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We investigate localization properties of one-dimensional electronic systems with long-range correlated
disorders characterized by a power-law spectral density. An abrupt change from extended to gradon states is
found to occur in individual samples independently of system sizes. This abrupt change differs from the
ordinary Anderson transition in the sense that the former accompanies strong sample fluctuations that remain
significant even in the thermodynamic limit. We further observe that sample-averaged quantities such as the
inverse participation ratio and the level-spacing distribution exhibit nontrivial crossover behaviors from ex-
tended states to gradon states.
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The role of spatial correlation of disorders in electronic
properties of inhomogeneous systems has attracted much in-
terest for the last decade. Successive studies have claimed
that one-dimensional electronic systems with long-range cor-
related disorders exhibit nontrivial behavior distinct from the
case of uncorrelated disorders.1–9 Of special interest is cor-
related disorders with a power-law spectral density, S�k�
�k−�. This type of correlation is generated by the trace of a
fractional Brownian motion10 and may lead a continuum
phase of extended states near the band center when � is
larger than a critical value �c.

1 The presence of the extended
phase implies the occurrence of the delocalization transition
in one-dimensional systems, which conflicts with the conclu-
sion of the well-established scaling theory of the Anderson
transition.11 The existence of mobility edges in one-
dimensional systems has been experimentally observed via
microwave transmission spectra of single-mode wave
guides12 and in random dimer superlattices.13 It has been also
argued that the long-range correlation of inhomogeneous po-
tentials in the base sequence of a DNA molecule is respon-
sible for its electronic transport.14–16

When the correlation length �d of disorder is much shorter
than a system size L, physical quantities are usually self-
averaged over many subsystems of size �d. This is due to the
assumption that the relative variance of observables con-
verge to zero in the thermodynamic limit. However, this as-
sumption is less obvious for systems with long-range corre-
lated disorders. For �d�L, quantities observed in an
experiment strongly depends on samples. In particular, if �d
is such an increasing function of L that satisfies �d�L��L for
any L, as in the case of correlated disorders with the power-
law spectral density, sample-to-sample fluctuations may sur-
vive even in the thermodynamic limit. Therefore, it is neces-
sary to confirm the self-averaging property of observed
quantities when we discuss the metal-insulator transition in
such systems on the basis of sample-averaged quantities.
Nevertheless, many previous studies paid little attention to
this issue. In addition, the physical origin of the one-
dimensional delocalization transition inconsistent with the
scaling theory has not been clarified. It is quite important to
resolve the contradiction between numerically observed ex-
tended states and the scaling argument. Furthermore, an in-
terpretation of the metal-insulator transition from the view-
point of the self-averaging property provides deep insight

into the nature of electronic states in the disordered system
with a long-range correlation.

In this Brief Report, we investigate localization properties
of one-dimensional electronic systems with long-range cor-
related disorders. We treat separately physical quantities ob-
tained in individual samples and those averaged over many
samples. It is found that each sample undergoes an abrupt
change in the degree of localization, the so-called gradon
transition, which differs inherently from the ordinary Ander-
son transition in systems with uncorrelated disorders. The
energy giving rise to the abrupt change largely fluctuates
from sample to sample, which shows that the sample fluc-
tuation remains significant however large system size we
consider so that finite size effects survive even in the ther-
modynamic limit. We also observe nontrivial crossover be-
haviors of sample-averaged quantities such as the inverse
participation ratio and the variance of the level-spacing dis-
tribution.

Let us consider the one-dimensional tight-binding model
described by

H = �
n=1

N

�n�n��n� − t�
n=1

N

��n��n + 1� + �n��n − 1�� , �1�

where �n is the on-site potential at the site n, �n� is the cor-
responding Wannier basis, and t is the transfer integral be-
tween nearest-neighbor sites. Hereafter t is taken to be unity
thus fixing the energy scale. The random sequence of ��n� is
determined by1

�n = �
k=1

N/2

�CN,�k−��1/2 cos	2�nk

N
+ �k
 , �2�

which gives the Fourier transformation of the two-point cor-
relation function of �n, namely, the spectral density S�k�,
proportional to k−�. Here, �k is a random number uniformly
distributed in the interval �0,2��, and CN,� is a constant
characterizing the strength of disorder. In this work, we fix
�=4.0 and the value of CN,� so as to yield ��n

2�=0.2. Typical
on-site energy landscapes are shown in Fig. 1. Although ac-
tual one-dimensional electronic systems with correlated dis-
orders can be found as we mentioned, the present model has
a weak direct relevance to realistic systems due to the
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N-dependent CN,� in Eq. �2�. Nevertheless, understanding
electronic states in this system is crucial to clarify whether
the scaling theory of the Anderson transition should be re-
vised due to the existence of extended states in disordered
one-dimensional systems.

