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An archetypical spin-glass metallic alloy, Cu0.83Mn0.17, is studied by means of an ab initio based approach.
First-principles calculations are employed to obtain effective chemical, strain-induced, and magnetic exchange
interactions, as well as static atomic displacements, and the interactions are subsequently used in thermody-
namic simulations. It is shown that the calculated atomic and magnetic short-range order accurately reproduces
the results of neutron-scattering experiments. In particular, it is confirmed that the alloy exhibits a tendency
toward ordering and the corresponding ordered phase is revealed. The magnetic structure is represented by
spin-spiral clusters accompanied by weaker ferromagnetic short-range correlations. The spin-glass transition
temperature obtained in Monte Carlo simulations by a finite-size scaling technique, 57 K, is in reasonable
agreement with experimental data, 78 K.
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I. INTRODUCTION

Spin-glass materials still keep on puzzling researchers
with their unusual magnetic properties. Since the beginning
of 1970s, when Canella and Mydosh1 observed a cusp in the
temperature dependence of the magnetic susceptibility of a
dilute solution of Fe atoms in Au, the theory of spin glasses
has become a subject of nontrivial physical and mathemati-
cal investigations.2 Three years after the initial discovery of
the phenomenon, Edwards and Anderson3 �EA� attributed the
origin of the cusp to the appearance of a spin-glass state, in
which the moments of the magnetic atoms are frozen in a
disordered glassy structure. They showed that a substantially
simplified model �EA model� could reproduce such a state
and the model became a basis for analytical mean-field con-
siderations. However, despite the indisputable success of the
mean-field theory to explain many of the spin-glass proper-
ties, the connection of the EA model to real experimentally
investigated spin-glass materials, such as, for instance, dilute
magnetic alloys of Mn and Fe in noble metals �Cu, Ag, and
Au�, remains in most cases subtle and unclear. A great deal
of failure to establish a relation between the mean-field treat-
ment and realistic models can be ascribed to the lack of
knowledge of the detailed structure of real materials.

Here, we present a theoretical investigation of the struc-
ture and spin-glass behavior of Cu-Mn alloys using a realis-
tic parameter-free model based on first-principles calcula-
tions. There is a large amount of experimental information
on the structural and spin-glass properties of dilute noble-
metal–manganese alloys and specifically in Cu-Mn
alloys.4–18 This especially concerns the atomic and magnetic
short-range orders �ASRO and MSRO� in Cu0.83Mn0.17 alloys
which have been intensively investigated by various experi-
mental techniques. In particular, it has been established that
the ASRO in Cu0.83Mn0.17 exhibits maxima at Qa

= �1,1 /2,0�,8–10,13,19,20 while the MSRO indicates the exis-
tence of a strong tendency toward formation of magnetic
spin-density wave �SDW� clusters with a wave vector Qm
= �1,1 /2�� ,0�, where � is concentration dependent.9,11 In
addition, static atomic displacements have just recently been
investigated by diffuse x-ray scattering in this alloy.21 Nev-
ertheless, the detailed atomic and magnetic structures of
these alloys at the atomic level are not known. For instance,
the experimentally observed ASRO does not allow determin-
ing unambiguously the type of atomic ordering. A compre-
hensive analysis of the most accurate up-to-date experimen-
tal data8 shows the presence of elements of several �1,1/2,0�-
type superstructures: D1a, DO22, and Pt2Mo, but none of
them can be singled out as a candidate for the low-
temperature ground-state structure.

Magnetic ordering in these alloys also exhibits quite an
unusual behavior. Although the neutron-scattering experi-
ments show strong short-range correlations of the SDW type,
no magnetic ordering occurs in the CuMn alloys at low
temperatures. Instead, typical traits of a spin glass �SG�
are observed: the cusp in the linear susceptibility,22 differ-
ence in the zero-field-cooled �ZFC� and field-cooled �FC�
magnetizations,23 frequency dependence of the ac
susceptibility,24 etc. All these phenomena are connected to
the SG phase transition observed as the divergence of the
nonlinear susceptibility,25 which is equivalent to the diver-
gence of the SG susceptibility �see Sec. VI�.2

The mechanism of the onset of the SG behavior in metal-
lic alloys, and in the CuMn alloy in particular, is still unclear.
Along with fundamental problems concerning the universal-
ity class of a frustrated system with long-range interactions,
there is still much to be understood in what concerns the role
of magnetic clustering in a SG transition. Indeed, the obser-
vation of strong short-range correlations of the SDW type
below and above the transition temperature indicates that
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spin freezing is accompanied by the development of mag-
netic clusters. There is no doubt that this collective behavior
contributes appreciably to the magnetic dynamics near the
transition. It is thus necessary to have a clear picture of the
magnetic ordering at the atomic scale.

At the same time, comprehensive theoretical investiga-
tions, in particular those based on first-principles calcula-
tions, of atomic and magnetic orders in Cu-rich Cu-Mn al-
loys are practically absent. The first ab initio calculations of
the magnetic exchange interactions in dilute Cu-Mn alloys
were performed by Oswald et al.26 on the basis of Korringa-
Kohn-Rostoker �KKR� impurity Green’s function calcula-
tions. They showed that the magnetic exchange interactions
between Mn atoms in Cu are of the antiferromagnetic type at
the first coordination shell, but ferromagnetic at the second
and third, explaining thereby the existence of the weak fer-
romagnetic short-range orders �SROs� observed in Cu-Mn
alloys.

The type of the magnetic and atomic short-range orders in
Cu-rich Cu-Mn alloys has also been investigated by Ling and
co-workers,27,28 who calculated the ASRO and paramagnetic
susceptibilities in these alloys using a so-called S�2� formal-
ism with cavity corrections within density functional theory
KKR coherent-potential approximation �DFT KKR-CPA�.29

However, such a mean-filed consideration could not provide
information about the detailed atomic and magnetic struc-
tures at the atomic level. Besides, their calculations for the
Cu85Mn15 alloy could reproduce neither splitting of the
�1, 1

2 ,0� magnetic peak nor the ordering tendency for the
ASRO, for which they found the phase-separation �or clus-
tering� behavior in direct contradiction to the experimental
data.

