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Applying the London theory we study curved vortices produced by an external current near and parallel to
the surface of a type II superconductor. By minimizing the energy functional we find the contour describing the
hard core of the flux line and predict the threshold current for entrance of the first vortex. We assume that the
vortex entrance is allowed due to surface defects, despite the Bean-Livingston barrier. Compared to the usual
situation with a homogeneous magnetic field, the main effect of the present geometry is that larger magnetic
fields can be applied locally before vortices enter the superconducting sample. It is argued that this effect can
be further enhanced in anisotropic superconductors.
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I. INTRODUCTION

Surface-barrier effects in type II superconductors �SCs�
were predicted by Bean and Livingston1 and de Gennes.2

The entry of flux lines into a planar type II superconductor
situated in an external magnetic field Hext parallel to its sur-
face is opposed by a strong surface barrier when Hext=Hc1,
the first critical field. Therefore the entry of flux lines could
occur at a field value Hext=HS�Hc2�Hc1, where Hc2 is the
second critical field. These surface-barrier effects have been
observed experimentally in the 1960s on lead thallium
alloys3 and on niobium metal,4 and make it difficult to mea-
sure directly the thermodynamic properties of the supercon-
ductor.

Typically surface barriers are reduced due to surface dis-
order, which creates large local magnetic fields and allows
for nucleation of vortices. Suppression of surface barriers for
flux penetration was observed on YBaCuO �Ref. 5� and in
BiSrCaCuO whiskers6 due to heavy-ion irradiation. In
ellipsoid-shaped YBaCuO it has been argued that due to
roughness of submicrometer order, the surface barrier does
not push the penetration field HS above Hc1 but only lowers
the rate of vortex entry.7

Another source for the delay of the entry of flux lines into
superconductors is the “geometrical barrier,”8,9 which is par-
ticularly important in thin films of constant thickness �i.e.,
rectangular cross section�. This effect is absent only when
the superconductor is of exactly ellipsoidal shape or is ta-
pered like a wedge with a sharp edge where flux penetration
is facilitated. The resulting absence of hysteresis in wedge-
shaped samples was nicely shown by Morozov et al.10

In this paper we study another source for the delay of
entrance of flux lines due to inhomogeneity of the external
magnetic field. In particular we consider magnetic field pro-
duced by an external current I flowing parallel to the surface
of a type II superconductor, see Fig. 1. The magnetic field
produced by the external current enters the sample as curved
vortices at sufficiently large current. We find that the en-
trance of the first line occurs when the induced magnetic
field at the surface at the position closest to the wire already
exceeds the bulk critical field Hc1. This delay in entrance of
the curved vortices occurs due to geometrical reasons. The
entry and outlet points are associated with an energy cost

�
�0

2

�0� , where � is the penetration depth, �0 is the flux quan-
tum, and �0 is the free permeability. Note that �0

2 /�0kB
=0.2464�106 K �m, implying that in typical supercon-
ductors this is a large energy scale. In addition the spatially
averaged magnetic field experienced by the vortex is lower
than the maximal one occurring closest to the wire. Consid-
ering those effects in an actual calculation we find how large
a magnetic field can be applied locally without introducing
vortices into the sample.

This implies that application of magnetic field by an ex-
ternal current near the SC can be convenient for experiments,
demanding sizable magnetic fields in the vortex-free state.
As an example of such an experiment we mention the
London-Hall effect.11 Whereas this effect was observed in
regular superconductors,12–14 it is now interesting to measure
it in high-temperature superconductors. Typically Hc1 is
quite low in these materials, and therefore vortices penetrate
the sample at very low homogeneous magnetic fields; hence
our geometry can be useful. However other surface effects
seem to be an additional obstacle for the observation of the
London-Hall effect in high-temperature superconductors.15

A parameter which we leave out of consideration in this
work is the anisotropy of the superconductor, which is par-
ticularly important in high-temperature layered supercon-
ductors. In the case of strong anisotropy additional compli-
cations enter the problem even in the case of uniform
magnetic field, where the direction of the vortices deviates
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FIG. 1. Curved flux line near the surface of a superconductor
enabled by an external current I.
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from the direction of the external magnetic field.16 For cer-
tain �elliptical� treatment of the short-distance cutoff the vor-
tices can have two different directions, corresponding to two
degenerate minima in the free energy.17

