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We study augmented quasiclassical equations of superconductivity with the Lorentz force, which is missing
from the standard Ginzburg-Landau and Eilenberger equations. It is shown that the magnetic Lorentz force on
equilibrium supercurrents induces finite charge distribution and the resulting electric field to balance the
Lorentz force. An analytic expression is obtained for the corresponding Hall coefficient of clean type-II
superconductors with simultaneously incorporating the Fermi-surface and gap anisotropies. It has the same
sign and magnitude at zero temperature as the normal state for an arbitrary pairing, having no temperature
dependence specifically for the s-wave pairing. The gap anisotropy may bring a considerable temperature
dependence in the Hall coefficient and can lead to its sign change as a function of temperature, as exemplified
for a model d-wave pairing with a two-dimensional Fermi surface. The sign change may be observed in some
high-Tc superconductors.
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I. INTRODUCTION

Einstein1 pointed out in 1905 that the Lorentz force in
electromagnetic fields can be deduced naturally from the
self-evident force on a charge at rest in an electric field with
his theory of special relativity. He has thereby provided a
firm logical ground on the magnetic part of causing a deflec-
tion. However, this force is absent in the modern theoretical
accomplishments of superconductivity, i.e., the standard
Ginzburg-Landau equations2,3 and the quasiclassical Eilen-
berger equations4–7 derived microscopically from the
Gor’kov equations.3,5–7 Thus, our understanding on the mag-
netic Lorentz force in superconductors has remained at a
somewhat phenomenological level. We here wish to make an
improvement on this fundamental issue, focusing our atten-
tion on equilibrium cases.

London8 included the Lorentz force as a necessary ingre-
dient in his phenomenological equations of superconductiv-
ity. They predict that an equilibrium supercurrent js�ensvs
in a magnetic field B accompanies an electric field,

E =
m

2e
� vs

2 =
1

nsec
B � js, �1�

with m as the electron mass, e ��0� as the charge, vs as the
superfluid velocity, ns as the superfluid density, and c as the
light velocity. The second equality results from the London
equation ��vs=−�e /mc�B with the condition �vs ·��vs=0.
The expression implies that one could estimate the superfluid
density ns through the Hall coefficient �nsec�−1, which would
diverge toward the transition temperature Tc. On the other
hand, van Vijfeijken and Staas9 presented phenomenological
two-fluid equations with the Lorentz force, which modify
Eq. �1� into

E =
ns

n

m

2e
� vs

2 =
1

nec
B � js, �2�

where n is the electron density. Thus, the Hall coefficient is
predicted to stay constant up to Tc contrary to the London
theory. These considerations with the free-electron disper-
sion were extended by Adkins and Waldram10 to incorporate

the electronic band structure from a somewhat different con-
text of the Bernoulli potential, with no explicit connection to
the Lorentz force. Specifically, they considered how a uni-
form supercurrent at T=0 modifies the Cooper pairing of
nonspherical Fermi surfaces to present an expression of the
Hall coefficient, which can take either sign just as the one
of the normal state. Hong11 and Omel’yanchuk and
Beloborod’ko12 later performed microscopic calculations of
the equilibrium electric field due to an almost uniform super-
current, also with no direct relevance to the Lorentz force.
Using the Gor’kov equations with the free-electron density
of states, they obtained an expression in favor of Eq. �2�
together with an additional term. However, all the finite-
temperature effects in their derivations originate from the
subtle energy dependence of the free-electron density of
states, so that they might be deduced to vanish for a constant
density of states near the Fermi level. It should be noted
finally that no investigations seem to have been carried out
for the cases of anisotropic pairings.

Pioneered by Onnes and Hof in 1914, efforts have also
been made to detect an equilibrium/quasiequilibrium Hall
voltage of superconductors.13–18 One can show with Eq. �1�
and �2�, the Maxwell equation ��B= �4� /c�js, and the con-
dition �B ·��B=0 that the Hall voltage VH in the Meissner
state between the surface of the sample and its interior is
given by