In this work, we investigate atomic and magnetic order-
ings in the Cu0.83Mn0.17 alloy on the basis of corresponding
Monte Carlo thermodynamics simulations, with chemical
and magnetic interactions being deduced from first-
principles calculations. The outline of the paper is as follows.
Basic models, methods, and approximations, along with the
description of our approach, are presented in Sec. II. The
calculated chemical and strain-induced interactions are ana-
lyzed in Sec. III. In Sec. IV, the results for the ASRO ob-
tained from Monte Carlo simulations are compared to those
provided by experiments. Cooling down below the ordering
temperature in the Monte Carlo simulations also allows us to
reveal the underlying ordered phase of a dilute CuMn alloy.
Monte Carlo magnetic simulations described in Sec. V pro-
vide us with a detailed picture of the magnetic correlations in
the system. A more thorough investigation of the SG behav-
ior is presented in Sec. VI, where we show that the system
exhibits a spin-glass transition and examine the critical be-
havior. We conclude the results in Sec. VII.

II. METHODOLOGY

Two different types of ordering are of interest in our case:
atomic or chemical, describing relative positions of Cu and
Mn atoms on the lattice; magnetic, associated with the spin
configuration of the Mn atoms. In general, these degrees of
freedom can be interconnected in a quite complicated way

due to the strong dependence of magnetic interactions on the
local chemical environment of magnetic atoms, and owing to
the dependence of the chemical interactions on both the local
and global magnetic states, as it is the case in, e.g., FeCr
alloys.30 However, such an interconnection is relatively weak
in Cu-rich Cu-Mn alloys. Besides, the magnetic and atomic
ordering effects are well separated in temperature.

At high temperatures relevant for the atomic local order-
ing, where atomic diffusion is still possible �above 400–500
K�, the alloy is in a paramagnetic state with randomly dis-
tributed directions of local magnetic moments on Mn atoms.
The thermally induced magnetic excitations connected with
the fluctuation of the direction of spin magnetic moments on
Mn atoms are several orders of magnitude faster than the
atom-vacancy interchange jumps occurring during equilibra-
tion of the alloy. It is therefore possible to average out the
magnetic degrees of freedom and obtain effective inter-
atomic interactions to describe the alloy thermodynamics at
temperatures substantially higher than the spin-freezing tem-
perature. On the other hand, at low temperatures—of the
order of 100 K and below—where the spin-glass transition is
observed, atomic diffusion is practically absent31 and mag-
netic configurations should be determined for the Mn atoms
fixed in their positions on the lattice. Two separate problems
are thus considered: finding a chemical alloy configuration
on the underlying lattice and obtaining the equilibrium en-
semble of magnetic configurations for the Mn atoms at a
temperature of interest.

A. Atomic configurational Hamiltonian and effective cluster
interactions

The chemical, or atomic, configurational Hamiltonian
used in the present work is of an Ising type

Hchem =
1

2�
i�j

�Vij
�2� + Vij

SI��i� j +
1

3 �
i�j�k

Vijk
�3��i� j�k

+
1

4 �
i�j�k�l

Vijkl
�4� �i� j�k�l, �1�

where spin-variables, �i, take on values +1 or −1 if a site i is
occupied by Mn or Cu atom, respectively. The effective clus-
ter m-site interactions �ECIs�, Vij. . .k

�m� , and the pair strain-
induced �SI� interactions, Vij

SI, are obtained from ab initio
calculations as described below.

The ECI have been calculated by the screened generalized
perturbation method �SGPM� �Ref. 32� on the basis of self-
consistent electronic structure calculations of random Cu-Mn
alloys by the exact muffin-tin orbital �EMTO� method33

within the coherent-potential approximation �CPA�.34 Since
the magnetic structure stabilizes at high temperature in a
paramagnetic state, we have used a disordered local-moment
�DLM� �Ref. 35� magnetic configuration for Mn atoms, treat-
ing the Cu-Mn alloy as a three-component system,
Cu-Mn↑-Mn↓, where Mn↑,↓ represent spin-up and spin-down
alloy components, respectively, with the same number of
Mn↑ and Mn↓ atoms distributed randomly relative to each
other.
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The ECIs of a binary alloy are then determined as the
corresponding averages of the ECI of the initial three-
component alloy �see, for instance, Ref. 32�. The intersite
screening constants for the screened Coulomb interactions
contributing to the pair interactions36,37 have been deter-
mined by 864-atom supercell calculations of a random
Cu0.83Mn0.17 alloy in the ferromagnetic state using the locally
self-consistent Green’s function �LSGF� method,38 assuming
that the screening constants do not depend on the magnetic
configuration of Mn atoms.

Although the size mismatch of Cu and Mn atoms is rather
moderate ��the atomic volume difference of pure �-Mn in the
paramagnetic state and Cu is less than 10% �Ref. 39�� and
local lattice relaxations should consequently be relatively
small and give little contribution to alloy energies, they
should be included whenever a quantitative analysis is per-
formed, especially in case of relatively small chemical effec-
tive interactions. In order to take the local relaxation effects
into account, we have calculated the strongest and most im-
portant strain-induced interactions at the first three coordina-
tion shells in the dilute limit of Mn in Cu using a supercell
approach as

Vij
SI = Eij,rel

�2� − Eij,unrel
�2� − 2�Erel

�1� − Eunrel
�1� � , �2�

where E�1� and Eij
�2� are the total energies of supercells with a

single Mn impurity and with a corresponding pair of Mn
impurities in pure Cu. Indices “rel” and “unrel” designate
energies for the relaxed and unrelaxed supercells �only
atomic positions are allowed to relax, the volume and shape
of the supercells are kept fixed�.

The total energies have been calculated by the projector
augmented wave �PAW� method40,41 within the local-density
approximation �LDA� �Refs. 42 and 43� as it is implemented
in the Vienna ab initio simulation package �VASP�.44–46 The
plane-wave cut-off energy was set to 330 eV. If a structure
has been optimized, the internal structural parameters have
been relaxed until the Hellman-Feynman forces on each
atom are less than 0.001 eV /Å. Two-, 108-, and 256-atom
supercells have been used to check the convergence with
respect to the supercell size. The presented results have been
obtained for the room-temperature experimental lattice spac-
ing of 3.6792 Å,39 unless a different lattice spacing is speci-
fied.

