter space as well as in mo-
mentum space.19 In what follows, we will study defect pro-
duction during nonlinear quench of the first two types in Sec.
II. An analogous study for the third case, where the system
passes through a hypersurface in momentum space, is be-
yond the scope of the present work.

A. Quench dynamics from one gapped phase to another

We start with the model Hamiltonian for a d-dimensional
system

H�t� = �
k�

�k�
†Hk��t��k� ,

Hk��t� = ���t� + b�k����3 + ��k���+ + ���k���−, �1�

where b�k�� and ��k�� are model-dependent functions, �i de-
note usual Pauli matrices, ��t�=�0�t /���sgn�t� is the quench
parameter where �=1 implies linear quench, and �k�

= �c1k� ,c2k�� represents the fermionic operators. Such a Hamil-
tonian is known to represent several one- and two-
dimensional spin models such as the Ising,1 the XY,15 and the
extended Kitaev model.19,31,32 The instantaneous energies of
the Hamiltonian given by Eq. �1� are given by

E�k�� = � 	���t� + b�k���2 + ���k���2. �2�

These energy levels touch each other at t= t0 and k� =k�0, so
that ���k�����k� −k�0� and �t0�=��b�k�0� /�0�1/�=�g1/�, where g
= �b�k�0� /�0� is a nonuniversal model-dependent parameter. At
this point the energy levels cross and we have a quantum
critical point with �=z=1. Note that the critical point is
reached at t=0 only if b�k�0� vanishes.

Let us first consider the case where b�k�0�=0 so that the
system passes through the critical point at t=0. In what fol-
lows, we shall assume that ���k�����k� −k�0� and b�k����k�
−k�0�z1 at the critical point, where z1�1 so that E��k� −k�0�
and z=1. In the rest of the analysis, we set 	=1 and scale
t→ t�0, �→��0, ��k��→��k�� /�0, and b�k��→b�k�� /�0.

We begin by observing that the ground state of the system
must be �c1k� ,c2k��= �1,0���0,1�� at the beginning �end� of the
quench at t=−
�
�. Thus the probability of defect forma-
tion, i.e., the probability for the system to be in the excited
state at the end of the quench for a given state �k�
, must be
given by

pk� = lim
t→


�c1k��t��2. �3�

The density of these defects is thus given by

n = lim
t→


�
BZ

ddk

�2��d �c1k��t��2, �4�

where �BZ denotes integration over the Brillouin zone.
To obtain pk�, we study the time evolution of the system

which is governed by the Schrödinger equation i��k� /�t

=Hk��k�; this leads to the following equations:

iċ1k� = ��t/���sgn�t� + b�k���c1k� + ��k��c2k� ,

iċ2k� = − ��t/���sgn�t� + b�k���c2k� + ���k��c1k� , �5�

where we have kept the time dependence of c1k��2k���t� implicit
and ċ1k��2k���k����tc1k��2k��. To solve these equations, we define

c1k�
� = c1k� expi�t

dt���t�/��� sgn�t�� + b�k���� ,

c2k�
� = c2k� exp− i�t

dt���t�/��� sgn�t�� + b�k���� . �6�

Then substituting Eq. �6� in Eq. �5� and eliminating c2k�
� from

the resulting equations, we get

c̈1k�
� − 2i��t/���sgn�t� + b�k���ċ1k�

� + ���k���2c1k�
� = 0. �7�

Now we scale t→ t��/��+1� so that Eq. �7� becomes

c̈1k�
� − 2��t��sgn�t� + b�k����/��+1��ċ1k�

� + ���k���2�2�/��+1�c1k�
� = 0.

�8�

From Eq. �8� we immediately note that since c1k� and c1k�
�

differ only by a phase factor, pk� must be given by

pk� = limt→
�c1k�
� �t��2 = f�b�k����/��+1�, ���k���2�2�/��+1�� , �9�

where f is a function whose analytical form is not known for
��1. Nevertheless, we note that for a slow quench �large ��,
pk� becomes appreciable only when the instantaneous energy
gap, as obtained from Eq. �2�, becomes small at some point
of time during the quench. Consequently, f must vanish
when either of its arguments is large: f�
 ,a�= f�a ,
�=0 for
any value of a. Thus for a slow quench �large ��, the defect
density n is given by

