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The electron-spin-resonance �ESR� linewidth for localized moments is studied within the framework of the
Kondo impurity and Kondo lattice models. An ESR signal for an impurity can only be observed if the Kondo
temperature is sufficiently small. For the Kondo lattice, short-range ferromagnetic correlations between the
localized spins are necessary to obtain an observable signal. These results are very similar to those derived by
Abrahams and Wölfle �Phys. Rev. B 78, 104423 �2008�� for the Anderson impurity and Anderson lattice
models. It is concluded that from ESR data alone it is not possible to distinguish if the resonance is due to
localized spins or conducting heavy electron spins.
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I. INTRODUCTION

Until recently it was commonly believed that an electron-
spin-resonance �ESR� signal could not be observed in heavy-
fermion compounds due to the broad linewidth, a conse-
quence of the large relaxation of the spins in the electron gas.
This picture was derived from the single-ion Kondo effect,
where the relaxation rate is proportional to the Kondo tem-
perature TK. This common belief was recently proven wrong.
An ESR signal was first observed in YbCuAl, an
intermediate-valence compound with moderately heavy
carriers.1 Then an ESR signal was found in single crystals of
the quantum critical system YbRh2Si2,2 which was attributed
to the Yb3+ ions despite their rather large Kondo tempera-
ture. Since then several other compounds showing ESR reso-
nance were discovered, e.g., YbIr2Si2,3 CeRuPO, YbRh,4 and
YbCo2Zn20.

5 The resonance is then not special to the Yb ions
since a Ce compound also displays similar properties. It has
been concluded that in all of the above compounds there are
ferromagnetic correlations among the rare-earth spins.4 The
resonance in YbRh2Si2 has been confirmed by other
groups6,7 and on a different batch of samples,7 as well as
followed up to 360 GHz.8

The observed resonances have a Dysonian line shape,9 as
expected from the skin depth and spin diffusion in a metallic
environment. For YbRh2Si2 the estimated intensity of the
signal corresponds to nearly all Yb ions resonating within
skin depth for the microwave electromagnetic field.2 An ac-
curate determination of the fraction of ions resonating is usu-
ally difficult because of uncertainties in the penetration depth
of the microwave. The analysis of the data was performed
within the known framework of ESR of magnetic impurities
in metals,10 i.e., assuming that the resonating electrons are
localized. This analysis appears to be consistent since the g
factor anisotropy follows that expected for Yb3+ ions in a
tetragonal crystalline electric field.

The ESR of magnetic ions in a metallic environment cor-
responds to a Dysonian resonance, and also the resonance of
conduction electrons has a similar line shape.9 In the case of
heavy fermions, the g shift is dominated by the one of the f
electrons and is going to have the crystalline field anisotro-
pies of the rare-earth sites. Based solely on ESR it is then
difficult, if not impossible, to decide if the resonances arise

from localized moments or the carriers in a heavy electron
band.

In a recent paper Abrahams and Wölfle11 studied the line-
width of the ESR signal for a heavy-fermion compound
within the framework of the Anderson lattice. They obtained
that the heavy mass in conjunction with ferromagnetic fluc-
tuations can lead to observable narrow resonances. In this
paper we show that similar conclusions hold if such an
analysis is carried out for the related Kondo lattice, i.e., for
localized spins. Our analysis is not a new calculation but is
mostly based on known results for an impurity and is now
adapted to the Kondo lattice case.

II. MODEL

The model is the well-known Kondo lattice, consisting of
the kinetic energy of the conduction electrons and a spin S
=1 /2 at every lattice site interacting via spin exchange J
with the conduction states, i.e., H=H0+Hsd with

H0 = �
k�

�k�ck�
† ck� − B�

j

Sj
z,

Hsd =
J

N
�

kk����j

ei�k−k��·Rjck�
† S j · s���ck���. �1�

Here j labels the spin sites, R j denotes the position of the site
j, S j are the spin-1/2 operators for the localized spin at site j,
and s��� denotes 1/2 times the Pauli matrices for the conduc-
tion states. B is the Zeeman splitting, i.e., B=hgf�B. Simi-
larly for the conduction electrons we have �k�=�k−�Bc /2,
where Bc=hgc�B. It is convenient to work with the Hartree-
Fock factorization of Hsd, i.e., we replace

B → B� = B − J�Fgc�Bh/2. �2�

This corresponds to the Knight shift of the magnetic reso-
nance.