B. Magnetic Hamiltonian and exchange interaction
parameters

A Heisenberg-type Hamiltonian has been used in mag-
netic statistical thermodynamics simulations

H = − �
ij

Jijcicjeie j , �3�

where ei is a unit vector in the direction of the local magnetic
moment at a site i and Jij the magnetic exchange interaction
parameters. The occupation numbers, ci, take on values 1 or
0 if the Mn or Cu atom occupies a site i, respectively, �oc-
cupation numbers are related to �i in the Hamiltonian �1� as
ci= �1−�i� /2�. The occupation numbers in the Heisenberg
Monte Carlo simulations have been taken for an alloy con-

figuration obtained from an atomic Ising Monte Carlo simu-
lation. The magnetic exchange interaction parameters be-
tween Mn atoms in the alloy have been calculated using the
magnetic force theorem formalism47 implemented within the
EMTO method. The validity of the Heisenberg description
has been checked by comparing interactions obtained in the
DLM, ferromagnetic, and antiferromagnetic states, as well as
by comparing the results of the PAW supercell calculations
with the EMTO magnetic force theorem results as described
below.

We have also investigated the influence of the local envi-
ronment effects and ASRO on the magnetic exchange inter-
actions for a Cu0.75Mn0.25 alloy. Two supercells have been
generated: one representing a completely random alloy �the
SRO parameters up to the tenth coordination shell are kept
close to zero� and another one with the SRO parameters set
to equal those obtained from an alloy Monte Carlo simula-
tion for 300 K �the SRO parameter at the first coordination
shell, �1�−0.1�. The electronic structure of both supercells
has been calculated by the LSGF method.38 The magnetic
exchange interaction parameters in these supercells have
been calculated for different pairs of Mn atoms having dif-
ferent numbers of Cu and Mn atoms at the first coordination
shell. The relative variation of the nearest-neighbor exchange
interaction parameter J1 has been found to be less than 5%
for most of the pairs. The relative difference between the
average values of J1 for different SROs turns out to be even
less significant. The exchange interactions at larger coordi-
nation shells proved to be almost insensitive to the local
environment and SRO effects. We can thus conclude that the
fixed values of the exchange interaction parameters, indepen-
dent of the local chemical environment and global ASRO,
can safely be used in magnetic Monte Carlo simulations.

III. EFFECTIVE CLUSTER INTERACTIONS IN
Cu0.83Mn0.17 ALLOY

A. Chemical interactions

The calculated, as described in Sec. II, total, chemical,
and strain-induced interactions are shown in Fig. 1. The val-
ues of the bare �unscreened� chemical interactions at the first
two coordination shells are shown to emphasize the impor-
tance of screening effects in the system. As one can see, the
correct account of the electrostatic contribution leads to the
change of the interaction sign at the first coordination shell.
An appreciable part of the concentration and lattice-constant
�at 17 at % Mn� dependence of the interaction at the first
coordination shell �depicted in Figs. 2 and 3� is due to the
one-electron energy contribution. The values of the effective
cluster interactions up to the 80th coordination shell, which
have been considered in the statistical thermodynamic simu-
lations, are listed in Table V.

A relatively large screening contribution to the chemical
interaction at the first coordination shell suggests that the
value of the interaction is quite sensitive to the screening
parameter, which can, in fact, be quite inaccurate due to the
use of the atomic sphere approximation even with the mul-
tipole moment correction taken into account. The accuracy
of the SGPM interaction at the first coordination shell has,
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therefore, been checked in supercell calculations. This can be
easily done in the dilute limit by considering, for instance, a
nearest-neighbor pair of Mn atoms in a large sample of Cu.
The total interaction energy related to the effective pair in-
teraction in this case is

Vtot
Mn-Mn =

1

4
�EMn-Mn − 2EMn + ECu� , �4�

where EMn-Mn is the total energy of a supercell with two Mn
atoms �in this particular case separated by one coordination
shell�, EMn the total energy of the same supercell but con-
taining only a single Mn atom, and ECu the total energy of
pure Cu �normalized on the same supercell�. The prefactor

1/4 is due to the definition of the Ising Hamiltonian �1�.
In a magnetic system, Eq. �4� leads to two different types

of interactions depending on the relative orientation of the
magnetic moments of the Mn atoms: ferromagnetic �FM�,
Vtot

Mn↑-Mn↑, and antiferromagnetic �AFM�, Vtot
Mn↑-Mn↓. The inter-

actions are calculated from the total energy of the ferromag-
netic, EMn↑-Mn↑, or antiferromagnetic, EMn↑-Mn↓, state, respec-
tively. However, the interaction V�2�−GPM is calculated in the
DLM magnetic state, and in order to compare this interaction
with Vtot

Mn-Mn, proper averaging of the latter over all possible
spin configurations of the pair must be performed. The inter-
action in the DLM state, relevant to our consideration at
temperatures above the spin-glass transition, is therefore
given by the following average:30,32

Vtot-DLM
Mn-Mn =

1

2
�Vtot

Mn↑-Mn↓ + Vtot
Mn↑-Mn↑� . �5�

At the same time, the difference of these two interactions is
the magnetic exchange interaction parameter of the Heisen-
berg magnetic Hamiltonian �3� at the corresponding coordi-
nation shell

Jij = Vtot
Mn↑-Mn↓ − Vtot

Mn↑-Mn↑, �6�

where i and j are the position indices of the Mn atoms in the
lattice.

Besides, one should bear in mind that the interaction en-
ergy Vtot

Mn-Mn includes all the multisite contributions present in
the system and they should be subtracted before a compari-
son with the chemical part of the effective pair interaction is
carried out

Vsc
�2� = Vtot

Mn-Mn −
1

4
�multi, �7�

where �multi is the multisite contribution corresponding to
the right-hand side of Eq. �4�. It can be obtained using the
GPM multisite interactions, calculated in the dilute limit; the

FIG. 1. �Color online� Chemical and total �chemical and strain-
induced� interactions for the first 20 coordination shells. V�2� and
V�2�,bare are the chemical interactions with and without �bare� the
screening contribution. The total pair interaction in the disordered
phase is given by the sum V�2�+VSI.