We argue that strong anisotropy is expected to have im-
portant effects in our geometry, increasing further the maxi-
mal local magnetic field allowed before curved flux lines
penetrate the sample. Consider the case where the ĉ axis of a
uniaxially anisotropic superconductor corresponds to the di-
rection x̂ in our geometry, ĉ � x̂. In this case the surface of the
superconductor, parallel to the external wire, corresponds to
an ab plane. In the limit of strong anisotropy �ab��c the
bulk critical field parallel to the surface Hc1�

�0

4��0�ab�c
log

�c

�

becomes very small. On the other hand, the entry and outlet
points of the flux line are associated with a large energy cost

�
�0

2

�0�ab
independent of �c. Therefore we expect the maximal

surface magnetic field before the entry of the first vortex to
increase relative to Hc1 as a function of �c /�ab. We leave a
detailed treatment of anisotropy in this geometry for future
work.

This paper is organized as follows. In Sec. II we formu-
late the problem and obtain expressions for the magnetic
field and free energy within the London theory. In Sec. III we
present and discuss the numerical results for the minimiza-
tion of the free energy as a function of vortex contour. In
Secs. II and III A we consider the simpler but unrealistic case
of a wire with zero width �i.e., ���. In Sec. III B we gener-
alize to wires with finite width. Section IV contains conclu-
sions. Some details about the derivation of the free energy
are relegated to the Appendix.

II. FORMULATION

Suppose that a type II SC occupies the region x	0 and
magnetic field is induced by an external current I flowing
along a wire of zero cross section at �x ,z�= �−d ,0�, see Fig.
1. Our main object under consideration is a curved flux line
lying in the plane y=0. Let 
 denote the closed contour in
Fig. 2 consisting of the axial line of the flux line � and a line

�1 symmetric to � with respect to the plane x=0, corre-
sponding to an image vortex. Upon further increasing the
current a lattice of curved vortices is expected to form along
the wire. However here we shall concentrate on small cur-
rents and a single flux line.

In the type II limit, where the coherence length � is much
shorter than the penetration depth �, the total free energy at
zero temperature is given by2

F��� =
�0

2
�

r	�

d3r�H� 2 + ��x��2��� � H� �2� − �0� d3rA� · j�ext.

�1�

Here j�ext=−I�x+d��z�ŷ, I is the applied current through the

wire, A� is the vector potential H� =�� �A� , and ��x� is the unit
step function. The integral 	r	� is carried out in all space
outside of the vortex “hard core” �. We assume that the
radius of curvature of � is larger than � at any point in �.
Note that at x=0 there is an apparent kink in 
; however this
should be thought of as a kink only for length scales that are
large compared to �.

The corresponding equations for the magnetic field H� are

the Maxwell equation, �� �H� = j�ext for x�0, and the London

equation, �1−�2�� 2�H� �r��=
�0

�0
	�dr��3�r�−r��� for x	0. For all

x we also have �� ·H� =0. In addition we impose appropriate
boundary conditions at x=0; the magnetic field is continu-
ous, and no supercurrent flows perpendicular to the surface,

j�x= ��� �H� �x=0. To construct a solution we use the functions

H� A�k�2�,B�k�2�
hom �r�� =� d2k2

�2��2eik�2·r�

� 
A�k�2��− k2
2x̂ + ik�2��k2��e−��k2�x x 	 0,

B�k�2��k2��k2�x̂ + ik�2��k2��ek2x x � 0,
�

H� 
�r�� =
�0

�0
�




dr��� d3k

�2��3eik�·�r�−r��� 1

1 + �2k2 ,

H� I�,d��r�� =
I�

2�

�− z,0,x + d��
�x + d��2 + z2 . �2�

Here k�2=kyŷ+kzẑ, k2=�ky
2+kz

2, and ��k�=�k2+�−2. For any

A�k�2� ,B�k�2�, the function H� hom satisfies the homogeneous

equations �� �H� hom=0 for x�0 and �1−�2�� 2�H� hom=0

for x	0. The function H� 
 satisfies the London equation

�1−�2�� 2�H� 
�r��=
�0

�0
	
dr��3�r�−r��� in all space. The function

H� I�,d� satisfies Maxwell equation �� �H� I�,d��r��= j�ext� for j�ext�
= I��x+d���z�ŷ for all space.