III. ESR OF AN IMPURITY

For the case of an impurity we suppress the sum over j in
Eq. �1� and choose the impurity site as our origin. The ESR
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response is determined by the transversal dynamical spin
susceptibility defined by the correlation function,

�T�z� = − �gf�B�21

2
��S+;S−��z, �3�

where S�=Sx� iSy and the factor 1/2 is introduced for nor-
malization �the Sx and Sy correlation functions are the same�.

Following Götze and Wölfle12 we write

�T�z� =
NT�z� − �gf�B�2�Sz�
z − B� + NT�z�/�0

T , �4�

which defines the function NT�z�. �Sz� is the polarization of
the impurity and �0

T is the static transversal susceptibility.
Here NT�z� is a function that is analytical in the complex
upper- and lower-frequency half-planes and falls off as 1 /z
for large z.

The relaxation function NT�z� has been calculated to sec-
ond order in the exchange J in Ref. 12,

NT�z� = �gf�B�2	

4
�J�F�2�i +

2

	
�Sz�
�z�	 ,


�z� = ln�D/2	T� −
z − B�

z
�
1 − i

z − B�

2	T
�

−
B�

z
�
1 + i

B�

2	T
� , �5�

where � is the digamma function, T is the temperature, and
D is the band cutoff. If gf =gc, i.e., the g factors of the f and
conduction electrons are equal, the total magnetization of the
Kondo model is conserved �spin conservation�. The Kondo
model then does not provide a mechanism for spin relaxation
and the ESR linewidth should be zero �bottleneck situation�.
However, the spin-lattice relaxation of the conduction elec-
trons breaks this bottleneck, introducing a finite linewidth.
The situation of the coupled resonance of f and conduction
electrons has been studied in Refs. 11 and 13. If the g factors
differ significantly as for Yb3+ in tetragonal symmetry, this
coupling is not very relevant.

A. Korringa relaxation

For z=�+ i0 we may expand the function NT�z� for small
��−B�� as NT�z�=�+ i�+ ���+ i�����−B��+¯. The dy-
namical susceptibility has then a Lorentzian shape with a
relaxation rate12

1/Trel = �/��0
T + ��� , �6�

where

� = �gf�B�2	

4
�J�F�2�i +

2

	
�Sz�Im �
1 + i

B�

2	T
�	 ,

�� = �gf�B�2	

4
�J�F�2 2

	

�Sz�
B�

Re��
1 + i
B�

2	T
� − ��1�	 ,

�7�

and Im and Re denote imaginary and real parts, respectively.
Here �� contains the retardation effects due to the frequency

dependence of NT�z�. To obtain the relaxation rate to second
order in J, we only need the free ion �Sz�
= �1 /2�tanh�B� /2T� and �0

T= �Sz� /B�.12

In the limit B�→0 we obtain

1

Trel
= 	�J�F�2T , �8�

which is the well-established Korringa relaxation rate. This
relaxation is proportional to T. If, on the other hand, B��T
the result is

1

Trel
=

	

4
�J�F�2 B�

1 +
1

2
�J�F�2 ln�B�/2	T�

, �9�

so that the linewidth increases almost linearly with the exter-
nal field. Hence, at low T the residual linewidth in X-band
ESR should be less than the corresponding one for Q band.

In general, the relaxation rate in a metal can be separated
into two terms: one corresponding to relaxation by spin flips
�1 /T1� and the other to phase coherence 1 /T2, i.e., 1 /Trel
=1 /T1+1 /T2, with

1

T1

=
	

4
�J�F�2

B�

tanh�B�/2T�

�

1 −
2

	
tanh�B�/2T�Im �
1 + i

B�

2	T
�

1 +
1

2
�J�F�2 Re��
1 + i

B�

2	T
� − ��1�	 , �10�

1

T2

=
	

4
�J�F�2

B�

tanh�B�/2T�

�
1

1 +
1

2
�J�F�2 Re��
1 + i

B�

2	T
� − ��1�	 . �11�

In zero field T1=T2, while as a function of field the spin flips
are gradually suppressed, so that 1 /T1 tends to zero.12

B. Kondo effect

For simplicity we will now neglect ��, i.e., the retardation
effect, which has played only a secondary role in the Kor-
ringa rate discussed above. Perturbatively in J the Kondo
effect introduces logarithmic divergencies as a function of T
and B�, which eventually give rise to the screening of the
spin. The Kondo effect affects both the relaxation function
NT�z� and the static susceptibility �0

T.
Let us first consider the case T�TK, where the corrections

to second order in J�F are logarithmic. They are taken into
account by dressing the interaction vertex. The renormalized
vertex introduces an enhancement and a weak T dependence
�on a logarithmic scale� to NT�z�. Also �0

T acquires logarith-
mic corrections. Hence, the result resembles the Korringa
relaxation rate; it is linear in T with logarithmic corrections
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and a strongly enhanced effective exchange coupling. These
results can be found in Ref. 14 with application to 171Yb and
174Yb impurities in Au. A slightly different approach is pre-
sented in Ref. 15.

