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We study the magnetization-switching statistics following reversal of the applied field for three separate
computational models representing the same physical system: an iron nanopillar. The primary difference
between the models is the resolution of the computational lattice and, consequently, the intrinsic parameters
that must be rescaled to retain similarity to the physical system. Considering the first-passage time to zero for
the magnetization component in the longitudinal �easy-axis� direction, we look for applied fields that result in
bimodal distributions of this time for each computational system and compare the results to the experimental
system. We observe that the relevant fluctuations leading to bimodal distributions are different for each lattice
resolution and result in magnetization-switching behavior that is unique to each computational model. Correct
model resolution is thus essential for obtaining reliable numerical results for the system dynamics.
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I. INTRODUCTION

The constant growth of the performance of semiconduc-
tors, typically characterized by Moore’s law, is also wit-
nessed in the progress of data storage.1 For example, current
candidate materials for magnetic storage devices are now
poised to surpass an areal density of 1 terabit /cm2; an in-
crease of several orders of magnitude in just ten years.1 At
this density, the size of the recording bit approaches a limit
constrained by superparamagnetism. This issue is addition-
ally complicated by the requirement that bits should maintain
95% of their magnetization over a period of ten years to meet
the industry standard. In addition, subnanosecond
magnetization-switching times are necessary to achieve suit-
able rates for read/write operations.1 Storage bits should con-
sequently have the property of a single characteristic switch-
ing time, which ensures a predictable response as the read/
write head of the device passes over the recording medium.
Along with meeting the numerous manufacturing challenges
facing the implementation of these requirements, a compre-
hensive characterization of the magnetization switching of
the constituent magnetic nanoparticles is needed.

In this paper, we study the switching statistics of models
of elongated defect-free iron nanopillars, using several dif-
ferent resolutions of the computational lattice to model the
same physical pillar. The high aspect ratio of these systems
introduces a shape-induced anisotropy �SIA� that assists in
raising the coercivity of the particle and reducing unwanted
thermally activated switching during the long-term storage of
the bit information. Here, we are particularly interested in
bimodal distributions of the switching time arising in various
regimes of the applied field, which could potentially compro-
mise the reliability of the switching process.

A bimodal distribution was first witnessed in a highly re-
solved model of an iron nanopillar based on experimental

work by von Molnár and co-workers.2–4 Preliminary results
for this model indicated a bimodal distribution of switching
times near the minimum switching field Hsw for an obliquely
aligned applied field.2 However, as a consequence of the
complexity of the numerical model, it has proved difficult to
adequately describe the underlying mechanism responsible
for the observed switching-time distribution. To obtain a
more comprehensive understanding, in this paper we look for
bimodal distributions of the switching time for lower-
resolution models of the same system. Our results show that
the lattice resolution is very significant in that it determines
the degree to which fluctuations in the model affect the nu-
merically observed behaviors.

The rest of this paper is organized as follows. In Sec. II
we briefly discuss our computational models and describe
the numerical procedure that is used in all the simulations.
The nanopillar is modeled at three different resolutions of the
computational lattice: high, medium, and low. Results from
the simulations are presented in Secs. III, IV, and V, respec-
tively. Finally, we present our conclusion in Sec. VI.

II. MODEL AND NUMERICAL DETAILS

Our numerical models are motivated by real iron nanopil-
lars fabricated by von Molnár and co-workers using
scanning-tunneling-microscopy-assisted chemical-vapor
deposition.3,4 Their switching-time results for an approxi-
mately 10�10�150 nm3 nanopillar gave a much lower
switching field for applied fields directed close to the easy
axis than predicted by the Stoner-Wohlfarth model.5–8 This is
attributed to nonuniform modes of the magnetization and
endcap formation that cannot be explained by a Stoner-
Wohlfarth type of coherent-rotation model for the magneti-
zation switching.
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The highest-resolution model for their experimental nano-
pillar has a lattice discretization on the order of the physical
exchange length le. Although this discretization provides the
most realistic behavior, the simulation time prevents a statis-
tical description of the switching-time distribution for more
than a few values of the applied field. Even with less sam-
pling than the lower-resolution models, in order to ad-
equately investigate magnetization switching as a function of
the applied field, over 6�107 CPU hours would be needed
with a modern CPU. For the medium-resolution model the
lattice is discretized to the width of the pillar, spanning sev-
eral le for each computational cell. This model, along with
the lowest-resolution single-spin model, allows for a more
thorough investigation of switching statistics over a larger
region of the applied-field space. We consequently use re-
sults from the highest-resolution model to explore internal
magnetization dynamics and compare the resulting switching
statistics to those of the lower-resolution models.