FIG. 2. �Color online� Concentration dependence of the chemi-
cal interactions for the first five coordination shells. The lattice con-
stant for each concentration is equal to the corresponding experi-
mental value at room temperature.

FIG. 3. �Color online� Volume �lattice constant� dependence of
the chemical interactions for the first five coordination shells at
17 at % Mn. The dashed line corresponds to the room-temperature
value of the lattice constant for this composition.
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multisite interactions are usually sufficiently accurately re-
produced by the GPM since they do not contain an electro-
static contribution. Although the multisite interactions are
relatively weak �some of the strongest three- and four-site
interactions for the Cu0.83Mn0.17 alloy are listed in Tables VI
and VII� they contribute appreciably to �multi as one can see
in Table I.

The total energies of 256-atom supercells, EMn↑-Mn↑,
EMn↑-Mn↓, EMn, and ECu, have been calculated with the PAW
method �calculation details are given in Sec. II A� for the
lattice spacing of 3.6792 Å as has already been mentioned.
These results, together with the SGPM interaction at the first
coordination shell obtained for the same lattice spacing in the
dilute limit of Mn, are presented in Table I. As one can see,
the agreement between the SGPM and PAW total-energy cal-
culations for the nearest-neighbor effective pair interaction is
very good. Below, we come back once more to the accuracy
of the SGPM interactions used in the present statistical ther-
modynamic simulations.

B. Strain-induced interactions

To take the effect of local lattice relaxations into account,
we have calculated strain-induced interactions at the first
three coordination shells using Eq. �2�, as described in Sec.
II A. The interactions have been calculated in the dilute limit
using the same 108- and 256-atom supercells as in Sec. III A.
The results are presented in Table II together with the strain-
induced interactions obtained by the Krivoglaz-
Khachaturyan �KK� method48–50 using the experimental
value for the lattice concentration expansion, u= 1

a
da
dc

=0.0883, for the Cu0.83Mn0.17 random alloy. One can see that
the KK method, as it is implemented in Ref. 50, quite sig-
nificantly overestimates the interactions especially at the
third and fourth coordination shells. Therefore, in the calcu-
lations of the total effective pair interactions we have re-
stricted ourselves only by inclusion the strain-induced inter-
actions obtained in the first-principles calculations. Thus, we
assume that the contribution from more distant strain-
induced interactions to the configuration energetics is insig-
nificant. Let us note that the long-range tail of the strain-
induced interactions given by the KK model should be
overestimated because it is valid only in the dilute limit. In
random alloys, on the other hand, the long-range tail of
strain-induced interactions should actually be damped by
fluctuations of local lattice displacements due to the corre-
sponding fluctuations of the local chemical environment of
individual atoms.

Unfortunately, there exists no reliable way of getting dis-

tant strain-induced interactions in a random alloy from ab
initio calculations. Nevertheless, strain-induced interactions
are actually directly connected to the corresponding static
lattice displacements within the Krivoglaz-Khachaturyan for-
malism. Thus, static lattice displacements in random alloys
carry important information about strain-induced interac-
tions. To investigate static displacements in the alloy, we
have used the PAW method to calculate the relaxed atomic
positions in a 108-atom supercell containing 90 Cu and 18
Mn atoms �corresponding to 16.7 at %�. The chemical and
magnetic configurations have been set up in such a way as to
minimize the short-range order parameters of the ternary al-
loy Mn↑-Mn↓-Cu. A static displacement for a given coordi-
nation shell has been obtained as an average over a symme-
try group corresponding to the coordination shell.

The calculated atomic displacements �x̄lmn� are presented
in Table III, where they are compared to the recent experi-
mental data by Schönfeld et al.21 for Cu0.83Mn0.17. We also
show the results for �x̄lmn

CuMn�, �x̄lmn
CuCu�, and �x̄lmn

MnMn� obtained
from the supercell calculations of a single Mn �256-atom
supercell� and a pair of Mn atoms �108-atom supercell�, re-
spectively. One can see that although there is a reasonable
qualitative agreement between all the calculated results and
experimental data, the quantitative differences in some cases
are quite large. In particular, the theory and experiment pre-
dict different signs for the atomic displacements of Mn at-
oms in some cases. One can also note that Cu-Mn atomic
displacements calculated for the alloy supercell and for the
Mn impurity are quite different. Besides, in case of impurity
they decay much slower than in case of alloy.

We would like to note that such a comparison should be
made with caution because the magnetic states in all these
cases are different: the experiment is done in the paramag-
netic state, the impurity calculations effectively produce re-
sults for the ferromagnetic state, and the alloy supercell cal-
culations are performed in a kind of a “quasirandom”
magnetic state. The latter may represent the DLM �paramag-

TABLE I. Interaction energies for a pair of Mn atoms in the
dilute limit obtained from the GPM �V�2�−GPM�cMn→0�� and from
supercell calculations, Vsc

�2�. All energies are given in millirydberg.
The parameters VMn-Mn are calculated according to Eq. �4�; �multi is
the multisite contribution.

V�2�−GPM Vsc
�2� VMn↑-Mn↓

VMn↑-Mn↑
J1 �multi

1.085 1.105 −0.728 3.040 −3.77 0.220

TABLE II. Strain-induced interactions �in millirydberg� ob-
tained from the KK formalism and directly from supercell calcula-
tions. “CS” stands for the coordination shell number, also given by
�. The parameters V�

SI,KK are obtained according to the procedure
described in Ref. 50; V�

SI are calculated using Eq. �2�.

V�
SI

CS, � V�
SI,KK 108-atom supercell 256-atom supercell

1 −2.151 −0.992 −1.176

2 −0.605 −0.100

3 0.658 −0.166

4 0.274

5 −0.166

6 0.034

7 0.034

8 −0.074

9 0.091

10 −0.063
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netic� state only if the proper averaging over all possible
magnetic configurations is performed. In a single calculation,
any pair of Mn atoms is either ferromagnetically or antifer-
romagnetically aligned rather than being in an average DLM
state. In our view, a quite broad spectrum of the results for
static atomic displacements reflects the complexity of the
problem that requires further investigation.