VH =
cRH

8�
B0

2, �3�

with RH the Hall coefficient and B0 the external field. It could
be detected with a spheroid sample in a longitudinal mag-
netic field by measuring the potential difference between a
point on the equator and a pole;19 see Refs. 14 and 17 for the
experimental setup. However, early experiments13–16 ob-
served null Hall voltage contrary to the theoretical predic-
tions. Hunt20 and Nozières and Vinen21 later pointed out in-
dependently that voltmeters used in those experiments,
which require direct contacts to the sample, are not appropri-
ate to detect the electrostatic potential. Indeed, voltmeters
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can only pick out the chemical-potential difference, but the
chemical potential is constant in equilibrium throughout the
sample. The difficulty was circumvented successively by ap-
plying capacitive couplings to the specimen.17,18 Bok and
Klein17 performed a low-temperature measurement of the
Hall voltage with Pb as well as Nb and PbIn below Hc1 to
obtain a good agreement of their results with Eq. �1�. Morris
and Brown18 carried out a detailed experiment on Pb up to Tc
to report that their data point to Eq. �2� rather than Eq. �1�.
However, detailed experiments over a wide range of materi-
als still seem required to establish the sign and the magnitude
of the superconducting Hall coefficient in connection with
the normal-state one. Especially, no experiments seem to
have been carried out on materials with anisotropic energy
gaps such as high-Tc superconductors where new physics
may be expected.

It was shown recently that the Lorentz force can be incor-
porated appropriately into the quasiclassical equations of su-
perconductivity starting from the Gor’kov equations in the
Keldysh formalism.22 The key procedures were: �i� an exten-
sion of the gauge-invariant Wigner transformation introduced
by Stratonovich23 and Fujita24 for the normal state to the
Nambu Green’s function; and �ii� a derivation of the corre-
sponding Groenewold-Moyal product25,26 for performing the
gradient expansion. They have successfully removed the
imperfect gauge invariance in a couple of preceding
treatments.7,27,28 The resulting equations can describe both
the equilibrium and dynamical behaviors of superconductors
with the Lorentz force such that the normal-state Boltzmann
equation is included appropriately as a limit. Using them, we
here develop a microscopic theory of the Lorentz force on
equilibrium supercurrents with the Fermi-surface and gap
anisotropies. We will thereby clarify: �i� the validity or ap-
plicability of the phenomenological results of Eqs. �1� and
�2�; and �ii� how the gap anisotropy affects them. This step
will also be necessary before elucidating dynamics of super-
conductors microscopically where there still remain many
unresolved issues directly connected with the Lorentz
force.21,29–33

This paper is organized as follows. Section II presents the
augmented quasiclassical equations of superconductivity
with the Lorentz force. Section III derives the expression of
the Hall coefficient of equilibrium supercurrents. Section IV
presents its temperature dependence for both the s-wave and
d-wave pairings on a model two-dimensional Fermi surface.
Section V provides a brief summary.

II. AUGMENTED EILENBERGER EQUATIONS

For simplicity, we first restrict ourselves to clean weak-
coupling s-wave superconductors in equilibrium. The corre-
sponding quasiclassical equations of superconductivity, aug-
mented so as to include the Lorentz force, are given by22

���̂3 − �̂, ĝR,K� + i�vF · � ĝR,K

+
i�

2
�evF · E

�

��
+

e

c
�vF � B� ·

�

�pF
���̂3, ĝR,K	 = 0̂.

�4�

Here ĝR,K= ĝR,K�� ,pF ,r� are the 2�2 retarded and Keldysh

Green’s functions, respectively, � denotes the excitation en-

ergy, �̂3 the third Pauli matrix, �̂= �̂�r� the gap matrix, vF the

Fermi velocity, pF the Fermi momentum, �P̂ , Q̂�� P̂Q̂− Q̂P̂,

and �P̂ , Q̂	� P̂Q̂+ Q̂P̂. The quantity � denotes �, �
−i 2e

�cA�r�, or �+ i 2e
�cA�r� when operating on the diagonal,

�1,2�, or �2,1� element of ĝR,K, respectively, with A�r� the
vector potential. The advanced function ĝA is obtained from
the retarded one by ĝA=−��̂3ĝR�̂3�†.

The term with E and B in Eq. �4� represents the Lorentz
force which is missing from the Eilenberger equations.4–7 It
is also absent in the standard Ginzburg-Landau equations2,3

obtained from the Eilenberger equations as a limit. Its rel-
evance may be realized by taking the normal-state limit of

�̂→ 0̂ and ĝR=−ĝA= �̂3; then the �1,1� element of Eq. �4� for
ĝK reduces to the quasiclassical Boltzmann equation in static
electromagnetic fields without the collision integral and time
dependence. Thus, the term is indispensable for describing
dynamical behaviors of superconductors, and as seen below,
will also produce observable effects even in equilibrium.