n = �
BZ

ddk

�2��d f�b�k����/��+1�, ���k���2�2�/��+1�� �10�

and receives its main contribution from values of f near k�

=k�0, where both b�k�� and ��k�� vanish. Thus one obtains,
after extending the range of momentum integration to 
,

n �� ddk

�2��d f��k� − k�0�z1��/��+1�; �k� − k�0�2�2�/��+1�� . �11�

Now scaling k�→ �k� −k�0���/��+1�, we find that

n = �−d�/��+1�� ddk

�2��d f��k��z1���1−z1�/��+1�; �k��2�

� �−d�/��+1�� ddk

�2��d f�0; �k��2� � �−d�/��+1�, �12�

where in arriving at the last line, we have used z1�1 and
�→
. �If z1=1, the integral in the first line is independent of
�, so the scaling argument still holds.� Note that for �=1, Eq.
�12� reduces to its counterpart for a linear quench.24 It turns
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out that the case z11 deserves a detailed discussion which
we defer until Sec. II B.

Next we generalize our results for a critical point with
arbitrary values of � and z. To this end, we consider a generic
time-dependent Hamiltonian H1�t��H1���t��, whose states
are labeled by �k�
 and �0
 denotes the ground state. If there is
a second-order phase transition, the basis states change con-
tinuously with time during this evolution and can be written
as

���t�
 = �
k�

ak��t��k����t��
 . �13�

The defect density can then be obtained in terms of these
coefficients ak��t� as

n = �
k��0

�ak��t → 
��2. �14�

Following the analysis in Ref. 24, one can then obtain an
expression for the defect density n as

n �� ddk

�2��d��
−





d��k��� d

d�
��0
exp�i���

d���Ek�������2

,

�15�

where �Ek����=Ek����−E0��� are the instantaneous excitation
energies and we have replaced the sum over k� by a
d-dimensional momentum integral. We note, following Ref.
24, that near a critical point

�Ek���� = �F��/�k� − k�0�z� , �16�

where � is the energy gap, z is the dynamical critical expo-
nent, and F�x��1 /x for large x. Also, since the quench term
vanishes at the critical point, ������z� for a nonlinear
quench, one can write

�Ek���� = ����z�F������z�/�k� − k�0�z� , �17�

where F��x��1 /x for large x. Further, one has �k��� d
d� ��0


= �k� −k�0�−zG�� / �k� −k�0�z� near a critical point, where G�0� is a
constant. This allows us to write

�k��� d

d�
��0
 =

��z�−1

�k� − k�0�z
G����z�/�k� − k�0�z� , �18�

where G��0� is a constant.1,24 Substituting Eqs. �17� and �18�
in Eq. �15� and changing the integration variables to �
=���/��z�+1��k� −k�0� and �= �k� −k�0�−1/�����, we find that

n � C�−��d/��z�+1�, �19�

where C is a nonuniversal number independent of �.
Next we focus on the case where the quench term does

not vanish at the quantum critical point for k� =k�0. We again
consider the Hamiltonian Hk��t� in Eq. �1�, but now assume
that the critical point is reached at t= t0�0. This renders our
previous scaling argument invalid since ��k�0�=0 but b�k�0�
�0. In this situation, �t0 /��=g1/� so that the energy gap �E
may vanish at the critical point for k� =k�0. We now note that
the most important contribution to the defect production

comes from times near t0 and from momenta near k0. Hence
we expand the diagonal terms in Hk��t� about t= t0 and k� =k�0
to obtain

H��t� = �
k�

�†�k����g��−1�/�� t − t0

�
� + b���k����3

+ ��k���+ + ���k���−���k�� , �20�

where b���k�� represents all the terms in the expansion of b�k��
about k� =k�0 and we have neglected all terms

Rn = �� − n + 1��� − n + 2� . . . ���

�g��−n�/���t − t0�/��nsgn�t�/n! �21�

for n�1 in the expansion of ��t� about t0. We shall justify
neglecting these higher order terms shortly.

Equation �20� describes a linear quench of the system
with �eff���=� / ��g��−1�/��. Hence one can use the well-
known results of Landau-Zener dynamics33 to write an ex-
pression for the defect density,

n = �
BZ

ddk

�2��d pk� = �
BZ

ddk

�2��dexp�− ����k���2�eff���� .