IV. ATOMIC CONFIGURATION OF Cu0.83Mn0.17 ALLOY

The atomic configuration of the Cu0.83Mn0.17 alloy has
been obtained in Monte Carlo calculations using the Me-
tropolis algorithm in the canonical ensemble based on the
Hamiltonian �1� at 500 K, which is the annealing tempera-
ture in the diffuse scattering experiments described in Ref. 8.
Simulation boxes of different sizes �up to 32�32�32 fcc
elementary cubic cells� have been taken to exclude finite-size
effects. A run has consisted of 15000 sweeps, with 10000
sweeps used for collecting statistics. The short-range order
parameters have been determined up to the 80th coordination
shell; their Fourier transform is presented in Fig. 4 along
with the experimental data from Ref. 8. Clearly, the ASRO is
reproduced very well up to the width of the peaks. A slight
difference in the shape can be either due to a small error
originating from the cutoff of the interaction range, and mul-
tisite terms for more than 4 sites, or due to an incomplete
subtraction of the magnetic contribution from neutron-
scattering intensity data. The latter claim is supported by
subtracting the calculated normalized atomic intensity pat-
tern from the experimental one and noting that their differ-
ence matches the magnetic intensity pattern quite well.

The ASRO in the Cu0.83Mn0.17 alloy is characterized by
Qa= �1,1 /2,0� type of atomic ordering. The local maximum
of the Fourier transform of the SRO parameters at �0,0,0� is
also present, yet it is very weak, implying a strong tendency
toward ordering rather than segregation. There has been a
controversy as to what kind of an ordered phase this ASRO
represents.19,51–53 None of the previously proposed ordered
structures �e.g., DO22, A2B2, D1a, etc.� satisfies all the nec-
essary conditions, such as the absence of additional reflec-
tions at points inequivalent to Qa �such as for DO22� or the

abundance of Cu in the ordered precipitates �this disfavors
A2B2�. To find the sought-for ordered structure, we have per-
formed Monte Carlo simulations down to low temperatures.
Below the transition temperature �Tc�250 K�, an ordered
phase with 25 at % Mn has precipitated. The structure of the
phase �first proposed in Ref. 54 as an ordered phase for the
Ni3Mo alloy� is shown in Fig. 5. It consists of stripes similar
to the A2B2 structure, but with half of the Mn stripes being
replaced by Cu.

It is worth noting, however, that the ordering energy of
the obtained Cu3Mn phase �referred to as DO60 hereafter� is
very close to that of the D1a �Ni4Mo� phase. It turns out that
three-site chemical interactions play a crucial role in stabi-
lizing the DO60 structure. Unfortunately, there is no simple
way to check the stability of the Cu3Mn and Cu4Mn phases
with respect to each other, since this would require calculat-
ing the free energy for the alloy at different concentrations,
which is a formidable task due to a strong effect of magne-
tism on the alloy thermodynamics.

TABLE III. Static displacements �multiplied by 103 for clarity� in units of the lattice constant obtained from our supercell calculations
and taken from the experimental study where Georgopoulos-Cohen �GC� and 3� separation methods were used �see Ref. 21 for details�. The
results of the calculations for Mn impurity and a pair of Mn atoms at the first three coordination shells for the values of �x̄lmn

CuMn� and �x̄lmn
MnMn�,

respectively, are given in parentheses.

Supercell calculations Experimenta

�xlmn
CuCu� �xlmn

MnMn� �xlmn
CuMn�

lmn �x̄lmn
CuCu� �x̄lmn

MnMn� �x̄lmn
CuMn� GC 3� GC 3� GC 3�

110 −0.78 −12.17 �−19.03� 3.84 �4.17� −2.57 −2.32 −39.22 −31.81 7.20 7.20

200 1.03 −3.37 �−8.06� −2.05 �−0.39� 1.70 1.56 2.73 9.20 −5.07 −5.55

211 −0.16 5.33 �2.20� 0.83 �1.87� −0.07 −0.12 0.137 0.21 −0.01 0.26

121 −0.27 −2.32 �2.83� 0.53 �1.27� −0.10 −0.76 0.9 −0.21 0.14 1.94

220 −0.57 4.02 0.83 �2.61� −0.83 −0.70 −11.82 −6.07 2.82 2.10

aReference 21.

FIG. 4. Left-bottom panel: Fourier transform of the SRO param-
eters obtained from Monte Carlo simulations for Cu0.83Mn0.17 at a
temperature 500 K. Right-top panel: The atomic part of the intensity
from a neutron-scattering experiment �Ref. 8�. Dark regions corre-
spond to maxima in the intensity; light regions, to minima. Wave
vectors are given in reciprocal-lattice units �rlu�.
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The ordering energies of the obtained DO60 phase, as well
as the energies of some other ordered structures for the same
composition, have been calculated and compared to direct
total-energy calculations performed with the EMTO method.
The results are presented in Table IV. It is obvious that
among the other Cu3Mn phases, the DO60 phase is the most
stable one at the given composition, and the energy differ-
ence with respect to the DO22 structure ensures that minor
corrections �static displacements, phonon contribution, etc.�
cannot change the observed behavior.

V. MAGNETIC STRUCTURE

As a rule, accurate numerical studies of SG systems by
Monte Carlo methods are computationally very demanding.
However, a general picture of magnetic correlations turns out
to be relatively insensitive to the quality of sampling. We
have employed the Metropolis algorithm for the Hiesenberg
Monte Carlo simulations to obtain pair spin-spin correlations
in the temperature range between 300 and 20 K. The atomic
configurations have been obtained in the Ising atomic Monte
Carlo simulations at 500 K and kept fixed during magnetic
simulations because the atomic diffusion is practically absent
at ambient and lower temperatures.

Despite frustration that impedes equilibration in simula-
tions even above the SG transition temperature, the spin-spin

correlations tend to saturate to their equilibrium values much
faster than quantities characterizing the SG phase. To put this
another way, the autocorrelation time associated with the
spin-spin correlations changes smoothly and remains rela-
tively small down to the lowest temperatures owing to the
absence of the second-order transition. We can thus make do
with a simplified Monte Carlo technique to achieve a reason-
able accuracy with a moderate number of time steps in this
case.