The gap matrix in Eq. �4� can be written as

�̂ = � 0 − �

�� 0
� . �5�

Also considering the symmetry of Eqs. �72�–�75� in Ref. 22,
we can express ĝR,K conveniently as

ĝR = � gR − if R

i f̄ R − ḡR �, ĝK = � gK − if K

− i f̄ K ḡK � , �6�

where the barred functions are defined generally by

ḡR��,pF,r� � �gR�− �,− pF,r���. �7�

The elements of ĝK further obey gK�=gK and f̄ K�= f K.
Equation �4� is supplemented by self-consistency equa-

tions for �, B, and E to form a closed set of equations. They
are given explicitly by4–7

� ln
T

Tc
=

1

4i



−�

� ��f K� −
2i�

�
tanh

�

2kBT
�d� , �8�

� � B =
4�

c
js, js � −

eN�0�
2



−�

�

�vFgK�d� , �9�

� · E = 4�	, 	 � −
eN�0�

2



−�

�

�gK�d� , �10�

where �¯� denotes the Fermi-surface average with �1�=1,
kB the Boltzmann constant, and N�0� the normal-state density
of states per spin and unit volume at the Fermi level. Equa-
tions �9� and �10� are just the Maxwell equations to deter-
mine the static electromagnetic fields.

The gap anisotropy can be incorporated easily into the
above formalism by ��r�→��r�
�pF� and �f K�→ �f K
�� in
Eqs. �5� and �8�, respectively, where 
 is the basis function
on the Fermi surface with �
2�=1. Other possible exten-
sions will be mentioned below near the end of Sec. III with
respect to the Hall coefficient.
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III. ELECTRIC FIELD DUE TO MAGNETIC
LORENTZ FORCE

We embark on solving Eq. �4� for the s-wave pairing by
estimating the order of magnitude of the Lorentz force. To
this end, let us introduce the units where the energy is mea-
sured by the energy gap �0 at T=0 in zero fields, the length
by �0���vF� /�0, the magnetic field by B0��c /2e�0

2, and
the electric field by E0��0 / e�0. Dividing Eq. �4� by �0,
one may realize immediately that the magnetic Lorentz force
in Eq. �4� is an order of magnitude smaller in terms of �
�� / �pF��01. Since E is induced solely by the magnetic
Lorentz force, as seen below, the term with E is also of the
order of �. It hence follows that we can carry out a pertur-
bation expansion of Eq. �4� with respect to the Lorentz force
by expanding

ĝR,K = ĝ0
R,K + ĝ1

R,K + ¯ . �11�

It is performed below up to the first order in � to an excellent
approximation.

We first neglect the Lorentz force in Eq. �4� to obtain the
equations of O��0�. They are just the standard Eilenberger

equations where the solutions ĝ0
R,K satisfy ĝ0

Rĝ0
R=1̂, ḡ0

R=g0
R,

and ĝ0
K= �ĝ0

R− ĝ0
A�tanh�� /2kBT�.4–7 The �1, 2� element of the

equation for ĝR reads

− i�f0
R +

1

2
�vF · � f0

R = �g0
R, �12�

with g0
R= �1− f0

R f̄0
R�1/2, which determines the whole solution.

Equation �12� with Eqs. �8� and �9� has been solved exten-
sively to clarify vortex structures of s- and d-wave supercon-
ductors in equilibrium.34–37

We next consider terms of O��� in Eq. �4�. The corre-
sponding �1,1� and �1,2� elements of the equation for ĝ1

K read

vF · �g1
K −

��f1
K + � f̄1

K

�
= − evF · E

�g0
K

��
−

e

c
�vF � B� ·

�g0
K

�pF
,

�13a�

− i�f1
K +

1

2
�vF · � f1

K = �
g1

K − ḡ1
K

2
. �13b�

The �2,2� and �2,1� elements are obtained from above by
setting �� ,pF�→ �−� ,−pF�, taking the complex conjugate,
and keeping Eq. �7� and ḡ0

K=−g0
K in mind. The four equa-

tions determine g1
K, ḡ1

K, f1
K, and f̄1

K. Writing them in terms of
g1

K+ ḡ1
K and g1

K− ḡ1
K, we are led to linear closed equations for

g1
K− ḡ1

K, f1
K, and f̄1

K without the external source. We hence
conclude f1

K=0 and ḡ1
K=g1

K. Substitution of this result into
the equation for g1

K+ ḡ1
K yields

vF · �g1
K = − evF · E

�g0
K

��
−

e

c
�vF � B� ·

�g0
K

�pF
,

which is clearly satisfied by the solution of

�g1
K = − eE

�g0
K

��
−

e

c
B �

�g0
K

�pF
. �14�

We will use this latter equation below.
The same consideration for the equation of ĝR leads to the

conclusion that f1
R=0, ḡ1

R=−g1
R, and g1

R is to be determined
by Eq. �14� with the replacement g0,1

K →g0,1
R . However, the

solution will not be necessary below in the present clean
limit.