Defining the surface two-dimensional Fourier transform

H� �
surf�k�2�=	dydze−ik�2·r�H� ��0,y ,z� for �=
 , I� ,d��, one finds

H� 

surf�k�2� =

�0

2�0�2�



dr��e−ik�2·r��e−��k2��rx��

��k2�
,
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FIG. 2. � is the axial line of the vortex line. The closed contour

 is �+�1.
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H� I,d
surf�k�2� = �ky��Ie−�kzd��i sgn kz,0,sgn d� . �3�

The solution of the equations satisfying the desired boundary
conditions is obtained by adding together the functions in
Eq. �2� and solving for A�k�2� and B�k�2� to give continuity. It
is convenient to include an image current at x=−d. The total
magnetic field is

H� = H� 0 + H� v + H� s,

H� 0 = ��− x��H� I,d + H� −I,−d� + H� s0, H� s0 = H� A0,B0

hom ,

H� v = ��x�H� 
, H� s = H� A1,B1

hom , �4�

where

A0�k�2� =
2�H� I,d

surf�k�2��z

ikz���k2� + k2�
, B0�k�2� = − A0�k�2�

k2

��k2�
,

A1�k�2� = B1�k�2� =
�H� 


surf�k�2��x

k2�k2 + ��k2��
. �5�

In the absence of vortices the magnetic field is given by H� 0.
It is plotted in Fig. 3 for d=5�.

The total free energy as function of � is obtained by sub-
stituting the magnetic field Eq. �4� into the free energy Eq.
�1�. We obtain

F = F0 + Fv + Fs + Fext. �6�

Here

F0 =
�0

2
� d3r�H� 0

2 + ��x��2��� � H� 0�2 − 2A� 0 · j�ext� ,

Fi =
�0

2
� d3r�H� i

2 + ��x��2��� � H� i�2�, i = v,s ,

Fext = − �0� d3r�A� v + A� s� · j�ext. �7�

Here H� i=�� �A� i �i=0,v ,s�. All mixed terms between

H� 0 ,H� v ,H� s vanish. For the vanishing of mixed terms involv-

ing H� v, see p. 579 of Ref. 18. We prove the vanishing of the

remaining crossed terms between H� 0 and H� s in the Appendix.
The term F0 is the energy of the system without vortices.

To evaluate it we introduce a finite wire radius a�� ,d and
assume that the external current flows in a thin shell of this
radius. Note that F0 scales linearly with the length of the
wire, Ly. The result of a calculation, using the methods of the
Appendix, is

F0

Ly
= −

�0I2

2�
�1

2
log�2d/a� + g�d/��� ,

g�y� = �
0

�

dx
e−2x

x + �x2 + y2
. �8�

We can infer from it the repulsive force per unit length
�dF0

Ly

�0 between the wire and the SC. It is plotted in Fig. 4
�for a /�=0.01�. Using g�y→��= 1

2y and
g�y→0�= 1

2 log 1
2y , we may identify two regimes. �i� d��:

here g→0 and
�dF0

Ly
→−

�0I2

2��2d� . In agreement with Ampere
force law, this corresponds to a repulsive force per unit
length between two wires that are 2d apart carrying current I
with opposite direction. This is the origin of the levitation

effect. The second wire corresponds to the image term H� −I,−d
in Eq. �4�. �ii� d��: the 1 /d divergence in the force is cutoff
by �. The limiting repulsion force per unit length as the wire

approaches the surface is
�dF0

Ly
→−

�0I2

2��c0 where c0�0.665.
The term Fext accounts for the interaction between the

vortex and the external current. Using j�ext=−I�x+d��z�ŷ
we have

�6 �4 �2 0 2 4 6
x�Λ
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Λ

FIG. 3. Field lines of the vortex-free solution H� 0�x ,z� for d
=5� �direction of field lines corresponds to anticlockwise rotation
around �x ,z�= �−d ,0��.
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�d F0�

FIG. 4. Repulsive force between the superconductor and the
wire in the absence of vortices. The dimensionless force
−�2�� /Ly�0I2��dF0 behaves as � / �2d� for d�� and goes to a con-
stant c0�0.665 for d��.
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Fext = �0I�
−�

�

dy�A� v�− d,y,0� + A� s�− d,y,0��y . �9�

The contour of integration �x ,y ,z�= �0,−� ,0�→ �0,� ,0�
corresponds to the external current. Physically the wire
should be closed into a loop, and we may close the contour
of integration, e.g., in the xy plane from x→−�. Then, using
the Green’s theorem we obtain

Fext = �0I�
−�

−d

dx�
−�

�

dy�H� v�x,y,0� + H� s�x,y,0��z.

Note that H� v�x ,y ,0� vanishes at x�0. Using the formula for

H� s, Eq. �4�, we obtain

Fext = −
I�0

�
�

�

dr�z�
0

�

dke−kd cos�krz�

� �1 − e−��k�rx��1 −
k

��k�
� . �10�

We used the identity �
dr� ·�� F�r��=0 which holds for any
continuous function F and closed contour 
. In this calcula-
tion F�r��=eikrz sgn�rx��1−e−��k��rx��.

The terms Fv and Fs have been derived in Refs. 18 and
19,

Fv =
�0

2

2�0
�

i=x,y,z
�




dr�i�



dr�i�
exp�− �r� − r���/��

8��2�r� − r���
,

Fs =
�0

2

2�0
�

�

dr�z�
�1

dr�z�V
�s��r� − r��� . �11�

The term Fv is sensitive to the short-distance cutoff �. To
account for the cutoff we restrict the contour integration to
�r�−r���	�. The anisotropic kernel for Fs is

V�s��r�� =
1

2��2�
0

�

dk�1 −
k

��k�
�e−��k��rx�J0�k�rz�� ,

where J0�x� is a Bessel function, and this integral can be
done and expressed in terms of other Bessel functions.19

Note that V�s��rx→0,rz→0�= �2��3�−1, hence there is no
need to regulate Fs with a cutoff.

Different than the usual case with a uniform magnetic
field, in our problem the energy F=F0+Fv+Fs+Fext is a
function of the contour � and is minimized for a particular
contour which we need to find. To this end we minimize
F��� numerically, approximating � by a polyline having 2M
equal length sides �M =8 in most simulations�. We assume
that � has the reflection symmetry z→−z. This leads to a
M +1-dimensional parameter space in which we search for
the minimum of F. For an example see Fig. 5. In all our
calculations �=.001�.

III. SURFACE BARRIER

We find that the free energy contains a surface energy
barrier. From this section we shall disregard the vortex-

independent term of the free energy, F→Fv+Fs+Fext. For
later comparison we briefly discuss the case with homoge-
neous magnetic field.1 Consider a semi-infinite type II super-
conductor with a flux thread within it and parallel to the
surface and to the external magnetic field Hext ��ẑ�. The line
energy f =F /Lz �Lz is the length of the vortex taken to be
parallel to ẑ� as a function of the distance from the surface x0
is given by1,2

f�x0� = �0�Hexte
−x0/� −

1

2
h�2x0� + Hc1 − Hext� . �12�

Here h�r�=
�0

2��0�2 K0� r
� � is the function giving the field at

distance r of a single straight flux line, Hc1= 1
2h���

�
�0

4��0�2 log�

� , and K0 is the zero-order Bessel function. The
term �e−x0/� describes the repulsive interaction of the line
with the external field and associated screening currents. The
term �h�2x0� represents the attraction between the line and
its image. When Hext�Hc1 there is a strong barrier opposing
the entry of a line. We can understand this barrier as follows.
When Hext=Hc1, f�x0=0�= f�x0=��=0. If we start from large
x0 and bring the line closer to the surface, the repulsive term
��e−x0/�� dominates the image term �h�2x0��e−2x0/��. Thus f
becomes positive and we have a barrier. The barrier disap-
pears, however, in high fields. When Hext	HS=�0 /4���,
the slope �f /�x0 �x0�� becomes negative. HS is of the order of
the thermodynamic critical field Hc2. The conclusion is that
at field Hext�HS, the lines cannot enter in an ideal specimen
�although their entry is thermodynamically allowed as soon
as Hext	Hc1�. However this picture is modified in experi-
ment due to surface inhomogeneities producing local large
magnetic fields and allowing vortices to enter the sample
above Hc1.