To characterize a MSRO, a spin-spin correlation function

C�R�= 1
N�i�S� iS� i+R� has been calculated. The Fourier trans-

form of the spin-spin correlation function obtained from the
simulations at 20 K is presented in Fig. 6 along with the
experimental data on the corresponding polarized neutron-
scattering intensities. The maxima at Qs= �1,1 /2�� ,0� ��
�0.21 for cMn=0.172� correspond to incommensurate SDW
clusters. It has already been contemplated51 that the local
magnetic order represents a noncollinear single-Q spin-spiral
structure, with the directions of propagation of SDWs vary-
ing in different domains. This type of the local magnetic
order is observed in simulations at low temperatures �20 K�.
Since the correlations at the first several coordination shells
are strong, these clusters, rather than individual spins, deter-
mine the spin dynamics close to the freezing temperature
TSG. Also, noncollinear MSRO clusters may be responsible
for the chirality ordering that accompanies the SG
transition.55

It is worth noting that we neglect anisotropy for the pure
Cu0.83Mn0.17 alloy because the anisotropy energy for this al-
loy is too small �of the order of 10−3 meV per Mn atom56� to
have any considerable effect on the MSRO. A situation, how-
ever, can be different in CuMn alloys containing heavy im-
purities. For instance, adding even a small amount of Pt to
the alloy results in the anisotropy energy of up to 0.1 meV
per Mn atom.57,58

FIG. 5. �Color online� Ordered structure DO60. Light spheres
represent the Mn atoms; dark, the Cu atoms. Smaller and larger
spheres depict, respectively, positions at the corners and at the face
centers of an elementary cubic cell. The elementary cell of the
ordered structure is marked with a frame.

TABLE IV. Ordering energies of different Cu3Mn structures:
Etot are calculated as the difference between the total energy of an
ordered phase and a random alloy, with the Mn atoms being in the
DLM state; ESGPM are obtained from the effective interactions V�m�

�m=2,3 ,4�.

Structure
ESGPM

�mRy�
Etot

�mRy�
ESGPME-SGPM

DO60

�mRy�
EtotE-tot

DO60

�mRy�

L12 1.68 2.6 2.51 2.89

DO22 −0.83 0.26 0.54 0.54

DO60 −1.68 −0.29 0.0 0.0

FIG. 6. Left-bottom panel: Fourier transform of the spin-spin
correlation function obtained from Monte Carlo simulations for
Cu0.83Mn0.17 at a temperature 20 K. Right-top panel: The magnetic
part of the intensity from a neutron-scattering experiment �Ref. 8�.
Dark regions correspond to maxima in the intensity; light regions,
to minima. Wave vectors are given in rlu.
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VI. SPIN-GLASS BEHAVIOR

In simulating a SG system, one has to take into account
the fact that most of the quantities specific to a SG state, such
as SG susceptibility, overlap parameters, etc., are quite sen-
sitive to a realization of disorder2 and a configurational av-
eraging must therefore be carried out. The latter requires a
large number of independent runs. Moreover, to obtain unbi-
ased values of ensemble averages for each configuration, it is
important to have samples in the equilibrium state. However,
due to magnetic frustrations in the alloy it is hard to achieve
the equilibration and improved methods must be employed
to get results on a reasonable time scale.

Slow equilibration imposes a restriction on a system size
in simulations and therefore finite-size effects become an im-
portant issue. To overcome the size and boundary depen-
dences, we resort to a technique that has become a standard
tool in investigations of critical phenomena, namely, the
finite-size scaling procedure.59,60 The general idea is to ob-
tain a dimensionless correlation length, 	 /L, for different
system linear sizes, L �defined in terms of the number of
elementary cubic cells of the fcc lattice�, and use the scaling
law

	L/L = f�L1/
�T − Tc�� �8�

to determine a transition temperature Tc by taking advantage
of a simple corollary of the fact that the dimensionless cor-
relation length becomes independent of L at Tc. To calculate
the correlation length, two independent replicas with identi-
cal atomic distributions have been simulated in parallel and
the correlation length has been evaluated according to the
following well-known formula:61

	L =
1

2 sin�kmin
x /2�

	 �SG�0�
�SG�kmin�

− 1, �9�

where kmin=2� /L�1,0 ,0� and the SG correlation function
�SG�k� is defined as

�SG�k� = N
�



��q
�k��2��
av

, �10�

q
�k� =
1

N
�

i

Si
�1�Si


�2�eikRi, �11�

with indices �1� and �2� designating quantities related to the
two replicas; summations are performed over all magnetic
atoms in the alloy, �. . .� and �. . .�av stand for thermal and
configurational averaging, respectively, and N=4L3. The FSS
scaling of the SG susceptibility �SG�SG�0� is given by the
relation

�SG/L2−� = X�L1/
�T − Tc�� . �12�

Monte Carlo simulations have been performed using the
heat-bath algorithm.62 To make calculations practically af-
fordable, only the exchange interaction parameters with

FIG. 7. �Color online� Finite-size scaling of the SG
susceptibility.

FIG. 8. �Color online� Finite-size scaling of the SG correlation
length. Curves for different system sizes cross at Tc=57�5 K.

FIG. 9. �Color online� Universal behavior of the SG correlation
length. Best fit is achieved with 
=0.95.
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�Rij��r0=4 elementary cubic cells have been taken into ac-
count. To ensure thermalization, logarithmic binning has
been applied to the spin-glass susceptibility �SG�0� and a
consistency check of the obtained configurational averages
has been made in a way similar to that in Ref. 63, namely,
the following two quantities have been calculated:

�o =
1

N
�
i

�Si
�1� · Si

�2��2�
av

�13�

and

�d =
1

T
�

i

 1

N��
i

Si
�1��t0� · Si

�1��t0 + t��2�
av

, �14�

where t designates the time in terms of Monte Carlo steps, t0
is the equilibration time, and T the size of the time window
during which measurements are carried out. A calculation is

considered converged with respect to the configurational av-
eraging if a condition �o=�d is satisfied with a high accuracy
�to within 1%�. To accelerate equilibration, we have used the
over-relaxation method,64 which consists in performing mi-
crocanonical steps; that is, all spins are flipped sequentially
according to the following energy-conserving transforma-
tion:

Si → Si −

2�Si ·
�H

�Si
� �H

�Si

� �H

�Si
�2 . �15�

L sequential microcanonical steps for each heat-bath sweep
have been found to be optimal in terms of the actual calcu-
lation time.