All three computational models in this paper employ the
stochastic, partial differential Landau-Lifshitz-Gilbert �LLG�
equation,

dm� �r�i�
dt

= −
�0

1 + �2�m� �r�i� � �H� �r�i� +
�

ms
m� �r�i� � H� �r�i��� ,

�1�

as the method for determining the time evolution of the mag-
netization for each computational lattice site.9–12 Here, m� �r�i�
is the magnetization at the ith lattice site in the presence of

the local field H� �r�i�. This local field is a linear combination
of individual fields,

H� = H� Z + H� E + H� D, �2�

with H� Z the applied �Zeeman� field, H� E the exchange field,

and H� D the magnetostatic �demagnetizing� field. Also present

is a stochastic thermal field H� T, which is treated differently
by the integration routine.12 The thermal field has zero mean
and variance given by the fluctuation-dissipation relation,

�H�
T�r�i,t�H�

T�r� j,t��� =
2�kBT

�0ms
2V

�ij�����t − t�� , �3�

where kB is Boltzmann’s constant, V is the volume of an
individual computational cell, T is the absolute temperature,
�ij and ��� are Kronecker deltas over the lattice sites i , j and
directions � ,�, respectively, and ��t− t�� is a Dirac delta
function of the time difference t− t�. This equation implies
that the magnitude of the thermal field scales linearly with
the square root of the temperature. All simulations reported
in this paper were performed at 20.2 K unless specified oth-
erwise. Constants in the LLG include the electronic gyro-
magnetic ratio �0=1.76�107 Hz /Oe, the saturation magne-
tization of bulk iron ms=1700 emu /cm3, and a
phenomenological damping parameter �=0.1.2,12

All three models discussed here use the same field-
reversal protocol for the simulation time −0.125 ns� t
�0 ns. At t=−0.125 ns, the computational pillar is uni-
formly magnetized along the easy axis in the positive z di-
rection and is subjected to an applied field that is initially

antiparallel to its final direction, which is its direction for t
�0 ns. Specifically, the value of the applied field is changed
sinusoidally during the field-reversal period to its final value,

i.e., H� Z�t�=H� Z0 cos�	t /0.125 ns� with t� 	−0.125 ns,0
.
For t
0, H� Z�t�=H� Z0 and remains constant with a negative z
component. This protocol is used to keep the Zeeman energy
from excessively exciting the system. After the completion
of the field-reversal protocol at t=0, measurement of the
switching time begins and only depends upon the value of
the z component of the total magnetization Mz

= 	1 / �Nsms�
�imz�r�i�, with Ns as the total number of compu-
tational spins. Consequently, the switching time is defined as
the first-passage time �FPT� to Mz�0, starting from Mz
0.

Figure 1 displays the computational cell geometry for the
three models discussed in this paper: �a� the high-resolution
6�6�90 cells, �b� the medium-resolution 1�1�15 cells,
and �c� the single-spin model. An example of the final direc-

tion of H� Z is also shown beside each lattice as a bold arrow.
For the high-resolution model, the switching statistics are

collected for only one value of H� Z due to the computational
time required to gather a statistically significant amount of
data. The switching statistics of the low- and medium-
resolution models, however, are studied as functions of HZx

and HZz.
Switching near the coercive field involves spins at the

ends of the pillar for both the high- and medium-resolution
models. For the high-resolution model, this is a result of the
initial formation of endcaps; the regions of large curl at the
ends of the pillar that lower the free energy through pole
avoidance. Since end spins of the medium-resolution model
have only one nearest neighbor, they can have larger changes
in orientation for a given energy cost compared to the inter-
nally located spins. The center of the pillar between the two
ends remains essentially uniformly magnetized while in the
metastable state for both of these models, except for small
thermal fluctuations and propagating low-amplitude spin
waves. Eventually, the collective random thermal fluctua-
tions carry one or both ends out of the metastable free-energy
well and allow magnetization switching to occur. The
lowest-resolution single macrospin model, however, only has
to exit from a simple two-dimensional metastable free-
energy well and switches via a precession that dissipates en-
ergy through the damping term in the LLG equation.