If T ,B��TK, on the other hand, the impurity spin and the
conduction electrons form a spin singlet as a consequence of
the Kondo effect. According to the Fermi-liquid theory, the
relaxation function is then determined by the unitarity bound
�NT�z=0�= i2�gf�B�2 /	� and is independent of the exchange
coupling J.16 As a function of � and T, the imaginary part of
NT decreases as �� /TK�2 and �T /TK�2. The static susceptibil-
ity for the spin singlet is a constant �there are Van Vleck-type
transitions into the excited spin triplet� of the order of 1 /TK.
The relaxation rate is then of the order of TK instead of being
proportional to the temperature �see Eq. �6��, so that only if
TK is less than 100 mK it would be possible to observe an
X-band ESR. A calculation of the longitudinal dynamical
spin susceptibility was carried out in Ref. 17. In this limit we
expect the longitudinal and transversal dynamical suscepti-
bilities to be essentially the same.

In summary, for a Kondo impurity an ESR resonance can
only be observed if TK is very small. Otherwise the reso-
nance width is going to be too broad to be seen. One possible
way to overcome this is to measure it in rather high magnetic
fields with a correspondingly larger frequency of the electro-
magnetic field. The above considerations lead to the com-
monly accepted statement that ESR of a Kondo ion cannot
be observed.

IV. KONDO LATTICE

A. Spin conservation

The Kondo lattice, defined by Hamiltonian �1�, conserves
the total spin. This is also the case for the Anderson lattice
model.

Rare-earth ions �Ce or Yb� have a large spin-orbit cou-
pling. In a lattice with tetragonal symmetry the crystalline
electric field splits the J multiplet into �J+ 1

2 � Kramers dou-
blets. In general only the one with lowest energy needs to be
considered. This doublet is usually represented by a spin 1/2
and this naturally leads to the Kondo or Anderson lattice
model. However, the Kramers doublet has orbital content
and is not a true spin since the orbital momentum depends on
the chosen origin of coordinates. Hence, the “spin” is only
locally, but not globally, conserved. This, however, does nei-
ther affect the single impurity problem nor the Ruderman-
Kittel-Kasuya-Yosida �RKKY� interaction between rare-
earth sites �where only the interaction amplitude is
modified�, which are SU�2� invariant.

The orbital content of the Kramers doublets induces a
strong spin-orbit coupling into the conduction states, favor-
ing a fast spin-lattice relaxation. The spin information, con-
tained, e.g., in an ESR spin flip, can then not travel very far
via the conduction states. Hence, the Kondo and Anderson
lattice models have to be taken with some caution when spin
conservation is important.

B. Is ESR in a heavy-fermion compound a local or an
extended probe?

The experimental results for YbRh2Si2 have all been in-
terpreted as if the resonance is due to localized f

electrons.2–4,7 In other words, as for ESR on an impurity, if
the microwave induces a spin flip at one site, the response of
the system is measured at the same site. The response func-
tion in that case is the local susceptibility. On the other hand,
Abrahams and Wölfle11 described the ESR of the metallic
system with the q→0 limit of the global dynamical suscep-
tibility, which appears to be the natural approach for ex-
tended conducting states.

The global dynamical susceptibility is the Fourier trans-
form over the site pairs, S�q ,��. The longitudinal dynamical
susceptibility, for instance, is measured by inelastic neutron
scattering. Assuming that the magnetic field is small com-
pared to TK, the q→0 limit corresponds to the low-energy
window for forward scattering in an inelastic neutron spec-
trum �only accessible as an extrapolation�.

In principle, one could experimentally distinguish be-
tween these two situations by partially substituting the rare-
earth ions by their nonmagnetic analog. The dilution in-
creases the average distance between the magnetic ions. The
local picture would be consistent with a resonance that does
not significantly change with concentration. Unfortunately,
alloying in a metal inhomogeneously broadens the reso-
nance, so that this procedure is not practicable.