The calculated size dependence of the SG susceptibility
�Fig. 7� suggests the divergent behavior below 100 K. More
detailed information can be extracted from the size scaling of
the dependence of the correlation length on temperature �Fig.
8�. The results show unequivocally that the system undergoes
a transition at a finite temperature. The absence of a long-
range order has been checked by observing the development
of the correlation length corresponding to the SDW ordering.
Although the SG transition is clearly observed, one cannot
rule out a crossover to a marginal behavior at larger supercell
sizes. The data exhibit a universal scaling with Tc
=57�5 K and 
=0.95�0.1 �Fig. 9�. Using these param-
eters, the SG susceptibility can also be fitted providing a
parameter �=0.25�0.1 �Fig. 10�. From the relation �=
�2
−��, one can also find that ��1.7�0.3. In all plots, the
deviation of the data for L=16 is due to the systematic un-
derestimation of the SG susceptibility at low temperatures.

FIG. 10. �Color online� Universal behavior of the SG suscepti-
bility. Best fit is achieved with �=0.25.
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FIG. 11. �Color online� The extended scaling of the SG corre-
lation length according to Eq. �17�. The reduced temperature t is
defined as t=T /Tc.
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FIG. 12. �Color online� The extended scaling of the SG suscep-
tibility according to Eq. �17�. The reduced temperature t is defined
as t=T /Tc.
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An alternative �extended� scaling relation based on the
high-temperature series expansion was proposed by Camp-
bell et al.65 Unlike the conventional scaling �Eq. �8��, the
extended scaling applies not only to a close vicinity of the
critical region but must also hold for all temperatures above
the transition. The extended relation, that can be written as65

	L/L = f̃��LT�1/
�1 − �Tc/T�2�� , �16�

�SG/�LT�2−� = X̃��LT�1/
�1 − �Tc/T�2�� , �17�

has been applied to the calculated data. The results shown in
Figs. 11 and 12 demonstrate a rather good scaling, although
a larger temperature interval and higher accuracy are re-
quired to make a more thorough comparison of the two types
of scalings.

The values of the critical exponents differ from those ob-
tained in experimental measurements25 from which we have

TABLE V. Pair effective and magnetic exchange interactions for the first 80 coordination spheres.