The subsequent propagation of the domain wall in the
highest-resolution model occurs though a vortex wall mode,
since the width of the pillar accommodates this switching
structure. The stack-of-spins model, however, only allows for
the propagation of a transverse wall mode due to the reso-
lution of the model in the transverse direction.13 Due to this
behavior, the medium-resolution model exhibits an angle-
dependent switching response that is similar to pillars with
widths that are smaller than the exchange length. In addition,
a “re-entrantlike” behavior is exhibited for the medium-
resolution model for applied fields that are closely aligned
with the easy axis. This is attributed to the precession of the
single end spin and is not expected to be found for an infinite
chain of spins.
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III. HIGH RESOLUTION

First, we describe results for this nanopillar system with a
three-dimensional, high-resolution, 6�6�90 cells computa-
tional model that possesses a lattice discretization �ri, which
is smaller than the exchange length of le=2.6 nm for the real
system.2 Since the magnetization of the real system does not
change appreciably across �ri� le, this resolution provides
the most realistic internal magnetization dynamics of all of
our computational models. A further decrease of �ri should
not provide significantly increased accuracy, as very short-
wavelength fluctuations would dissipate quickly due to the
size of �.14

When this model is subjected to a near-coercive applied

field, H� Z=3260 Oe at 75° with respect to the long axis of the
pillar, a distribution of FPTs with at least two characteristic
times is obtained.2 Although technically not “bimodal” in the
strictest sense, the probability distribution function �PDF�
displays two exponential-like regimes with two different
characteristic times. This distribution shown in Fig. 2 as a
cumulative distribution for 100 trials is divided into two
groups based solely on the observed distribution: a fast mode
�switching times �2.5 ns� and a slow mode �switching
times 
2.5 ns�. Both modes are fitted well by the delayed

(a) (b) (c)

FIG. 1. �Color online� Lattice resolution geometries for the �a� high-resolution model, �b� medium-resolution model, and �c� single-spin
model. Each computational cell is centered on a sphere in the figure. The final orientation for the applied field of the high-resolution model
is included as a bold arrow �red online� in the figures. Other orientations of the applied field are also used in this study for the medium- and
low-resolution models, with the y component of the applied field always zero.
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FIG. 2. Cumulative switching-time distribution at 20.2 K for the

highly resolved model for the applied field H� Z=3260 Oe at 75°
with respect to the long axis of the pillar. The bimodal behavior
seen in this distribution is the result of a magnetization-switching
process in which the endcap may or may not configure itself into a
long-lived metastable configuration.
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exponential f�t�=�t− t0��1 /��exp	−�t− t0� /�
, where  is
the Heaviside step function. The offset described by t0
=min	min�ti , �t�−�t
 is attributed to the finite time required
for the system to climb out of the free-energy metastable
well.15 With this fit, we find �=0.5 ns for the fast mode and
�=21.7 ns for the slow mode. A detailed analysis of the
results of the high-resolution model will be presented
elsewhere.16 Here we provide only those details needed to
compare and contrast with the medium and low-resolution
models.

We found that the bimodal switching-time distribution is
the result of multiple switching paths through a high-
dimensional free-energy landscape, each path with a single
characteristic switching time that the system chooses with
almost equal probability for the applied field used in this
study. Measurements of the total energy E during the simu-
lations were nearly constant during the switching process,
indicating that changes in the free energy F=E−TS mostly
come from changes in the entropy S. Fluctuations of the
coarse-grained spins allow trajectories to enter a region of
the free-energy space influenced by a local minimum that
requires a large decrease in S to exit, resulting in the slow
mode. If the fluctuations do not cause the pillar to fall into
this metastable free-energy well, a fast mode is observed for
which the trajectories follow a free-energy path with almost
constant F, corresponding to an entropy change that is rela-
tively small. The difference in the magnetization configura-
tions of the endcaps between the two modes is subtle. Figure
3 depicts a typical endcap configuration while the pillar is in
the metastable state, which is visually indistinguishable from
endcap configurations that are not long lived. The volumes of
the endcaps are nearly the same for both the fast and slow

modes and agree with the experimental fit of the activation
volume yielding vA�270 nm3.17 Further characterization of
the endcap configuration did not reveal differences that
would indicate if switching occurred via a fast or a slow
mode.