�22�

For a slow quench, the contribution to n comes from k� near
k�0; hence

n � �eff���−d/2 = ��g��−1�/�/��d/2. �23�

Note that for the special case �=1, we get back the familiar
result n��−d/2 and the dependence of n on the nonuniversal
constant g vanishes. Also, since the quench is effectively
linear, we can use the results of Ref. 24 to find the scaling of
the defect density when the critical point at t= t0 is charac-
terized by arbitrary � and z,

n � ��g��−1�/�/���d/�z�+1�. �24�

Next we justify neglecting the higher order terms Rn. We
note that significant contributions to n come at times t when
the instantaneous energy levels of H��t� in Eq. �20� for a
given k� are close to each other, i.e., �t− t0� /����k��. Also, for
a slow quench, the contribution to the defect density is sub-
stantial only when pk� is significant, namely, when ���k���2
�1 /�eff���. Using these arguments, we see that

Rn/Rn−1 = �� − n + 1�g−1/��t − t0�/�n�� � �� − n + 1�/�n	�� .

�25�

Thus we find that all higher order terms Rn�1, which were
neglected in arriving at Eq. �23�, are unimportant in the limit
of slow quench �large ��.

The scaling relations for the defect density n given by
Eqs. �19� and �24� represent the central results of this section.
For such power-law quenches, unlike their linear counter-
part, n depends crucially on whether or not the quench term
vanishes at the critical point. For quenches which do not
vanish at the critical point, n scales with the same exponent
as that of a linear quench, but is characterized by a modified
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nonuniversal effective rate �eff���. If, however, the quench
term vanishes at the critical point, we find that n scales with
a novel �-dependent exponent �d� / ��z�+1�. For �=1,
�eff���=� and �d� / ��z�+1�=d� / �z�+1�; hence both Eqs.
�19� and �24� reproduce the well-known defect production
law for linear quenches as a special case.24 We note that the
scaling of n will show a crossover between the expressions
given in Eqs. �19� and �24� near some value of �=�0 which
can be found by equating these two expressions; this yields
�0��b�k�0��−z�−1/�. For ��1, the scaling law will thus be
given by Eq. �19� �Eq. �24�� for �� ����0. We also note here
that the results of this section assume that the system passes
from one gapped phase to another through a critical point
and does not apply to quenches which take a system along a
critical line.19,20 We shall deal with this case in Sec. II C.

B. Quench dynamics through a multicritical point

In this section, we will consider the effect of a nonlinear
quench in a system of the form given in Eq. �1�, except that
we now take

b�k�� � �k� − k�0�z1, and ��k�� � �k� − k�0�z2, �26�

so that the system passes through the critical point at t=0.
This will be a generalization of the discussion in the first part
of Sec. II A where we had z1�z2 with z2=1. We will see
below that a separate analysis is required if z2�z1. As dis-
cussed recently in Ref. 22, such a condition arises at the
multicritical point of a one-dimensional spin-1/2 XY model
in a transverse field; in that model, we find that z1=2 and
z2=3.

We begin our analysis by comparing the diagonal and
off-diagonal terms in Eq. �1�. From general considerations, it
is clear that defects are mainly produced when both
�t /���sgn�t�+b�k�� and ���k��� are of order 1 or less since this
is when the instantaneous energy levels given by Eq. �2� are
close to each other. We now consider the forms of b�k�� and
��k�� given in Eq. �26�. Two possibilities arise in the limit
�→
 and �k� −k�0�→0.

�i� If z1�z2, then ���k��� being of order 1 or less implies
that b�k��� ���k���, namely, b�k���1. In this case, we can ig-
nore the term b�k�� in Eq. �1�. This is equivalent to saying that
the first argument of the scaling function f in Eq. �9� can be
set equal to zero. Following arguments similar to those lead-
ing up to Eq. �12�, we then see that the defect density scales
as

n � �−d�/�z2��+1��, �27�

which is independent of the value of z1.
�ii� If z2�z1, then ���k��� being of order 1 or less implies

that b�k��� ���k���, namely, b�k���1. Thus b�k�� always re-
mains finite as we approach the critical point and cannot in
general be neglected. In order to have �t /���sgn�t�+b�k�� of
order 1 or less, we must therefore have t�1. Let us define a
time t0 as �t0 /���=−sgn�t0�b�k��=−sgn�t0���k� −k�0�z1, where �
is an arbitrary nonuniversal constant. Thus