This difficulty can be bypassed for the cubic low-carrier
density system EuxCa1−xB6, which crystallizes for all x and
ESR can be observed for all x at all T �measured up to room
temperature�.18 For x�0.15 the resonance is a Dysonian
�metallic�, while for low x it is Lorentzian with fully resolved
fine structure �insulator�. In the metallic regime there are not
enough carriers to generate a Korringa relaxation rate. For
x�0.15 there are no dramatic changes in the resonance as a
function of x, i.e., as the average distance between the Eu
ions is reduced. This experiment can be taken as an indica-
tion that ESR for local moments is a local probe.

Furthermore, inhomogeneous broadening of ESR lines
�e.g., La- or Lu-diluted YbRh2Si2� is a concept that only
makes sense if the resonance is at least relatively local. For
EuxCa1−xB6 with x=0.07 and x=0.10, the superpositions of
two resonances, one corresponding to insulating and the
other to metallic patches of the sample, are observed. Such
phase separation is also representative of local measure-
ments.

To reconcile the differences at least partially we have to
invoke the spin-lattice relaxation of the conduction electrons
and the orbital content of the spin. This limits the range over
which the spin can travel. If this relaxation is strong we are
close to the local picture.

C. Dynamical susceptibility

We first consider ESR as a local probe, i.e., as if it mea-
sures the response at one site to a perturbation at the same
site. Hence, the correlation function to be considered is the
same one as for the impurity, but with Hamiltonian �1�. The
local transversal dynamical susceptibility can be cast into the
same form as Eq. �4�. It depends on local thermodynamic
quantities, such as �0

T and �Sz�, and the local relaxation func-
tion. The relaxation function can again be calculated pertur-
batively in the exchange J. To second order in J�F we obtain
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the same result as for an impurity �Eq. �5��. Kondo loga-
rithms and intersite correlations start to play a role to the
order higher than second in J. Kondo logarithms were al-
ready present in the Kondo impurity case. New are the inter-
site correlations which eventually are responsible for the co-
herence in the Kondo lattice and the formation of heavy
electron states at low T, i.e., low-energy excitations corre-
sponding to quasiparticles with large effective mass. This is
the consequence of the strong-coupling fixed point for the
Kondo lattice. The relaxation kernel NT��� will approach an
imaginary constant value i� as �→0, which corresponds to
the unitarity bound. Unfortunately, a Shiba relation16 deter-
mining � is not known for the Kondo lattice, but it is ex-
pected that �=��gf�B�2, where � is of the order of unity.
The exact value of NT�0� is not relevant here. If the field is
small, the low � and T dependences of NT� are Fermi-liquid
type, i.e., �� /TK�2 and �T /TK�2.

The polarization �Si
z� is proportional to the transversal sus-

ceptibility �0
T and the proportionality constant is B�. Neglect-

ing ��, i.e., the retardation effects, 1 /Trel�� /�0
T, the relax-

ation rate has primarily the temperature dependence of �0
T.

This is similar to the impurity case, except that �0
T now con-

tains intersite correlations.
If we consider ESR as a nonlocal probe, the correlation

function is �T�z�=−�gf�B�2 1
2N�ij��Si

+ ;Sj
−��z. This means that

we also consider the possibility that a spin flip induced at the
site j is observed at the site i. We again cast the response
function into the general form of Eq. �4�. The contribution to
NT���� arising from the pair of sites i and j is

�gf�B�2 	

4�

J2

N2 �
k,k�

ei�k−k���Ri−Rj���� − �k� + �k�

� �f��k� − f��k�����Si
zSj

z� + �Si
+Sj

−�� , �12�

where we neglected the magnetic field �below we will con-
sider the limit B��TK�. Converting the sums over the wave
vectors into integrals we obtain for �→0 and T→0,

�gf�B�2	

4
�J�F�2sin2�kFRij�

�kFRij�2 ��Si
zSj

z� + �Si
+Sj

−�� . �13�

It is now important to introduce relaxation mechanisms
for the conduction states, e.g., the spin-lattice relaxation.
This gives rise to a spin mean-free path l and expression �13�
is to be multiplied by the exponential exp�−Rij / l�. Expres-
sion �13� for a fixed Ri has to be summed over all R j. The
outcome depends on the expectation values, i.e., the correla-
tion between the spins. For ferromagnetic coupling the ex-
pectation values are roughly independent of Rij and the con-
tribution is a constant that strongly depends on the mean-free
path. In this case the exponential exp�−Rij / l� is of fundamen-
tal importance. For antiferromagnetic correlations the inte-
grand oscillates and the intersite contribution to NT�0� is
small. The main contribution is then the i= j term. The quan-
tity NT���� has to be positive definite because it represents a
dissipation.