Although not studied in this paper, the role of defects in
the computational lattice or shape distortions might play an
important role in the switching behavior. Experimental sys-
tems with multimodal switching distributions could result
from localized defects in the material, which would further
complicate the endcap configurations.18 We leave this for
future research.

Since switching is equally likely to initiate at either end-
cap, fast modes occur if either one or both endcaps do not
pass through the long-lived configuration. However, it is nec-
essary for both endcaps to explore the longer-lived meta-
stable configuration in order to qualify as a slow mode. For
the high-resolution pillar, we also find that the fast-mode
statistics are not dependent on the number of endcaps that
switch �one vs two�. However, this detail is central to the
explanation of the bimodal distribution seen in the medium-
resolution model discussed in Sec. IV.

IV. MEDIUM RESOLUTION

The medium-resolution model is a one-dimensional stack
of spins, with a lattice resolution of 1�1�15 cells. This
model does not allow for variation in the magnetization in
the transverse-to-easy-axis direction but permits nonuniform
magnetization along the spin chain. Due to the considerably
smaller computational time required by this and the lowest-
resolution models, it is feasible to sample the switching sta-

tistics for a much larger region in the applied-field space H� Z.
Figure 4 reveals the minimum switching field Hsw as a

function of �, the angle of the applied field with respect to
the easy axis of the pillar, for T=30.3 K �T chosen to match
the experimental conditions�. This figure is generated from
data that have 100 trials per applied-field value, with Hsw
defined as the field that causes 50% of the trials to switch for
a waiting time of 3.34 ns. Qualitatively similar results are
also found for Hsw using different waiting times. The experi-
mental results are also shown in Fig. 4 for comparison and
show good agreement with the medium-resolution model. In
particular, both the 1�1�15 model and the experimental
results show a deviation from a Stoner-Wohlfarth uniform-
rotation type of behavior for ��60°.5

An increase in the switching field is also observed both
experimentally and numerically near �=0. For the numerical
results, the triple-valued shape is a consequence of the “re-
entrant” behavior seen in Figs. 5 and 7 and discussed below.
The increase in switching field near �=0 is expected for the
spin chain, since the nucleating end spin cannot form the
curling configuration found in the high-resolution model and
must switch via a damped precession similar to the Stoner-
Wohlfarth particle. Also, the switching field of the experi-
mental pillar may possibly be lowered because of defects in
the sample.19 Analytical results for a Stoner-Wohlfarth spin
are also presented in Fig. 4 and match the � dependence of
Hsw for the lowest-resolution model discussed in Sec. V.20

FIG. 3. �Color online� Streamlines trace the magnetization of
the endcap for a trial of the highest-resolution model while in the
metastable state and exhibit some waviness due to the thermal fluc-
tuations. Online, the color of the streamlines indicates the z com-
ponent of the local magnetization �red +mz, right side of the figure;
blue −mz, left side of the figure�.
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The dependence of the minimum switching field on the ori-
entation of the applied field is also revealed by the location
of the coercive edge in the applied-field space of Fig. 5.

We begin searching for bimodal distributions for this sys-
tem by plotting the variable C in Fig. 5 defined as

C =
�

mean�ti − min�ti
, �4�

where �=��1 / �N−1���i�ti− �t��2 is the standard deviation of
the observed switching times ti over a sample of N=100
trials, mean�ti is the mean value, and min�ti is the minimum
value of the sample. Values of C that are greater than unity
may indicate the existence of a switching-time distribution
with more than one characteristic time.

Bimodal switching-time distributions are seen as a ridge
that almost extends across the entire HZx axis and is located
just above the coercive edge of Fig. 5. As the ridge is
crossed, the ratio of faster to slower switching times changes
from a larger percentage of slower times just below the ridge
to a larger percentage of faster times just above the ridge.
The larger values of C observed at the coercive edge preced-
ing the bimodal ridge, most easily seen near �=45°, are the
result of incomplete switching statistics with N�5. An in-
crease in the maximum waiting time of the simulation should
improve the accuracy of C in this region. It should also be
noted that larger values of C seen in the interior of the plot

�e.g., near HZx=2.4 kOe and HZz=4.5 kOe� are caused by
applied fields that are large enough to cause switching when
t�0, during the initial field reversal.