�t0� = ���1/���k� − k�0�z1/�. �28�

In a spirit similar to Eq. �20�, we now linearize the function
�t /���sgn�t�+b�k�� near t= t0 as ��t /���sgn�t�− �t0 /���sgn�t0��
= �t− t0���t0 /���−1 /� which, using Eq. �28�, is equal to �t
− t0� /�eff��k�� ;��, where

�eff��k��;�� � �eff = ������−1�/��k� − k�0�−z1��−1�/�/� . �29�

The effective linearized Hamiltonian can be written as

Heff = ��3�t − t0�/�eff + �k� − k�0�z2�1� �30�

and describes a linear quench with � replaced by �eff��k�� ;��.
The corresponding defect density is therefore given by the
Landau-Zener expression in Eq. �22�. We find that

pk� � exp�− ���k� − k�0��2z2−z1�1−1/��������−1�/�/�� �31�

and

n � �−d�/�2z2�+z1�1−���. �32�

Note that the defect density obtained in Eq. �32� scales with
an exponent which is independent of the nonuniversal coef-
ficient �.

To generalize these results for models with arbitrary z1
z2 and �, we notice that such models can be described
by an effective Hamiltonian Heff���t��, where ��t�
= �t− t0� /�eff��k�� ;�� and �eff��k�� ;�� is given by Eq. �29�. This
effective Hamiltonian therefore describes a linear quench
with a different �eff for each k� mode and with effective dy-
namical critical exponent z2 and correlation length exponent
�. Thus using the arguments of Ref. 24, we get

n �� ddk

�2��d��
−





d��k��� d

d�
�

��0
exp�i�eff��k��;����

d���Ek�������2

, �33�

where �Ek��������z2�F�����z2� / �k��z2� and F��x��1 /x for large
x. Further, one has �k��� d

d� ��0
= �k��−z2G�� / �k��z2� near a critical
point, where G�0� is a constant. Using these relations, one
obtains

n �� ddk�� d����z2�−1G����

�exp i�
� �k�����z2�+1�+z1��1−���/�����

d����F������2

,

where ��=� / �k��1/�� and we have set �=1 without any loss of
generality. Then scaling �k��→ �k�����/���z2�+1�+z1��1−���, one fi-
nally gets

n � �−d��/���z2�+1�+z1��1−���, �34�

which reduces to Eq. �32� for z2�=1. Note that for Eq. �27�,
a generalization to models with arbitrary z2� is straightfor-
ward and is given by Eq. �19� with z replaced by z2.

Equations �27�, �32�, and �34� are the main results of this
section. These results generalize those in Sec. II A to defect
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production for quenches through arbitrary multicritical
points. Note that for z1=z2, Eqs. �27� and �32� agree for any
value of �, giving n��−d�/�z2��+1��. Further, for the case of
linear quenching, �=1, these equations agree for any value
of z1 and z2, giving n��−d/�2z2� which was recently obtained
in Ref. 22.

C. Quench dynamics along a gapless line

Recently quench dynamics in a one-dimensional XY
model in the presence of a spatially modulated transverse
magnetic field was studied in Ref. 21. Such a model is de-
scribed by the Hamiltonian

H = −
1

2�
j

�J�� j
x� j+1

x + � j
y� j+1

y � + ��� j
x� j+1

x − � j
y� j+1

y �

− �h − �− 1� j��� j
z� , �35�

where J and � are, respectively, the strength of and the an-
isotropy in the nearest-neighbor spin-spin interactions, �a

�a=x ,y ,z� denote the Pauli matrices, and h and � denote the
uniform and alternating components of the magnetic fields.
The phase diagram of this model is discussed in detail in
Ref. 21. It was pointed out that quenching the anisotropy
parameter ��t�=�0t /� linearly while sitting at the paramag-
netic phase determined by the condition h2=�2+J2 leads to a
time evolution of the system along a gapless line. It was also
shown, via mapping this spin model to a system of Majorana
fermions by a Jordan-Wigner transformation, that the evolu-
tion of the model described by Eq. �35� can be represented
by an effective Hamiltonian given by21