To obtain a closed equation for E, let us operate � on Eq.
�10�. We then approximate gK�g0

K+g1
K, substitute Eq. �14�,

and use �−�
� �g0

K�d�=0 resulting from ḡ0
K�=−g0

K as well as
g0

K→ �2 for �→ ��. We thereby obtain

− �TF
2 �2E + E = −

B

4c
� 


−�

� � �g0
K

�pF
�d� , �15�

where �TF��8�e2N�0��−1/2 is the Thomas-Fermi screening
length.38

Equation �15� is one of the main results of the present
paper. It enables us to calculate the induced electric field of
clean superconductors in equilibrium with respect to the so-
lution g0

K of the standard Eilenberger equations, i.e., Eqs.
�12�, �8�, and �9�. Although derived above for the s-wave
case, Eq. �15� is also valid in the presence of gap anisotropy,
as seen below. It implies that the electronic screening is the
same in a superconductor as its normal state. Since the
source term on the right-hand side varies over the coherence
length or the magnetic penetration depth which is much
larger than �TF, we may generally neglect the first term on
the left-hand side of Eq. �15� to an excellent approximation.

Equation �15� can be simplified further for the spherical
Fermi surface with the slow-variation approximation. Let
us solve Eq. �12� perturbatively up to the first order in terms
of the gradient operator. Putting the result into g0

R

= �1− f0
R f̄0

R�1/2, we obtain

g0
R =

− i�

W
+

��vF · �� − �vF · ���

4W3 , �16�

where W���−i��2+ �2, and an infinitesimal positive imagi-
nary part is implied in �. We next substitute Eq. �16� into
g0

K= �g0
R−g0

A�tanh�� /2kBT� and use it in Eqs. �9� and �15�.
We then find



−�

� � �g0
K

�pF
�d� = −

6js

mN�0�vF
2e

= −
3c � � B

2�mN�0�vF
2e

.

We further put this expression into Eq. �15� together with
mN�0�vF

2 = �3 /2�n for the free-electron model. Also neglect-
ing the first term on the left-hand side, we obtain

E =
1

nec
B � js.

Thus, Eq. �2� by van Vijfeijken and Staas is reproduced, i.e.,
the superconducting Hall coefficient is predicted to stay con-
stant up to Tc for the s-wave pairing on the spherical Fermi
surface, having the same sign and magnitude as that of the
normal state.

HALL COEFFICIENT OF EQUILIBRIUM SUPERCURRENTS… PHYSICAL REVIEW B 79, 024521 �2009�

024521-3



Besides the Fermi-surface anisotropy, the gap anisotropy
can be incorporated easily into the above consideration by
��r�→��r�
�pF� and �f K�→ �f K
�� in Eqs. �5� and �8�, re-
spectively, where 
 is the basis function on the Fermi surface
with �
2�=1. It is then straightforward to show that Eq.
�15� still holds, and Eq. �2� with the slow-variation approxi-
mation is modified into

E = B � R� Hjs. �17�

The corresponding Hall coefficient is now a tensor:

R� H =
1

2N�0�ec
� �

�pF
�1 − Y�vF���1 − Y�vFvF�−1, �18�

where Y �Y�pF ,T� denotes the Yosida function39,40 given in
terms of �n��2n+1��kBT by

Y�pF,T� � 1 − 2�kBT�
n=0

� �2
�pF�2

��n
2 + �2
�pF�2�3/2 . �19�

The factor 1−Y in Eq. �18� acquires angular dependence for
the anisotropic pairing at finite temperatures due to the an-
isotropic distribution of thermally excited quasiparticles em-
bodied in Y.

We realize from Eq. �18� with Y�pF ,0�=0 that the super-
conducting Hall coefficient R� H at zero temperature should
have the same sign and magnitude for an arbitrary pairing as
that of the normal state. It agrees with the expression ob-
tained by Adkins and Waldram at T=0.10 It is determined
essentially by the integration of the curvature of the Fermi
energy �F���pF� over the entire Fermi surface. Especially,
R� H has no temperature dependence for the s-wave pairing
where 1−Y in Eq. �18� cancels. In contrast, the gap aniso-
tropy can bring a considerable temperature dependence in
R� H, as may be realized from 1−Y � 
2 for T�Tc. It is not
vF itself for T�Tc but vF
2 that is to be differentiated with
respect to pF. In other words, the anisotropic distribution of
thermally excited quasiparticles also plays a crucial role for
the superconducting Hall coefficient at finite temperatures.
This will be demonstrated in Sec. IV by a model calculation
on a d-wave pairing.