The cumulative switching-time distribution for the field
HZx=340 Oe and HZz=3.2 kOe located close to the center
of the bimodal ridge is presented in Fig. 6. An interesting
feature of this distribution compared to the highly resolved
model is the clear separation of faster and slower switching
times. Since nucleation of the domain wall is equally likely
to occur at either end of the pillar, two possible scenarios

FIG. 5. Applied-field space at 20.2 K for the medium-resolution
1�1�15 model with a waiting time of 3.34 ns. Larger values of
the variable �C
1� may indicate the existence of more than one
characteristic time in the switching-time distribution. Bimodal dis-
tributions are seen just above the coercive edge in this figure as a
ridge that almost extends across the entire length of the HZx axis.
The empty white area below this ridge denotes the region where
switching times are larger than the waiting time.
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FIG. 6. �Color online� Cumulative switching-time distribution
for the medium-resolution pillar at 20.2 K for the applied field
HZx=340 Oe and HZz=3.2 kOe. N=10 000 trials were used to gen-
erate this figure, with 9043 returning a switching time below the
waiting time of 6.68 ns. The z component of the global magnetiza-
tion for two trials is also shown as an inset. A faster trial �black,
solid� shows a slope that is twice as large as that of the slower trial
�dashed, red online�, resulting from both endcaps releasing at ap-
proximately the same time.

0 15 30 45 60 75 90
θ [degrees]

0

2

4

6

8

H
S

W
[k

O
e]

exp.
1x1x15
1x1x1
S-W

0 1 2 3
3

3.5

4

4.5

FIG. 4. �Color online� Minimum switching field Hsw at 30.3 K
as a function of the angle of the applied field. The 1�1�15
medium-resolution stack-of-spins model �crosses, red online� devi-
ates from the macrospin model �circles, black� at ��60° in agree-
ment with experimental observations �triangles, orange online�
�Ref. 5�. A magnification of the behavior of the numerical results
for the medium-resolution model near �=0 is shown as an inset,
exhibiting an increase in the switching field. The “re-entrant region”
shown in Figs. 5 and 7 below is reflected in the triple-valued shape
of this curve. For the 1�1�1 macrospin model, a Stoner-
Wohlfarth type of behavior is displayed. Analytical results for a
Stoner-Wohlfarth spin are also shown as a black curve. For the
numerical data, Hsw is defined as the field that causes 50% of the
trials to switch for a waiting time of 3.34 ns. Error bars for all
results are on the order of the symbol size.
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may happen during switching for this model. For the slow
mode, nucleation of the domain wall only happens at one end
of the pillar. As the wall proceeds along the pillar, the dipolar
field is lowered for the spin situated at the opposite end of
the pillar, preventing that spin from nucleating another do-
main wall. Growth toward the stable state of the pillar hap-
pens in this case at a rate that is given by the movement of a
single domain wall. On the other hand, the fast mode is the
result of nucleation of domain walls at both ends of the pillar
at nearly the same time, with a corresponding change in Mz
that occurs approximately twice as fast for the faster mode.
This is revealed in the inset of Fig. 6 as the slope of the
global magnetization Mz vs time t. Since either both end
spins have to nucleate at nearly the same time, before the
dipolar field from the switching region increases the nucle-
ation barrier for the opposite end—or one at a time—a clear
separation of observed switching times is seen in Fig. 6. This
indicates that the ends of the pillar are coupled since switch-
ing from either end affects the opposite end. If this were not
the case, one should expect a greater number of switches to
occur near t=2.5 ns in Fig. 6.

Another interesting feature of the medium-resolution sys-
tem is the region of “re-entrant” behavior revealed in Fig. 5
as the concave region of the coercive edge near the HZx
=0 kOe axis. Figure 7�a� provides a magnified view of this
feature using C defined in Eq. �4�. As can be seen in Fig.
7�b�, which plots the mean switching time vs HZz for HZx
=68 and 102 Oe, the mean switching time is a nonmonotonic
function of HZz and increases with increasing applied field
for HZz=3.5 kOe to HZz=3.7 kOe. This behavior is not con-
fined to the region close to the HZz axis. The switching times
of the spin chain remain nonmonotonic for HZz�3.7 kOe in
the region of HZx�2.5 kOe.