Heff�k;t� = �
k

�k
†��̃�t�k�3 + J̃k2�1��k, �36�

where �k= �c1k ,c2k� is the usual two component fermionic

field, �̃�t�=��t�J /	�2+J2, and J̃=J2 /	�2+J2. The quench
dynamics of this model was studied in Ref. 21 for the linear
quench ��t�=�0t /� using the Landau-Zener formalism. It
was found that the defect density scales as

n � �−1/3. �37�

Note that since for this model z=�=1, the naive expectation
according to the analysis of Sec. II A is to have n�1 /	�.
This result therefore clearly points out the necessity of ex-
tending the analysis of Sec. II A for quenches along gapless
lines in parameter space. In what follows, we shall only re-
strict ourselves to quenches where the gap vanishes at the
same momentum value k0; k0=0 for the present case.

We start with a generic d-dimensional model described by
a Hamiltonian

Heff�k;t� = �
k

�k
†���t��k��a�3 + �0�k��b�1��k, �38�

where ��t�=�0�t /���sgn�t� is the quench parameter, a and b
are arbitrary exponents, and we have taken k�0=0 for clarity.
Note that d=a=1 and b=2 correspond to the XY model stud-
ied in Ref. 21, while a=0 and d=b=1 correspond to the
one-dimensional Kitaev model studied in Ref. 19. For a�0,

the system passes along a gapless line during the quench. We
study the time evolution of the model in a manner similar to
that described in Sec. II A. After some straightforward alge-
bra, one obtains the equation for the evolution of c1k�

� �t�
=c1k��t�exp�i�tdt��t� /���sgn�t���k��a� as

c̈1k�
� − 2i�t/���sgn�t��k��aċ1k�

� + �0
2�k��2bc1k�

� = 0. �39�

Next we define �k� =� /ka/� and scale t→ t�k�
�/��+1� in Eq. �39�

to obtain

c̈1k�
� − 2i�t��sgn�t�ċ1k�

� + ���0
2�k��2b−2a/�+1�2�/�+1c1k�

� = 0. �40�

From Eq. �40�, we find that the probability of defect forma-
tion for a given momentum k� must be given by

pk� = lim
t→


�c1k�
� �t��2 = f��0

2�k��2b−2a/��+1��2�/��+1�� , �41�

where f�
�=0. The defect density therefore becomes

n � �
BZ

ddk

�2��d f��0
2�2�/��+1��k��2b−2a/��+1�� . �42�

Using the same logic as outlined in Sec. II A, we scale �k��
→��/�b��+1�−a��k�� and get

n � �−d�/�b��+1�−a�. �43�

This result generates the scaling of the defect density derived
in Ref. 21 �n��−d/�2b−a�� for the special case �=1 and that of
the one-dimensional Kitaev model studied in Ref. 19 for �
=b=z=1 and a=0.

Finally, we generalize the result in Eq. �43� to systems
where the energy difference between the ground and excited
states vanishes along the gapless line as �=��c�k��a. Note that
for the quenches treated in Sec. II A, c=z�. Here, however,
since the quench takes place along a gapless line, c need not
have the same interpretation and can be system specific. Ex-
actly at the quantum critical point �=�c, the energy gap van-
ishes as ���k��b. Thus b is to be interpreted as the dynamical
scaling exponent z in the present case. Then using the same
scaling argument as in Sec. II A, we can express the defect
density n using Eq. �15�. However, in the present case the
energy gap scales as

Ek��� − E0��� = �F��/�k�b� ,

�k��� d

d�
��0
 = 1/�k�bG��/�k�b� , �44�

where F�x�=1 /x for large x and G�0� is a constant. Using
Eq. �44�, we see that

Ek��� − E0��� = ��c�k��aF���c�k��a/�k��b� ,

�k��� d

d�
��0
 = �k��� d

d�
��0


d�

d�
�

��c−1

�k���b−a�
G���c�k��a

�k��b
� .