A. Results for wire with zero width

We find a similar energy barrier for the entrance of a
curved vortex in our geometry with an external current rather

1 2 3 4
x�Λ

2

4

6

8

z�Λ

22

I
Μ0 Λ��������������
Φ0
�26

FIG. 5. Contours corresponding to a local minimum of F for
d=10� and for the specified currents. We assume that � has the
reflection symmetry z→−z and plot � only for z�0.
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than a homogeneous external magnetic field. This barrier can
be visualized in Fig. 6. Note that typically the barrier height
� is of the order ���0

2 /�0��Tc, where Tc is the critical
temperature of the SC. This implies rather small tunneling
probabilities e−�/T�1 which prevent entry of vortices for
clean surfaces. However for strong disorder, vortices can en-
ter more efficiently via nucleation at impurity sites. The con-
tours corresponding to the minimum of the curves with stars
and squares in Fig. 6 are plotted in Fig. 5.

Figure 6 implies the following generic picture. For infini-
tesimal current there is no stable vortex configuration. As the
current increases we identify three threshold currents Ic0
� Ic1� IS. When the current exceeds Ic0 a metastable minima
with F	0 occurs. When the current exceeds Ic1, the mini-
mum energy changes sign, F�0, but still there is an energy
barrier for the entrance of a flux line. When the current ex-
ceeds IS the barrier disappears.

In Fig. 7 we investigated the dependence of Ic0 and Ic1 on
the distance to the wire d. In the limit d��, Ic1→�dHc1, see
diagonal dashed line. In that limit the region of metastability
Ic0� I� Ic1 is very narrow. This behavior appears in sharp
contrast to the case of uniform magnetic field even in the
limit d��. Equation �12� predicts metastable solutions for
infinitesimal homogeneous magnetic field Hext. These meta-
stable solutions live far from the surface as Hext becomes

smaller. This effect is absent in our geometry both due to the
decay of the effective external magnetic field created by the
wire at long distances from the surface and due to the line
energy for penetration a long distance into the SC. In the
other extreme limit d�� we observed from the numerical
solution that the contour 
 can be approximated by a circle
centered at the origin. Making this assumption we can cal-
culate Ic0

circle=100.6981 �0

�0� �x0�0.72�, F�0� /�0
2=0.1715� and

Ic1
circle=100.749 �0

�0� �x0=1.27� , F=0� in the limit d→0. This
approximation is in reasonable agreement with the actual
solution as the horizontal dashed lines show.

The contour � changes as function of d. In Fig. 8 we plot
the extension of the contour in the x and z directions. We
fitted the numerical results for x0 with an empirical formula
x0 /�=c+log�d /�� with c�1, implying that the penetration
of the vortex is of order � for all d. On the other hand it
appears that z0 grows linearly as a function of d. In the limit
d→0 we have x0 /�→1.26 and z0 /�→1.43.

For disordered surfaces, the present geometry can be use-
ful for application of large magnetic fields on a SC sample in
a vortex-free state. The maximal magnetic field that can be
applied in a vortex-free state using the wire geometry is

Hsurface��H� 0�z�x=z=0� �I→Ic1
= �H� s0�z�0+,0 ,0� �I→Ic1

�see Eq.
�4�� at I→ Ic1. In the limit d��, Hsurface coincides with the
bulk first critical field Hc1�

�0

4��0�2 log�� /��; however Hsurface

increases at smaller d, see Fig. 9. Note that the field enhance-
ment is small for d	3� �Hsurface�2Hc1 for d=3��.