In the strong-coupling limit the relaxation function for
�→0 and T→0 is expected to approach a constant imagi-
nary value. This value is given by the 	 /2 phase shift of the

electrons at the Fermi surface, but since the Shiba relation16

for the lattice is not known, it remains undetermined. This is
similar to the local NT����. In both cases the expected result
is �gf�B�2 times a constant of the order of unity. As a func-
tion of � and T the function decreases as expected for a
Fermi liquid.

The relaxation rate is given by NT��0� /�0. Below we dis-
cuss the effect from the static susceptibility. We have as-
sumed that B��TK.

D. Magnetic correlation effects

Usually, in a heavy-fermion compound, the rare-earth
spins are antiferromagnetically correlated, even if the system
does not undergo a phase transition to long-range order. The
correlations have short-range character and the susceptibility
follows a Curie-Weiss law with antiferromagnetic Weiss
temperature �, �0=C / �T+��, where � is of the order of TK.
Hence, the linewidth roughly follows a Korringa law, with a
residual T=0 linewidth proportional to �. This is similar to
the case of a Kondo impurity. The resonance can only be
observed if � is very small, i.e., of the order of 100 mK or
less for X-band microwaves. This would require an ex-
tremely narrow heavy-fermion band or fermions with an ef-
fective mass of 105me, where me is the free-electron mass.
The T dependence in this case would be linear in T, i.e., a
Korringa law.

However, if the rare-earth spins are ferromagnetically cor-
related the static susceptibility is given by �0=C / �T−TC� for
T�TC, where TC�0 is the Curie temperature. As T→TC the
susceptibility diverges and hence, according to expression
�6�, the ESR linewidth becomes very narrow. In general we
would have to replace it by �0�t�−�, where t= �T−TC� /TC is
the reduced temperature and � is the corresponding critical
exponent, which is larger than 1. Hence, the narrowing of the
line proceeds even faster as t→0. This result has to be re-
garded with caution because we have neglected the relax-
ation through collective excitations, i.e., magnons.

If the ferromagnetic correlations are not strong enough to
produce long-range order at any temperature, i.e., their na-
ture is short ranged, then the susceptibility is proportional to
T−� and again the relaxation rate is strongly reduced at low
T. In this case relaxation through magnons does not play a
relevant role because low-energy excitations have a wave-
length larger than the range of the correlations. Shorter
wavelength magnons cannot be excited because their energy
is larger than that of the thermal bath. Hence, there is the
possibility that the electron spin resonance can be observed.

For YbRh2Si2 the ferromagnetic correlations are predomi-
nantly in the ab plane. The linewidth should then depend on
whether the field is in the plane or along the c axis. For a
field in the ab plane the short-range ordered domains tend to
align. This should give rise to a large static susceptibility
along the field direction, as well as a large �0

T. In the case of
a field oriented along the c axis, the spins are tilted out of the
plane, which should give rise to smaller susceptibilities. The
resonance linewidth is then expected to be narrower for the
field in the ab plane, in agreement with the experimental
observations.7,19 Since the in-plane value of the g factor is
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much smaller than the one along the c axis, there is also a
magnetic field broadening of the resonance �see Eq. �9��, in
addition to the above-mentioned broadening effect.

V. DISCUSSION

�1� Magnetic impurities are often introduced in com-
pounds that by themselves do not show an ESR signal. These
are usually Kramers rare-earth ions, such as Nd3+, Eu2+,
Gd3+, Er3+, and Dy3+. Except for Eu2+ and Gd3+, which are
S=7 /2 S-state ions, the crystalline electric field yields a dou-
blet �in rare cases a quadruplet� ground state. The spin ex-
change with the metallic host is such that there is no Kondo
effect. The relaxation rate in this case is Korringa type, i.e.,
at low T it has a component that is proportional to T.