In order to examine spatial extents of eigenstates, we nu-
merically calculate the eigenfunction ��n ,E� belonging to
energy E by diagonalizing Hamiltonian �1�. The degree of
the extent of ��n ,E� is evaluated by the inverse participation
ratio �IPR� �Refs. 17 and 18� defined by

I�E,N� = �
n=1

N

���n,E��4, �3�

which is proportional to 1 /N for extended states while con-
stant for localized states. Figure 2 shows the energy depen-
dences of I�E ,N� for N=4000. We have the same profile of
I�E ,N� for negative E. Three plots correspond to different
realizations of random-potential sequences ��n�. The constant
region near the band center �E	1.0� indicates the continuum
extended phase, and the moderate increase after a sharp peak

at around E
1.0 implies the existence of localized states.
These results are consistent with the previous work by Russ
et al.4 showing the presence of extended states within �E�
	1.25 for �=4.0 and ��n

2�=0.2. We see from Fig. 2 that the
localized phase is always separated from the extended phase
by the sharp peak of I. We thus define the value of the mo-
bility edge Ec for each sample by the energy giving the sharp
peak of I�E ,N�, whose validity will be proven later.

Figures 3�a� and 3�b� illustrate typical spatial profiles of
extended and localized eigenstates, respectively, under the
same numerical conditions as those for Fig. 2. The localized
mode exhibits a butterflylike form, which totally differs from
exponentially localized modes excited in systems with un-
correlated disorders. Such unusual localized modes have
been earlier found in graded elastic systems, in which masses
or force constants gradually change in a uniaxial
direction.19–22 Butterflylike localized modes in graded lat-
tices are referred to as “gradons,” identified with a special
kind of light-mass-impurity vibration modes. Intriguingly,
graded lattices can exhibit a sharp transition from gradons to
extended phonons even in one dimension. In this context, the
abrupt change in the localization length in our system can be
considered as a sort of the gradon transition.

The similarity between profiles of elastic gradon and our
localized modes is not fortuitous because of the following
three reasons. First, the potential landscape of the present
electron system depicted in Fig. 1 is quite similar to that of
graded elastic systems. Second, amplitudes ���n ,E�� of a lo-
calized electronic mode concentrate onto the region with
small �large for holes� �n, similar to the case of elastic gra-
dons whose vibrational amplitudes are confined into light-
mass regions. Finally, as shown in Fig. 4, the system-size
dependence of the sample-averaged IPR �I�E ,N�� for local-
ized states is described by �I�= �c1+c2 log N� /N as same as

FIG. 1. Typical on-site energy landscapes described by Eq. �2�
with �a� N=4000 and �b� N=40 000. Parameters are set to be �
=4.0 and ��n

2�=0.2.
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FIG. 2. Energy dependence of the inverse participation ratio
I�E ,N� for three different realizations of random potentials. The
system size is N=4000. Sharp peaks indicated by arrows give the
transition points. The inset shows the system-size dependence of the
variance of the mobility edge Ec.
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FIG. 3. Spatial profiles of eigenmodes in correlated disordered
systems. The eigenmodes �a� and �b� are excited in the same real-
ization of random potentials, while �c� is prepared in a different
random-potential configuration. The profiles of �b� and �c� are quite
different though these belong to almost the same energy.
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those for elastic gradons.23 We thus conclude that our local-
ized states observed above �E�
1.0 are identified with gra-
dons in electron systems. It further follows from Fig. 2 that
spatial extents � of gradons increase with decreasing �E�, and
then reaching the system size N at a characteristic energy Ec.
This consequences that each sample undergoes the
delocalization-gradon transition at Ec. Since immediately
above �or just at� Ec, the cusps of ���n�� at the both ends of
the butterflylike mode are magnified drastically, I�E� yields a
sharp peak just at the transition energy Ec as shown in Fig. 2.

It should be emphasized that the delocalization-gradon
transition at Ec differs inherently from the conventional
Anderson transition. The latter transition stems from quan-
tum interference due to diffusive scattering in random media,
while the gradon transition results from the quantum con-
finement within low-�n �high �n for holes� region in a coarse-
grained landscape of long-range correlated potentials. The
way of the confinement strongly depends on potential pro-
files as shown in the comparison of Figs. 3�b� and 3�c� and
cannot be characterized by the single length scale. Thus, the
scaling theory is no longer available for describing the gra-
don transition.