We turn to an estimation of the threshold current IS at
which the barrier disappears. A more precise calculation
would involve the Ginzbur-Landau theory. We follow the
above analysis of HS.2 Since the London theory is applicable
at distances �� we estimate IS using

1 2 3 4
x0�Λ

�1.5

�1

�0.5

0.5

1

1.5

2

2.5

F Μ0 Λ�������������������
Φ0

2

I	Ic0

Ic0	I	Ic1

Ic1	I	ISIc1	I	IS

FIG. 6. Evolution of surface barrier as a function of external

current for d /�=10. When I� Ic0 �diamonds, I=19
�0

�0� � the force on
the line always points toward the surface. When Ic0� I� Ic1 �stars,

I=22
�0

�0� � there exists a metastable minima with positive energy.

When Ic1� I� IS �squares and triangles I=26,80�
�0

�0� � the mini-
mum energy is negative, but a barrier opposes the entry of the flux
line. Each point in this plot is obtained by minimizing F with re-
spect to the contour � with a constraint of fixed x0.

�0.5 0 0.5 1 1.5 2
Log10�d�Λ�

0.75

1.25

1.5

1.75

2

2.25

Log10�
Ic0,1 Μ0 Λ��������������������������
Φ0

�

Ic0

Ic1

FIG. 7. Dependence of threshold currents Ic0 and Ic1 on d /�.
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d�Λ
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FIG. 8. Extensions of the curved flux line along x and z as a
function of d /� at I= Ic1.
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Log10�d�Λ�
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15

Hsurface���������������������
Hc1

FIG. 9. Magnetic field at the surface just before the entry of the
first vortex for I→ Ic1 �see definition of Hsurface in text�. At d��,
Hsurface→Hc1. As d becomes smaller the SC can sustain larger mag-
netic fields in the vortex-free �Meissner� state.

VORTEX PENETRATION INTO A TYPE II… PHYSICAL REVIEW B 79, 024503 �2009�

024503-5



� �F

�x0
�

x0��

= 0. �13�

We find numerically that at x0�� the closed contour 
 is
well approximated by a circle with radius x0 centered at x
=z=0. In the limit x0���� we can evaluate the functional
F�x0� analytically. In Eq. �11� for Fv we can set exp�−�r�
−r��� /��→1, hence

Fv�x0� �
�0

2x0

32��0�2�
0

2�

d�1�
0

2�

d�2
cos��1 − �2�

�sin
�1 − �2

2
�

� ��2x0�sin
�1 − �2

2
� − �� . �14�

Compared to Fv, the stray term is negligibly small, Fs

�
�0

2

�0� �
x0

� �2. The interaction energy with the external current
reads

Fext�x0� = −
I�0x0

2

2�2 f̃�d/�� ,

f̃�x� = �
0

�

dye−yx��y2 + 1 − y� . �15�

Using these formulas for Fv and Fext we obtain from Eq. �13�
the estimate

IS �
�0

8�0� f̃�d/��
. �16�

The dependence of IS on d /� is hidden in the function f̃�x�,
with f̃�x→��→x−1 and f̃�x→0�→ log�x−1/2�+c, where c

�0.3. For d�� we have IS�
�0d

8�0�� . In this case the magnetic
field due to the external current at x=z=0 is �H0�r�=0��z

→ IS

�d . It is of the order of the second critical field Hc2. In the
other limit d�� we have IS�

�0

4�0� log��/d� . Note that this be-
havior holds for ��d��. In this regime we have IS� Ic1

�
�0

�0� . In Fig. 10 we plot the phase diagram of the system.

B. Finite wire cross section

To make connection with experiment we consider a finite
cross section of the wire carrying the external current. Con-
sider the rectangular cross section as shown in Fig. 11 and
assume that the current I flows uniformly in this cross sec-
tion.

We can write the external current density as

j�ext → −
I

xwzw
�

d−xw/2

d+xw/2

dd̃�
−zw/2

zw/2

dz̃�x − d̃��z − z̃�ŷ .