Since switching in the pillar simulations initiates at the
ends, we investigate the dynamics of the end spins and dis-
cuss the differences to characterize the “re-entrant” behavior.
Figure 8 depicts the trajectories of the end spin for several

values of HZz. For Fig. 8�a� �T=20.2 K, HZx=68 Oe, and
0� t�2.67 ns�, the trajectory for HZz=3.40 kOe is remark-
ably different than the others, which is the result of the end
spin precessing around a relatively stationary local field dur-
ing this time frame. For stronger applied fields, the local field
at t=0 ns is reduced, which allows the end spin to relax
toward the global free-energy minimum. This happens for
HZz=3.47 kOe, with the end spin essentially rotating in the
longitudinal direction toward mz=0 during the early part of
the switching process, resulting in a shorter mean switching
time. However, a maximum mean switching time is observed
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FIG. 7. �Color online� �a� Closer view of the “re-entrant” region for the medium-resolution 1�1�15 model. The white region has
switching times greater than the waiting time. �b� Mean switching times for HZx=68 Oe �triangles, upper curve� and HZx=102 Oe �circles,
lower curve� with the error bars indicating one standard deviation. Data used for �b� are the result of 1000 trials per point, with a maximum
waiting time of 33.42 ns.
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FIG. 8. �Color online� Paths of the end spin projected onto the
mx-my plane for several values of HZz. The figure on the left �a�
depicts the paths for HZx=68 Oe at T=20.2 K for times 0� t
�2.67 ns. The black path for HZx=3.40 kOe precesses around a
relatively stationary local field during this time. For larger applied
fields, the paths rotate opposite to those subjected to HZz

�3.40 kOe. Reduced switching times are observed around HZz

�3.47 kOe that result from the end spin mostly rotating toward
mz=0, instead of around the easy axis. Also shown on the right �b�
are similar trials for T=0 K, with HZx=170 Oe for the times 0
� t�1.34 ns. We note that the behavior of the end spin is relatively
deterministic, even at T=20.2 K; however the average switching
time is increased compared to the T=0 K trials due to longer path
lengths from the stochastic fluctuations.
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near HZz=3.67 kOe that exhibits an end-spin �and local
field� rotation opposite the spin precession at HZz
�3.40 kOe in the transverse plane in addition to a slower
rotation in the longitudinal direction. At even larger applied
fields the switching time is reduced, which is the result of a
very small or negative �z direction� local field at early times
and a faster domain-wall propagation during switching. Ad-
ditionally, due to the effect of the noise on the trajectories,
the 20.2 K trials take longer to move around the mx-my plane
compared to the T=0 K trials seen in Fig. 8�b�, with HZx
=170 Oe for the times 0� t�1.34 ns.

V. LOW RESOLUTION

Finally, the lowest-resolution model of the physical sys-
tem is a single spin 1�1�1. Anisotropy in the previous two
models is provided through the dipolar field, which is absent
in the single-spin model. However, we can approximate the
effects of these fields using a crystalline anisotropy field. The
magnitude of the components of the corresponding uniaxial
anisotropy field is found by calculating the SIA derived from
a pillar of the same dimensions that is uniformly magnetized
parallel to its easy axis.21,22 In practice, this involves first
finding the induced magnetic surface charge at the ends of
the pillar due to the initial magnetization. These surface
charges in turn create a magnetic scalar potential that is used
in the calculation of the magnetostatic self-energy.

Once an expression for the magnetostatic self-energy of
the nanopillar is found, the magnetometric demagnetizing
factor in the z direction Dz is defined as the factor that makes
the magnetostatic self-energy per unit volume equal to
2	Dzms

2. For a cuboid with equal width and length such as
our model, this can be reduced to Eq. �5� of Ref. 21, which is
the form used in this paper. More details of this calculation
are provided in the Appendix. This unitless factor has the
property that Dx+Dy +Dz=1, where Dx and Dy are the mag-
netometric demagnetizing factors in the directions transverse
to the easy axis. Following Aharoni’s21 convention, we find
Dx=Dy =0.4846 and Dz=0.0308 for the shape-induced aniso-
tropy for our model’s dimensions. This result, however, over-
estimates the coercive field of the pillar since the endcap
formation of the higher-resolution models lowers the free-
energy barrier for switching and is not accounted for in the
calculation of the SIA term. Consequently, higher switching
fields are observed for this model when compared to the
higher-resolution models.