�45�

Substituting these in Eq. �15�, the defect density produced in
this system is found to be
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n �� ddk

�2��d��
−



 ��c−1

�k���b−a�
G� ��c

�k��b−a�
�exp�i���

d�����c�k��aF����c�k��a/�k��b��� . �46�

Defining new variables �=��k���a−b�/�c and �k���
= �k����c/��b−a�+b�c�, we get

n � �−d�c/��b−a�+b�c�. �47�

Equation �47� is one of the central results of this work and
it generates all the previous scaling laws for both linear and
nonlinear quenches through critical lines and points �but not
through multicritical points� as special cases. For a=0, b=z,
and c=z�, we recover the scaling law Eq. �19� for a nonlin-
ear quench, whereas for �=c=1, we obtain the scaling law
derived for a linear quench in Ref. 21.

III. DEFECT CORRELATION FUNCTIONS

For the purpose of computation of defect correlation func-
tions, we are going to restrict ourselves to the class of
d-dimensional models given by H�t� in Eq. �1�. As men-
tioned before, many standard spin models in one and two
dimensions can be mapped, via standard Jordan-Wigner
transformations,1 to such fermionic models described by
H�t�. Let us denote the ground and the excited states of H�t�
before the quench �at t=−
� by �0
k� and �1
k�, respectively,
for a given value of k�. Then the state of the system after the
quench �at t=
� is given by19

��
k� = 	pk��0
k� + 	1 − pk��1
k� . �48�

Using this, one can compute the defect correlation functions
for these models. These correlation functions are of two
types. They can either vanish at the origin, as in the case of
the two-dimensional extended Kitaev model,19 or can be
written as11,19

�Or�
 = − �r�,0 + C�
0

2�

ddkf����k���2�2�/�+1�g�k� · r�� , �49�

where Or�= i�n��n�+r�, �n� denotes the field operators for Majo-
rana fermions, g�k� ·r�� is a system specific function indepen-
dent of �, C denotes a system and dimension-specific con-
stant which will be unimportant for subsequent discussions,
and we have used Eq. �9� to obtain the value of pk�. Since for
a slow quench, pk� is appreciable only near k� =k�0, we expand
��k�� about k�0, scale the momentum components ki�= �k
−k0�i�

�/��+1�, and extend the range of integration to 
 to get

�Or�
 = − �r�,0 +
C

�d�/��+1��
0




ddk�f��k���2�g�k�� · r��� , �50�

where r�i�=r�i /��/��+1�. Thus we find that quite generally, for
the class of models whose defect correlation functions do not
vanish at the origin,

ln�1 + �Or�=0
� = ln�C�� −
d�

� + 1
ln��� , �51�

i.e., the logarithm of the deviation of the amplitude of these
correlation functions at the origin from −1 is a linear func-
tion of ln��� with a slope of −d� / ��+1�.

We now compute the correlation function for a specific
model, namely, the one-dimensional Kitaev model19,26,34

which has the Hamiltonian

H = �
i�even

�J1Si
xSi+1

x + J2Si
ySi−1

y � , �52�

where J1 and J2 denote the nearest-neighbor interaction
strengths and Si denotes the spin at site i. Using the standard
Jordan-Wigner transformation, this Hamiltonian can be
mapped on to a free fermionic Hamiltonian19,26,34

H = �
k�

�k
†Hk�k, �53�

where

Hk = − 2�J− sin�k��3 + J+ cos�k��2� .

Here J�=J1�J2 and �k= �c1�k� ,c2�k�� are the fermionic
fields. The Hamiltonian is changed in time by varying the
parameter J− keeping J+ fixed. The defect correlation func-
tion for this model is given by19

�Or
 = − �r,0 +
2

�
�

0

�

dkpk cos�kr� . �54�

Thus we find that the defect correlation functions have the
same form as in Eq. �49� with C=2 /� and g=cos�kr�. A plot
of the correlation function as a function of r, sans the
�-function peak at the origin, is shown in Fig. 1 for �=20
and several representative values of �.

IV. NUMERICAL EVALUATION OF DEFECT DENSITIES

In this section, we provide numerical studies of the one-
dimensional Ising and Kitaev models to supplement our ana-
lytical results. First we consider the one-dimensional Ising
model in a transverse field described by

FIG. 1. �Color online� Plot of �Or
 vs r for �=2 �black dot-
dashed line�, �=3 �red dashed line�, �=4 �blue solid line�, and �
=20.
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HIsing = − J��
i

Si
zSi+1

z + g�
i

Si
x� , �55�

where J is the strength of the nearest-neighbor interaction
and g=h /J is the dimensionless transverse field. In what fol-
lows, we shall quench the transverse field as g�t�
= �t /���sgn�t� and compute the density of the resultant de-
fects.