�2� On the other hand, Ce3+ and Yb3+ impurities are
Kondo ions and consequently an ESR signal cannot be ob-
served unless the Kondo temperature is very small. One ex-
ample is Yb impurities in Au.14 The Kondo effect involves a
spin-singlet formation at low T, so that the linewidth is pro-
portional to TK.

�3� For the Kondo lattice, the short-range correlations
among the localized spins play a fundamental role. If the
spins are antiferromagnetically correlated, the linewidth is of
the order of the Curie-Weiss temperature of the susceptibil-
ity. � is usually too large for ESR to be observed. On the
other hand, if the spins are ferromagnetically correlated the
linewidth is strongly suppressed and there is the possibility
of an ESR signal. In this case the ferromagnetic short-range
correlations prevent the spin flip from being passed on to
other sites. To some degree this situation can be considered a
narrowing of the signal due to bottleneck.7

�4� The above conclusions for Kondo impurities and the
Kondo lattice �i.e., involving localized spins� are similar to
those derived for the Anderson impurity and Anderson lattice
by Abrahams and Wölfle11 �i.e., for heavy electrons that are
delocalized�.

�5� The ESR line shape in a metallic environment is
Dysonian. This is the case for resonating localized spins,10 as
well as for conduction states.9 For the case of a heavy-
fermion compound the line shape can then not distinguish
between localized spins or conduction states with heavy
mass.

�6� Similarly from the g values and their anisotropy, we
cannot distinguish between localized and conducting states
resonating. For the localized states the g tensor is determined
by the crystalline electric field scheme. Heavy fermions arise
from the hybridization of the f electrons with the conduction
states. Close to the Fermi level they are dominated by the f
character and, hence, the g tensor is predominantly given by
the crystalline field scheme of the f states.

�7� Introducing impurities into the compound, e.g., substi-
tuting Yb ions by Lu ions in YbRh2Si2, broadens the
resonance.7 This is expected within the heavy-fermion pic-
ture because the impurities break the coherence of the heavy-
fermion states and enhance the spin-lattice relaxation. Simi-
larly, the relaxation with impurities is faster for the Kondo

lattice. The localized spins relax into the conduction-electron
bath and the conduction states due to the scattering off the
impurities relax faster via spin-lattice relaxation. In addition
the line may become inhomogeneously broadened.

�8� Intuitively, ferromagnetic correlations, within either
picture, should increase the effective g value significantly
similar to the exchange interaction in the Knight shift. In
Ref. 11 it is argued that the g shift is almost completely off
set by vertex corrections. This is the consequence of the
assumed spin-rotational invariance and the spin
conservation.20 Similarly, for the Kondo lattice with ferro-
magnetic short-range correlations, we may assume that the
Knight shift is affected by spins that are further away from
the resonating ion than the range of the ferromagnetic corre-
lation. Then patches with different polarizations could com-
pensate each other, leading to a g shift that is small in mag-
nitude. The RKKY interaction is predominantly responsible
for the ferromagnetic correlations, and also in this case the
interaction is isotropic and conserves the total localized
pseudospin �global SU�2� invariance�.

An enhancement of the g value has not been observed for
YbRh2Si2. In Ref. 10 the g factor first decreases with field
before it increases slightly.

�9� At low T the bulk susceptibility of the YbRh2Si2
samples appears to have an antiferromagnetic �rather than
ferromagnetic� Weiss temperature.21 However, in the tem-
perature and field ranges, where ESR is measured, the sus-
ceptibility appears to have the characteristics of ferromag-
netic correlations.4

�10� The spin fluctuations of the heavy electrons in
YbRh2Si2 have also been probed locally on the 29Si site with
nuclear magnetic resonance.22 At low T and fields above 1 T,
the Knight shift follows the temperature dependence of the
bulk susceptibility but shows anomalous T dependencies at
low fields. Also strong deviations from the Korringa relation
are observed and at low T the nuclear T1-relaxation time is
anomalously short. These measurements were carried out
along the Fermi-liquid to non-Fermi-liquid crossover bound-
ary, while the ESR data stem from a different region of the
phase diagram.

VI. CONCLUSIONS

In summary, using only ESR results it is not possible to
distinguish between localized states or itinerant heavy fermi-
ons resonating. The ESR in a Kondo or heavy-fermion lattice
is primarily related to short-range ferromagnetic correlations.
A resonance has been observed in several systems, which all
appear to have ferromagnetic correlations. The ESR in
YbRh2Si2 is then not related to the quantum critical point,
which is induced by antiferromagnetic spin fluctuations.
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