We now consider several extensions. When there are in-
ternal degrees of freedom in the relevant pairing,41 we need
to change ��r�→�i�i�r�
i�pF� in Eq. �5� with �
i

�
 j�=�ij as
well as �→�i and �f K�→ �f K
i

�� in Eq. �8�. It can be seen
easily that Eqs. �15� and �18� still hold with a modification of
�2
2→ �i�i
i2 in Eq. �19�. The odd-parity case with
�↑↓ , ↓↑� pairing can be handled similarly with the modifica-

tions f̄ →− f̄ and 
i
�→−
̄i in the whole formulation. This

latter pairing was studied in terms of the superconductivity in
Sr2RuO4 with a phenomenological Ginzburg-Landau func-
tional to predict a spontaneous Hall effect for a chiral p-wave
state.42

We next consider the effects of impurities on the s-wave
pairing within the Born approximation for the s-wave
scattering.4 This is carried out by adding terms
�i� /2����ĝR� , ĝR� and �i� /2����ĝR�ĝK+ �ĝK�ĝA− ĝR�ĝK�
− ĝK�ĝA�� on the left-hand side of Eq. �4� for gR and gK,
respectively, with � denoting the relaxation time. Then one
can show that g1

R still obeys Eq. �14� with g0,1
K →g0,1

R . On the

other hand, the equation for g1
K becomes more complicated to

prevent a straightforward extension of the clean-limit consid-
eration. Restricting ourselves to the Ginzburg-Landau region
near Tc and carrying out the expansion with respect to �,3

however, one can show that: �i� g1
K�O��2� whereas f1

K

�O��3�; and �ii� g1
K satisfies Eq. �14�. Thus, Eq. �2� is valid

near Tc even in the presence of impurities, and also expected
to hold approximately at lower temperatures.

We finally comment on the present results in terms of
preceding theoretical treatments. A transverse electric field is
shown here to result naturally due to the magnetic Lorentz
force, in contrast to a treatment based on phenomenologi-
cally extended Ginzburg-Landau equations.43 Compared
with those by Hong11 and Omel’yanchuk and
Beloborod’ko12 for the free-electron model, the present
mechanism due to the Lorentz force requires no energy de-
pendence in the density of states near the Fermi level,
thereby establishing the general existence of the transverse
electric field among superconductors. As for the additional
contribution found by Hong11 and Omel’yanchuk and
Beloborod’ko,12 it is due to the energy dependence in the
density of states, accompanied by a reduction in the pair
potential, and predicted to vanish at T=0. Hence it may be
distinguished clearly from Eq. �17� by experiments on clean
type-II superconductors in the Meissner state. There is yet
another mechanism of a finite electric field in superconduct-
ors not directly connected with the supercurrent, i.e., that
caused by a reduction in the pair potential such as the one in
a vortex core of type-II superconductors.33 However, this ef-
fect can also be neglected for clean type-II superconductors
in the Meissner state.

IV. NUMERICAL EXAMPLES FOR THE
HALL COEFFICIENT

To see the importance of the gap anisotropy on the equi-
librium Hall coefficient, we here present a model calculation
of Eq. �18� for a d-wave pairing. We specifically consider the
dimensionless single-particle energy on a two-dimensional
square lattice,

�p = − 2�cos px + cos py� + 4t1�cos px cos py − 1�

+ 2t2�cos 2px + cos 2py − 2� . �20�

with t1=1 /6 and t2=−1 /5, which forms a band of −4��p
�4. This model has been adopted by Kontani and
co-workers44,45 to describe the Fermi surface of cuprate su-
perconductors in theoretically investigating their normal-
state Hall coefficients. The Fermi surfaces for the average
electron fillings n=0.9, 1.95 per site are shown in Fig. 1.
Each of them is given in the extended zone scheme by a
singly connected contour around �px , py�= �� ,��.