We begin by mapping HIsing to a system of free fermions
via a standard Jordan-Wigner transformation1

H� = − J�
k

�k
†��g − cos�k���3 + sin�k��1��k. �56�

If the external magnetic field g is varied with time as g�t�
=g0�t /���sgn�t�, then the system will go through two quan-
tum critical points at g=1 and −1. The energy gap vanishes
at these quantum critical points at k=k0=0 and �. As a re-
sult, defects are produced in nonadiabatic regions near these
points. For this model, the quantum critical point is at t= t0
�0 and z=�=1. Hence, �eff=� /� for both the quantum criti-
cal points. From Eq. �24�, therefore, we expect the defect
density produced in this system to be given by n
��� /��−1/2.

To verify this expectation, we numerically solve the
Schrödinger equation i�t�k=Hk�t��k and obtain the probabil-
ity pk for the system to be in the excited state. Finally, inte-
grating over all k within the Brillouin zone, we obtain the
defect density n for different values of ��1 with fixed �.
The plot of n as a function of � for �=10, 15, and 20 is
shown in Fig. 2. A fit to these curves gives the values of the
exponents to be 0.506�0.006, 0.504�0.004, and
0.505�0.002 for �=10, 15, and 20, respectively, which are
remarkably close to the theoretical value 1/2. The systematic
positive deviation of the exponents from the theoretical value
1/2 comes from the contribution of the higher order terms
neglected in the derivation of Eqs. �23� and �24�. We note

that the region of validity of our linear expansion, as can be
seen from Fig. 2, grows with � which is in accordance with
the result in Eq. �25�.

Next, we consider the one-dimensional Kitaev model
which is governed by the Hamiltonian in Eq. �52�. As men-
tioned there, such a model can also be mapped on to the free
fermionic Hamiltonian given by Eq. �53�. This system passes
through the quantum critical point at J−=0 for k=� /2 when
J−�t�=J−�t /���sgn�t� is varied nonlinearly with time. Here the
quantum critical point is at t=0. Thus from Eq. �19� we
expect the defect density n��−�/��+1� since �=z=1 for this
system. To check this prediction, we numerically solve the
Schrödinger equation i�t��k�=H��k ; t���k , t� and compute
the defect density n=�0

�dk /�pk as a function of the quench
rate � for different � with fixed J+ /J=1. A plot of ln�n� vs
ln��� for different values of � is shown in Fig. 3. The slope
of these lines, as can be seen from Fig. 3, changes from
−0.67 toward −1 as � increases from 2 toward larger values.
This behavior is consistent with the prediction of Eq. �19�.
The slopes of these lines also show excellent agreement with
Eq. �19�, as shown in the inset of Fig. 3.

Finally, we illustrate the expressions in Eqs. �27� and �32�
by taking two one-dimensional models governed by Eqs. �1�
and �26� with z1=2, z2=1 and z1=1, z2=2, respectively. Set-
ting �=4, we numerically carry out the time evolutions for
different values of the momentum k and then integrate to
compute the defect density as a function of �. The results are
shown in Fig. 4; reasonable agreement is obtained with the
theoretical values of the exponents given in Eqs. �27� and
�32�.

V. EXPERIMENTS

The generality of our results allows for their verification
in several realizable experimental systems. We note that all
our results have been obtained at zero temperature with the
assumption that the system does not relax significantly dur-

FIG. 2. �Color online� Variation of the defect density n with the
quench exponent � for representative values of �=10 �black solid
line�, �=15 �red dashed line�, and �=20 �blue dotted line�. A poly-
nomial fit of the form n=a�b yields exponents which are very close
to the theoretical result 1/2 for all values of � �see text for details�.