�17�

The modification to the magnetic field H� =H� 0+H� v+H� s oc-
curs only in the first term,

H� 0�r�� →
1

xwzw
�

d−xw/2

d+xw/2

dd̃�
−zw/2

zw/2

dz̃�H� 0�x,y,z − z̃��d→d̃,

where H� 0�x ,y ,z� is given in Eq. �4�. Next we focus on the
modification of the vortex-dependent part of the free energy
F=Fv+Fs+Fext. Only the term Fext is modified. Using Eq.
�17� it is easy to find that

Fext → −
I�0

�
�

�

dr�z�
0

�

dke−kd cos�krz��1 − e−��k�rx�

� �1 −
k

��k�
�� sinh

kxw

2

kxw

2

sin
kzw

2

kzw

2
� . �18�

Let us first specialize to the case of square cross section
where the wire touches the SC, xw=zw=2d, and compare this
with a pointlike cross section xw=zw→0 �we ignore any
electron or Cooper pair tunneling between the SC and wire�.
We have repeated the calculation of Ic0 and Ic1. The results
are roughly the same for both cross sections for d��, and
deviations up to 10% are obtained for d�� up to d=100�.
In Fig. 12 we compare the contours at Ic1 as a function of d
for the two cross sections. We can see that z0 changes by a
factor of �1.6 for d�90�.

The magnetic field at the surface just below Ic1 is com-
pared for the two cross sections in Fig. 13. At d�� it ap-
proaches Hc1 in both cases, while for d�� it is larger for
pointlike cross section by about 10%.

�0.5 0 0.5 1 1.5 2
Log10�d�Λ�

1

2

3

4

Log10�
I Μ0 Λ������������������
Φ0
�

Ic1

IS

Meissner

mixed 
 barrier

no barrier

FIG. 10. Phase diagram. For I� Ic1 vortices are thermodynami-
cally unfavorable. For I	 Ic1 curved flux lines become favorable,
but an energy barrier opposes their entry until the current exceeds
IS. A metastable phase exists in a narrow strip below the boundary
I= Ic1, as shown in Fig. 7.

d

superconductorvacuum

xw

zw
x

z

y

FIG. 11. Rectangular cross section of the wire carrying the ex-
ternal current.
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Next we consider the dependence on zw for zw�xw=2d
which can be experimentally relevant. The limit zw→� can

be treated analytically since the external field H� 0 is uniform
at all x	 �−d+

xw

2 �. In this limit Hsurface�Ic1�→Hc1. For finite
zw we calculated Hsurface�Ic1� numerically, see Fig. 14. We
conclude that zw should not be too large in order to obtain a
sizable enhancement of the surface field in the vortex-free
state for a disordered surface.

We estimate the typical value of the threshold current Ic1.
For the regime of interest d��, we have Ic1�

�0

�0�

= 1.6455 mA
���m� . For �=1 �m this corresponds to current density

of �1 mA �m−2.

IV. CONCLUSIONS

In this work we studied solutions of London theory in a
geometry where an external mesoscopic current flows paral-
lel to a surface of a SC. Only above the threshold current Ic0
do there exist solutions with curved flux lines entering and
leaving the SC at the surface. At a larger threshold current,
Ic1, these solutions become energetically favorable; however
an energy barrier separates them from the vortex-free solu-
tion. At a third threshold current, IS, this barrier disappears.
To determine the current at which vortices actually penetrate
the sample, one has to account for the degree of disorder of
the surface. For strong surface disorder the vortex can pen-
etrate at I= Ic1 despite the presence of the barrier due to large
local magnetic fields produced at impurity sites allowing for
nucleation of vortices. On the other hand, for a clean surface,
the entrance of vortices occurs at I= IS.

By calculating those currents using a numerical solution
of the problem we conclude that for strong surface disorder,
the present geometry allows one to achieve locally larger

magnetic fields in the vortex-free state, as compared to the
case of homogeneous magnetic field, provided that the wire
thickness is of O���. This can be potentially relevant for
experiments in high-temperature superconductors which
typically have extremely low values of Hc1. We argued that
the effect of enhancement of the magnetic field in the vortex-
free �Meissner� state becomes more pronounced in strongly
anisotropic superconductors, which is particularly relevant
for layered high-temperature superconductors.