For this macrospin approximation, we observe bimodal
behavior in the interior of the applied-field plot shown in Fig.
9 using C defined in Eq. �4�. This region is now found as an
internal ridge beginning at about HZz=7.1 kOe and extend-
ing up and to the right in the figure. The location of this ridge
is notably different than the one seen in the medium-
resolution model, which relies on metastability that leads to
bimodal behavior. However, switching near the ridge in the
macrospin model involves an applied field whose magnitude
makes the magnetization dynamics essentially deterministic.
Since the coarse-graining of the pillar is extreme in this case,
the single-spin fluctuations resulting from the temperature
are very small. As it turns out, the bimodal ridge reveals a

switching process that is sensitive to these tiny fluctuations,
based on our definition of a switching event.

A plot of the cumulative switching-time distribution is
shown in Fig. 10 for a point in the bimodal region and re-
veals a clear separation of faster and slower switches with a
relatively broad gap in time between the two switching re-
gions, where no switches occur at all. As with the medium-
resolution model, the behavior of Mz with time exposes the
mechanism responsible for the bimodal distribution. The pre-
cession of the single spin close to Mz=0—the first crossing
of which constitutes our definition of a switching event—
leads to the observed distribution in the macrospin approxi-
mation. The inset in Fig. 10 shows Mz as a function of time
for a faster switch �solid, black� and a slower switch �dashed,
red online�. Faster switching is caused by the first precession

FIG. 9. Applied-field space at 20.2 K for the lowest-resolution
1�1�1 representation. Using the same contour variable as before
and a waiting time of 3.34 ns, bimodal distributions are observed as
an interior ridge that results from the precession behavior of the
single spin near Mz=0. The large white area in this figure indicates
a region where switching times are greater than the waiting time.
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FIG. 10. �Color online� Cumulative switching-time distribution
for N=10 000 trials of the lowest-resolution pillar at 20.2 K for the
applied field HZx=1.19 kOe and HZz=7.6 Oe. The inset depicts the
z component of the magnetization as a function of time and reveals
a faster trial �black, solid� that crosses Mz=0 on the first attempt
due to a thermal fluctuation, while a slower trial �dashed, red on-
line� requires an additional attempt to cross Mz=0.
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becoming thermally “knocked” below Mz=0, resulting in a
shorter switching time. Switches that do not cross Mz=0
during the first attempt subsequently reach this value on the
next precession, which leads to a longer switching time. As
with the medium-resolution pillar, the ratio of faster to
slower switches changes as the bimodal ridge is traversed.
The bimodality for the single-spin model is thus simply a
reflection of the inadequacy of the customary definition of
the switching time as a first-passage time in this case.

VI. CONCLUSIONS

We have studied the switching statistics of a simulated
magnetic nanopillar for three different resolutions of the
computational lattice, looking for switching-time distribu-
tions that are bimodal. The bimodal distributions result from
processes that depend on the resolution of the computational
lattice and the inherent fluctuations for each resolution stud-
ied here.

Limited by the computational time, we only investigate
the distribution for a single value of the applied field in the
highest-resolution model near the coercive field. The mecha-
nism responsible for the observed bimodal switching-time
distribution in this realistic model is revealed as a conse-
quence of fluctuations that determine a switching trajectory
which may or may not carry the system through a long-lived
metastable configuration. A more detailed study of the
switching dynamics of this model will be published
elsewhere.16

For the medium and lower-resolution models, the much
smaller computational time enables a full exploration of the
applied-field space. We find very different mechanisms lead-
ing to bimodal distributions for the switching times in these
two lower-resolution models.

The medium-resolution model displays a bimodal distri-
bution near the coercive edge of the applied-field space that
depends on the timing of the release of the two endcaps.
Fluctuations in this model serve to help the end spins of the
pillar overcome a free-energy barrier separating metastable
and stable orientations of the magnetization. If the fluctua-
tions result in a switch with only one endcap releasing, a
longer average switching time occurs. However, when both
endcaps release approximately simultaneously, the average
switching time is measurably shorter. Both of these situations
are present near the coercive edge in the medium-resolution
pillar and are responsible for the observed bimodal distribu-
tion. In addition, this model also has the best agreement with
the experimental data of the real system. This may indicate
that the real system’s metallic iron core has a smaller width
than originally reported.