The normal-state Hall coefficient RH
�n��RHx

�n�=RHy
�n� for this

band is obtained by estimating Eq. �18� with Y =0. It is found
that RH

�n� changes its sign at the filling nc=1.033 ��F
=−0.121� from negative to positive, as shown in Fig. 2.
Thus, the Fermi surface for n�nc consists of competing por-
tions with positive and negative curvatures which almost
cancel with each other. It is hence expected that the extra
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modulation of the curvature at finite temperatures due to the
gap anisotropy, embodied in the factor 1−Y of Eq. �18�,
produces the most spectacular effects around n�nc.

It should be noted that the Fermi surface by Eq. �20� is
not sufficient to account for the signs and temperature depen-
dences of the normal-state Hall coefficient in high-Tc super-
conductors, especially the positive sign of RH

�n� observed in
Nd2−xCexCuO4.46 Indeed, the vertex corrections due to the
strong antiferromagnetic fluctuations have been shown cru-
cial for explaining the observed behaviors of n�1.44,45 How-
ever, we expect that the single-particle model adopted here
will be sufficient to capture the essential physics which the
gap anisotropy brings into the superconducting Hall coeffi-
cient.

To see this, we here adopt a model d-wave pairing appro-
priate for n�0.8,


�pF� = A��pFx − ��2 − �pFy − ��2� , �21�

where A is the normalization constant determined by �
2�
=1.

Figure 3 displays RH�RHx=RHy of the equilibrium super-
current for n=0.9, 1.95 calculated by Eq. �18�. It is normal-
ized by the normal-state Hall coefficient RH

�n� for conve-
nience. With n=1.95 where the Fermi surface is almost
isotropic and free-electron-like with positive charge, RH

increases monotonically from RH /RH
�n�=1.0 at T=0 to

RH /RH
�n��3.0 at T=Tc. On the other hand, RH /RH

�n� for n

=0.9 even changes the sign as the temperature is increased
from T=0. These strong temperature dependences are
brought about by the modulation of the Fermi-surface curva-
ture by the anisotropic distribution of thermally excited qua-
siparticles.

The sign change in the Hall coefficient as a function of
temperature/magnetic field has been observed in several
high-Tc superconductors in the vortex state with dissipative
currents.47–53 The origin of this sign change still remains
mysterious because any attempt to analyze it theoretically
necessarily has to clarify complicated vortex motions of
type-II superconductors with electromagnetic fields. On the
other hand, we have shown here that the sign change can
occur even in the Hall coefficient of equilibrium supercur-
rents, which is much simpler without vortex motions, due to
the modification of the Fermi-surface curvature at finite tem-
peratures caused by the anisotropic distribution of thermally
excited quasiparticles. It may be detected in some high-Tc
superconductors. An observation of this sign change will
provide: �i� an unambiguous support for the mechanism
clarified here; and �ii� a clue to understand the sign change in
the vortex state with dissipative currents. We note in this
context that neither the magnetic Lorentz force nor the gap
anisotropy were incorporated in the phenomenological theo-
ries on the vortex motion21,29,33,50,51 and in the microscopic
theory based on the time-dependent Ginzburg-Landau
equations.32

V. SUMMARY

We have developed a microscopic theory of the Lorentz
force in equilibrium superconductors using a theoretical
framework which embraces the normal-state Boltzmann
equation. The magnetic Lorentz force working on equilib-
rium supercurrents is shown to induce an electric field as Eq.
�17�, which has the same expression as the normal-state one
with dissipative currents. Using the slow-variation approxi-
mation appropriate for type-II superconductors, we have ob-
tained an analytic expression for the Hall coefficient in the
clean limit as Eq. �18�. It tells us that: �i� RH at T=0 carries
the same sign and magnitude as that of the normal state; �ii�
the coefficient stays constant up to Tc for the s-wave pairing;
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FIG. 1. �Color online� Fermi surfaces of n=0.9, 1.95 for the
single-particle energy of Eq. �20�.
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and �iii� RH can have a considerable temperature dependence
for a nonisotropic energy gap due to the anisotropic quasi-
particle distribution at finite temperatures. We have shown in
terms of the point �iii� that a sign change in RH may result, as
seen in Fig. 3. This sign change in the equilibrium Hall co-
efficient may be observed in some high-Tc superconductors
in the Meissner state. The present mechanism for the sign
change, which has not been considered in any of the preced-
ing treatments, may also play an essential role in the sign
change of RH observed in the vortex state with dissipative
currents.47–53

Further experiments for a wide range of materials are de-
sired on the Hall voltage in the Meissner state for probing the
Lorentz force through the sign and magnitude of the super-

conducting Hall coefficient. The electric field will also be
present in the vortex-lattice state to form a long-range peri-
odic pattern, which may in principle be detected by experi-
ment.
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