Another important feature of our electron system is that
the finite size effect on localization properties survives how-
ever large system size we take. This feature is manifested by
the nonvanishing variance 
Ec

2 of the mobility edge Ec. The
inset of Fig. 2 shows the N dependence of 
Ec

2 evaluated
from 100 different realizations of random potentials ��n�.
The nonvanishing 
Ec

2 at larger N results from the lack of
self-averaging properties, attributed to the self-affine charac-
ter of correlated random potentials given by Eq. �2�. It in-
deed follows from Figs. 1�a� and 1�b� that the coarse-grained
profile of the potential sequence for N=4000 is not very
different from that for N=40 000, implying the divergent
correlation length of disorders. This unusual similarity be-
tween Figs. 1�a� and 1�b� is a consequence of the size-
dependent CN,� in Eq. �2�. Accordingly, large fluctuations in
Ec remain significant even in the thermodynamic limit.

All results presented above are associated with individual
samples with different random-potential sequences. The ab-
sence of the self-averaging property distinguishes physical

quantities in infinite individual systems from sample-
averaged ones. This is demonstrated for the energy-
dependence of the averaged IPR �I�E ,N�� depicted in Fig. 5,
where the average is taken over 100 samples. The averaged
IPR shows no sharp peak at around E=1.0 in contrast to the
IPR for individual samples. There is, however, a smooth
change from the extended behavior below E=1.0 to the lo-
calized one for E�1.0. It should be noted that the energy
dependence of the averaged IPR showing the smooth cross-
over �0.9	E	1.1� does not depend on the system size N,
which implies the crossover behavior even in the thermody-
namic limit.24 Such a crossover behavior of electronic states
has been more clearly found in the level-spacing distribution
P�s� for many samples, where s is the nearest-neighbor level
spacing rescaled by the averaged spacing �s�. The random
matrix theory states that P�s� should be the Wigner distribu-
tion for extended states and the Poissonian distribution for
localized states,25 where the theory assumes that disorders
are spatially uncorrelated. Therefore, P�s� for the present
system deviate from these two distribution functions as
shown in the inset of Fig. 6.26,27 However, the functional

FIG. 4. �Color online� System-size dependence of the inverse
participation ratio I�E ,N� for various energies. The functional form
coincides with that of elastic gradon states �see text�.

FIG. 5. �Color online� Sample-averaged inverse participation
ratio �I�E ,N�� multiplied by system size N.

FIG. 6. �Color online� Energy dependence of the variance of the
level-spacing distribution P�s� for various system sizes N. For a
given E, we use 0.05N eigenvalues around E. The number of
samples is chosen so that the total number of eigenvalues become
no less than 1�105. The unfolding procedure is applied to elimi-
nate the energy dependence of the mean level-spacing �Ref. 28�.
The inset shows functional forms of P�s� for various energies.
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form of P�s� reflects spatial extents of wave functions as in
the uncorrelated case. In order to characterize the E depen-
dence of P�s�, we plot in Fig. 6 the variance 
s

2�E� of the
level spacing defined by 
s

2��0
��s− �s��2P�s�ds. The value of


s
2 for extended states is close to unity, while it becomes very

small in the gradon region. Notably, all data for different N’s
are collapsed onto a single smooth curve, showing a cross-
over from the extended to the localized gradon regions even
for infinitely large system size. This is contrast to a transition
behavior where 
s

2 tends to drop sharply at Ec as increasing
N. Our result assures again that considerably large sample
fluctuations peculiar to the present system retain the finite
size effect even in the thermodynamic limit.

In conclusion, we studied numerically electronic states in
one-dimensional systems with long-range correlated disor-
ders. For individual disordered systems, we found the abrupt
change in electronic states from extended states around the
band center to gradon states near the band edge, which is
identified with the delocalization-gradon transition. Due to
the lack of the universality of the gradon transition, the ex-
istence of the delocalization transition does not conflict with
the scaling theory. The transition energy fluctuates from
sample to sample even in the thermodynamic limit because

the present system does not possess the self-averaging prop-
erty due to an infinite correlation length of disorder. This
remarkable feature is also supported by behaviors of the
sample-averaged IPR and P�s�. These quantities clearly
show the crossover �not the transition� from the extended
region ��E�	1.0� to the gradon region ��E�
1.0� indepen-
dently of the system size. Since sample fluctuation and cross-
over behavior are intrinsic nature of finite size systems, we
conclude that the finite size effect survives in the thermody-
namic limit of one-dimensional electron systems with long-
range correlated disorders.
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