ACKNOWLEDGMENTS

We would like to thank Jordan Baglo, Walter Hardy, and
Cedric Lin for stimulating discussions. This work was sup-
ported by NSERC �E.S. and I.A.� and CIfAR �I.A.�.

APPENDIX: MIXED TERMS IN FREE ENERGY

We shall prove the vanishing of crossed term in the en-

ergy Eq. �1� between H� 0 and H� s �see Eq. �4��,

F�H0Hs�
= �0� d3r�H� 0 · H� s + ��x��2��� � H� 0� · ��� � Hs�� = 0.

�A1�

From Eq. �4� we have H� 0=H� 0�+H� s0 where H� 0�=��−x��H� I,d

+H� −I,−d�=�� �A� 1 and

A� 1 =
Iŷ

4�
log

�x + d�2 + z2

�x − d�2 + z2 , x � 0. �A2�

Correspondingly, we have F�H0Hs�
=F�H0�Hs�

+F�Hs0Hs�
. Con-

sider the term F�H0�Hs�
=�0	x�0d3rH� 0� ·H� s. We will use the

vector identity ��� �A� � ·B� =A� · ��� �B� �+�� · �A� �B� �, with A�

=A� 1, B� =H� s, and the fact that �� �H� s=0. Then the volume
integral can be transformed to an integral on the surface x

=0−. However this integral vanishes because A� 1�0−,y ,z�=0,
hence F�H0�Hs�

=0. Now let us consider the term F�Hs0Hs�
and

define H� s=�� �A� s. For the integral in the region x�0 we use

the above vector identity with A� =A� s and B� =H� s0, and for x

	0 we use the vector identity with A� =H� s0 and B� =�� �H� s.
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x0�Λ

XW�YW�0

XW�YW�2d
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d�Λ
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FIG. 12. d dependence of x0 and z0 for two cross sections of the
wire.
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Hsurface���������������������
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FIG. 13. Magnetic field at the surface �see definition in text� just
before the entry of the first vortex at I→ Ic1 for either zero wire
cross section �xx=zw=0, stars� or finite cross section �xx=zw=2d,
squares�.
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FIG. 14. Magnetic field at the surface at I→ Ic1 as a function of
zw for xw=2d and d=� /2.
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Taking into account that H� s and H� s0 satisfy the homogeneous
equations, we obtain

�
x�0

d3r��� � A� s� · H� s0

=� dS�A� s
− � H� s0

− �x,

�
x	0

d3r�H� s0 · H� s + �2��� � H� s0� · ��� � Hs��

= − �2� dS�H� s0
+ � ��� � H� s

+��x. �A3�

Here 	dS=	−�
� dy	−�

� dz and H� �=H� �x=0� ,y ,z�. For x	0 we

can use A� s=−�2�� �H� s, which follows from the London

equation for H� s. Next we use the fact that by construction,

H� s
−=H� s

++H� v
+. This allows us to express A� s

−=−�2�� � �H� v
+

+H� s
+� and combine the two terms of Eq. �A3� as

F�Hs0Hs�
= − �0�2� dS���� � H� s

+� � �H� s0
− − H� s0

+ � + ��� � H� v�+

� H� s0
− �x. �A4�

Now we use the explicit forms of these factors �H� s0
− −H� s0

+ �
=− Idẑ

��d2+z2� , �H� s0
− �y =0,

��� � H� s
+�y = −

�0

2�0�2�



dr�x�� d2k2

�2��2e−ik�2·r��+i�kyy+kzz�−��k2��r�x��

�
− ikz���k2� − k2�

k2��k2�
,

��� � H� v
+�y =

�0

2�0�2�



dr�x�� d2k2

�2��2e−ik�2·r��+i�kyy+kzz�−��k2��r�x��

�
ikz

��k2��1 −
�2�k2�

kz
2 � ,

�H� s0
− �z = − I� d2k2

�2��2eik�2·r�−�kz�d
k22��ky�
��k2� + k2

. �A5�

Plugging these expressions in Eq. �A4�, one can readily ob-
tain F�Hs0Hs�

=0 �without performing any integration�, com-
pleting the proof for F�H0Hs�

=0.
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