The medium-resolution model also exhibits re-entrant be-
havior for applied fields that are moderately aligned with the
easy axis. Starting near the coercive edge, the mean switch-
ing times increase for larger applied fields. This is due to the
trajectory of the end spin during the early times of the
switching event. The fastest mean switching times occur due
to both the end spin and its local field rotating in the longi-
tudinal direction toward the global free-energy minimum im-
mediately after the field reversal. Slightly higher values of

the applied field reduce the magnitude of the end spin’s local
field and result in a spin rotation in the transverse plane, in
addition to a slower rotation in the longitudinal direction.

Finally, for the lowest-resolution representation of the
physical nanopillar as a single effective spin, a bimodal dis-
tribution is seen as a ridge that stretches across the interior of
the applied-field space away from the coercive edge. The
bimodal distribution in this model is a result of a precession
that can pass through the magnetization value defining a
switching event earlier or later, depending on the small ther-
mal fluctuations. Trials that do not pass this magnetization
value early will consequently cross it during the next preces-
sion, resulting in the observed bimodal distribution.

For the three models studied in this paper, only the
highest-resolution model adequately captures fluctuations
that result in multiple switching paths in the free energy that
may occur in real pillars of width larger than the exchange
length. Consequently, our results show that conclusions
about physical processes in simulated systems must take into
account the degree to which the model resolution can reflect
the length scales of the physically relevant fluctuations.
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APPENDIX

We can approximate the shape-induced anisotropy for the
macrospin model by evaluating the magnetostatic self-energy
of a pillar with the same dimensions as the full model �1
�1�15�. To simplify the calculation, the magnetization of
the pillar is assumed to be uniform and parallel with the
longest axis. The general expression of the magnetic scalar
potential,23

�M�r�� = − �
V

�� � · M� �r���
�r� − r���

dV� + �
S

n�� · M� �r���
�r� − r���

dA� �A1�

will consequently drop the first integral on the right-hand

side since �� ·M� �r��=0. The remaining surface integral, in-

volving the effective surface charges n� ·M� �r��= ��= �ms at
the ends of the pillar, is used to calculate the mutual self-
energy of the two end faces with dimensions a�b, separated
by a distance c, and the self-energy of each individual face
by letting c=0. Together, these three terms are all that is
needed to approximate the self-energy of our model.

For the mutual energy Emutual of the two faces at the ends
of the pillar, the magnetic scalar potential should be inte-
grated across both surfaces such that
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Emutual = �
0

b �
0

a

dx1dy1�1�
0

b �
0

a

dx2dy2�2

�
1

��x2 − x1�2 + �y2 − y1�2 + c21/2 . �A2�

Solution of this integral is straightforward—although
tedious—and can be expressed as a single function,22

F�p,q� = �p2 − q2��� 1

�p2 + q2�1/2� + p�1 − q2�

��� p

�1 + q2�1/2� + pq2�� p

q
� + q2��1

q
�

+ 2pq tan−1�q�1 + p2 + q2�1/2

p
� − 	pq

−
1

3
�1 + p2 − 2q2��1 + p2 + q2�1/2

+
1

3
�1 − 2q2��1 + q2�1/2

+
1

3
�p2 − 2q2��p2 + q2�1/2 +

2

3
q3, �A3�

where p=b /a, q=c /a, and ��x�=sinh−1�x�=
ln�x+ �1+x2�1/2. The mutual energy of the two end faces of
the pillar is then given by

Emutual = 2a3�1�2F�1,q� , �A4�

while the self-energy Eself of each face is

Eself = a3�1,2
2 F�1,0� . �A5�

Hence, the total demagnetizing energy ED of the cuboid is

ED = 2Eself + Emutual = 2a3ms
2	F�1,0� − F�1,q�
 . �A6�

The final step to this approximation involves the definition of
the magnetometric demagnetizing factor in the z direction
Dz, which in our case has the definition21

Dz =
ED

2	Vms
2 . �A7�

The remaining factors in the x and y directions Dx and Dy are
evaluated by noting that Dx+Dy +Dz=1 and Dx=Dy.
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