FIG. 3. �Color online� Plot of ln�n� vs ln��� for the one-
dimensional Kitaev model for �=2 �black solid line�, �=4 �red
dotted line�, �=6 �blue dashed line�, and �=8 �green dash-dotted
line�. The slopes of these lines agree reasonably with the predicted
theoretical values −� / ��+1� as shown in the table.
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ing the quench process and until the measurement of the
defect density has been performed. This might seem too re-
strictive. However, we would like to point out that systems
of ultracold atoms in optical or magnetic traps and/or optical
lattices can easily satisfy the required criteria since they have
a very long relaxation time which often gets close to the
system lifetime.28 We list some possible experiments briefly
here. First, there has been a concrete proposal for the real-
ization of the Kitaev model using an optical lattice.29 In such
a realization, all the couplings can be independently tuned
using separate microwave radiations. In the proposed experi-
ment, one needs to keep J3=0 and vary J1�2�
=J�1� �t /���sgn�t�� /2, so that J+ remains constant while J−
varies in time. The variation of the defect density, which in
the experimental setup would correspond to the bosons being
in the wrong spin state, would then show the theoretically
predicted power-law behavior in Eq. �19�. Second, a similar
quench experiment can be carried out with spin-1 bosons in
a magnetic field described by an effective Hamiltonian Heff
=c2n0�S
2+c1B2�Sz

2
,30 where c20 and n0 is the boson den-
sity. Such a system undergoes a quantum phase transition
from a ferromagnetic state to a polar condensate at B�

=	�c2�n0 /c1. A quench of the magnetic field B2=B0
2�t /���

would thus lead to a scaling of the defect density with an
effective rate �eff���=� / ��g��−1�/��, where g= �c2�n0 /c1. A
measurement of the dependence of the defect density n on �
should therefore serve as a test of the prediction in Eq. �24�.
Finally, spin gap dimer compounds such as BaCuSi2O6 are
known to undergo a singlet-triplet quantum phase transition
at Bc�23.5 T which is known to be very well described by
the mean-field exponents z=2 and �=2 /3.35 Thus a nonlin-
ear quench of the magnetic field through its critical value
B=Bc+B0�t /���sgn�t� should lead to a scaling of the defects

n��−6�/�4�+3� in d=3. In the experiment, the defect density
would correspond to residual singlets in the final state which
can be computed by measuring the total magnetization of the
system immediately after the quench. We note that for these
dimer systems, it will be necessary to take special care to
achieve the criterion of long relaxation time mentioned ear-
lier.

VI. CONCLUSIONS

In conclusion, we have studied defect production in quan-
tum critical systems for an arbitrary nonlinear power-law
quench. We have shown that the defect production rate de-
pends crucially on whether the system passes from one
gapped phase to another through a critical point or whether it
passes along a critical gapless line during the quench. For the
former case, the scaling of the defect density for a nonlinear
quench, unlike its linear counterpart, depends crucially on
whether the system passes through the critical point at t=0 or
at finite t /�. For the first case, the defect density obeys a
universal scaling law which constitutes a generalization of
the result of Ref. 24 to nonlinear quenches. For the second
case, the defect density obeys an effective linear quench scal-
ing but with a nonuniversal effective scaling rate. We have
also considered the case when the system passes through a
multicritical point; in this context our results generalize those
of Ref. 22 to nonlinear quenches. For the latter case, when
the quench takes place along a gapless line, we have gener-
alized the results of Ref. 21 and have demonstrated that de-
fect densities in such systems do not have universal scaling
laws for nonlinear quenches. We have verified some of our
results by numerical studies of well-known one-dimensional
model systems such as the one-dimensional Kitaev model
and the one-dimensional Ising model in a transverse field.
We have also computed the defect correlation functions for a
class of d-dimensional models and have discussed the scal-
ing of the amplitude of these functions with the quenching
rate. In particular, we have shown that for the class of models
whose defect correlation functions do not vanish at the ori-
gin, the logarithm of the deviation of the amplitude of these
correlation functions at the origin from −1 is a linear func-
tion of ln��� with a slope of −d� / ��+1�. Finally, we have
discussed several experimental systems, including spin-1
bosons in an optical lattice, where these results can, in prin-
ciple, be tested.
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FIG. 4. �Color online� Plots of ln�n� vs ln��� for models with
z1=2 and z2=1 �red dotted lower line� and z1=1 and z2=2 �black
solid upper line�, for d=1 and �=4. The slopes of the lower and
upper lines are −0.828 and −0.301 which compare reasonably with
the predicted theoretical values of −4 /5=−0.8 and −4 /13=−0.308,
respectively.
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