N �Rx ,Ry ,Rz� V�R0,R�
�2� J�R0,R�

�xc� N �Rx ,Ry ,Rz� V�R0,R�
�2� J�R0,R�

�xc�

1 �0.5, 0.5, 0.0� 0.45035 −2.51559 41 �2.5, 2.5, 2.0� 0.00003 −0.00029

2 �1.0, 0.0, 0.0� −0.31257 0.83820 42 �3.5, 2.0, 0.5� 0.00358 −0.00001

3 �1.0, 0.5, 0.5� −0.20378 0.18558 43 �4.0, 0.5, 0.5� 0.00030 0.00003

4 �1.0, 1.0, 0.0� 0.27218 −0.29230 44 �4.0, 1.0, 0.0� 0.00038 −0.00118

5 �1.5, 0.5, 0.0� 0.00205 −0.05987 45 �3.0, 2.0, 2.0� 0.00143 −0.00052

6 �1.0, 1.0, 1.0� 0.04462 −0.00211 46 �3.0, 2.5, 1.5� −0.00003 0.00016

7 �1.5, 1.0, 0.5� −0.03562 0.06212 47 �3.0, 3.0, 0.0� 0.00358 −0.01198

8 �2.0, 0.0, 0.0� −0.03068 0.07661 48 �4.0, 1.0, 1.0� −0.00122 −0.00056

9 �2.0, 0.5, 0.5� 0.01150 0.00673 49 �3.5, 2.0, 1.5� −0.00050 −0.00105

10 �1.5, 1.5, 0.0� 0.08350 −0.06621 50 �4.0, 1.5, 0.5� −0.00057 −0.00273

11 �2.0, 1.0, 0.0� 0.01215 −0.07616 51 �3.5, 2.5, 0.0� −0.00095 −0.01165

12 �1.5, 1.5, 1.0� 0.00675 −0.01083 52 �3.0, 3.0, 1.0� 0.00082 −0.00236

13 �2.0, 1.0, 1.0� −0.00328 0.01124 53 �3.5, 2.5, 1.0� −0.00052 −0.00147

14 �2.5, 0.5, 0.0� −0.00948 0.01708 54 �4.0, 2.0, 0.0� −0.00358 0.00909

15 �2.0, 1.5, 0.5� −0.02198 0.04217 55 �4.5, 0.5, 0.0� 0.00025 −0.00078

16 �2.5, 1.0, 0.5� 0.00750 −0.00194 56 �4.0, 1.5, 1.5� 0.00093 0.00150

17 �2.0, 2.0, 0.0� 0.03080 −0.03656 57 �4.0, 2.0, 1.0� 0.00042 0.00171

18 �2.0, 1.5, 1.5� 0.00063 −0.00303 58 �3.5, 3.0, 0.5� 0.00032 0.00660

19 �2.5, 1.5, 0.0� 0.00688 −0.04823 59 �4.5, 1.0, 0.5� −0.00093 0.00041

20 �2.0, 2.0, 1.0� 0.00328 −0.00889 60 �3.0, 2.5, 2.5� −0.00005 0.00002

21 �3.0, 0.0, 0.0� 0.00585 −0.00193 61 �3.0, 3.0, 2.0� −0.00003 0.00006

22 �3.0, 0.5, 0.5� −0.00287 −0.00186 62 �3.5, 2.5, 2.0� 0.00232 0.00016

23 �2.5, 1.5, 1.0� −0.00118 0.00076 63 �4.0, 2.5, 0.5� 0.00003 −0.00114

24 �3.0, 1.0, 0.0� −0.00775 0.01594 64 �4.5, 1.5, 0.0� 0.00103 −0.00023

25 �2.5, 2.0, 0.5� −0.00937 0.02320 65 �4.5, 1.5, 1.0� −0.00047 −0.00164

26 �3.0, 1.0, 1.0� 0.00363 −0.00354 66 �3.5, 3.0, 1.5� −0.00003 0.00010

27 �3.0, 1.5, 0.5� 0.00617 −0.00055 67 �4.0, 2.0, 2.0� −0.00010 −0.00125

28 �2.0, 2.0, 2.0� 0.00025 −0.00037 68 �4.0, 2.5, 1.5� 0.00068 −0.00028

29 �2.5, 2.0, 1.5� 0.00065 −0.00097 69 �3.5, 3.5, 0.0� −0.00057 −0.00557

30 �2.5, 2.5, 0.0� 0.01150 −0.02220 70 �4.5, 2.0, 0.5� −0.00015 −0.00206

31 �3.5, 0.5, 0.0� 0.00093 0.00056 71 �4.0, 3.0, 0.0� −0.00118 −0.00410

32 �3.0, 2.0, 0.0� 0.00150 −0.02508 72 �5.0, 0.0, 0.0� 0.00028 −0.00067

33 �3.5, 1.0, 0.5� 0.00220 −0.00129 73 �5.0, 0.5, 0.5� 0.00028 −0.00019

34 �2.5, 2.5, 1.0� −0.00178 −0.00397 74 �3.5, 3.5, 1.0� 0.00003 −0.00118

35 �3.0, 1.5, 1.5� −0.00155 0.00064 75 �4.0, 3.0, 1.0� −0.00032 −0.00073

36 �3.0, 2.0, 1.0� −0.00100 −0.00282 76 �5.0, 1.0, 0.0� −0.00010 −0.00014

37 �3.5, 1.5, 0.0� −0.00553 0.01155 77 �4.5, 2.5, 0.0� 0.00010 0.00669

38 �3.5, 1.5, 1.0� −0.00343 0.00050 78 �4.5, 2.0, 1.5� −0.00217 0.00167

39 �3.0, 2.5, 0.5� 0.00185 0.01314 79 �5.0, 1.0, 1.0� 0.00030 0.00041

40 �4.0, 0.0, 0.0� 0.00000 −0.00067 80 �3.0, 3.0, 3.0� −0.00005 0.00010
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exp=1.3�0.15 and �exp=2.3�0.2. One of the possible
causes of this disagreement is a rather high sensitivity of the
critical exponents to the scaling corrections which might be
non-negligible in our calculations because the range of the
interactions is comparable to the size of the simulation box.
Another effect, which can strongly influence the critical be-
havior, is anisotropy. It is well known that even a small
amount of anisotropy present in a real system can change the
critical behavior close to the transition temperature, giving
rise to the values of critical exponents different from those
for an isotropic system. Unfortunately, it is practically im-
possible to detect any crossover from an isotropic to aniso-
tropic critical behavior in small systems such as the one we
have used here and with such a small anisotropy energy typi-
cal for pure CuMn alloys. Simulations for systems with an
appreciable amount of anisotropy �such as, e.g., CuMnxPty�
can therefore be an interesting problem for future work.

The obtained transition temperature, 57 K, turns out be
slightly lower than the experimental value �78 K�. One of the
possible explanations for this discrepancy is the cutoff of the
interaction range that we had to introduce. On the other
hand, Monte Carlo dynamics �only local updates without
over-relaxation� has revealed a strong critical slowing down
at about a temperature equal to 80 K and this value only
slightly depends on the cutoff. This could indicate that while
dynamics is driven primarily by short-range interactions, the
SG transition itself is very sensitive to long-range interac-
tions which may play a rather important role in the onset of
the SG phase in the CuMn alloys.

In spite of a possible strong influence of long-range inter-
actions on the SG dynamics, it seems unlikely that the domi-
nating contribution to the onset of the transition comes from
effectively infinite-range interactions because a natural cutoff
can be considered originating from various kinds of imper-
fections �vacancies, impurities, static displacements, etc.�

present in any real material but discarded in the current
study. For instance, we have neglected static atomic displace-
ments in the magnetic part of the problem. Although their
effect should be very small on the effective interactions at
nearest-neighbor interactions, more distant interaction will
be definitely damped because of the corresponding exponen-
tial damping of the Cu s-like states. This means that such a
system will doubtfully cross over to a mean-field-like transi-
tion in a realistic model.

VII. CONCLUDING REMARKS

The basic result of this work is the structure of the CuMn
alloy obtained from first-principles calculations. It has been
shown that both the atomic and magnetic thermodynamics
simulations accurately reproduce the corresponding experi-
mental data. Interestingly, it has already been pointed out in
some studies19 that the most probable stoichiometry of the
ordered phase of a Cu-rich CuMn alloy is Cu 25 at % Mn;
however, the scattering pattern of known structures with this
composition �DO22, L12� is not compatible with the observed
one, and the A2B2 structure, that lacks this drawback, has
been considered as a best description of the ASRO. In this
respect, the structure DO60, on one hand, contains 25 at %
Mn and, on the other hand, resembles the A2B2 structure
closely and produces a similar scattering intensity picture
with the dominant peaks at Qa= �1,1 /2,0�. This reconciles a
seeming discrepancy between the observed stoichiometry
and the structure of the ASRO.

In spite of some limitations of the approach used, a large
class of metallic spin-glass materials, e.g., AgMn, AuMn,
PtMn, AuFe, etc., can be investigated in a similar fashion.
Other contributions to the magnetic interactions might be
required to be taken into consideration, though. Although in
the CuMn alloy relativistic effects can be neglected, in sys-
tems with heavy elements �Au, Pt� they are important and

TABLE VI. Selected three-site effective interactions. The corresponding three-site clusters are defined by
three vectors: R0�0,0 ,0�, R1, and R2.

N R1 R2 V�R0,R1,R2�
�3� N R1 R2 V�R0,R1,R2�

�3�

1 �0.5, 0.0, 0.5� �0.5, 0.5, 0.0� −0.01127 15 �0.5, 0.5, 0.0� �1.0, 1.5, 0.5� 0.00667

2 �0.5, 0.5, 0.0� �1.0, 0.0, 0.0� −0.02395 16 �0.5, 0.5, 0.0� �1.5, 0.5, 1.0� 0.00561

3 �0.5, 0.5, 0.0� �1.0, 0.5, 0.5� 0.04451 17 �0.5, 0.5, 0.0� �−0.5, 1.0, 1.5� 0.00213

4 �0.5, 0.5, 0.0� �0.5, 0.5, 1.0� −0.00140 18 �1.0, 0.0, 0.0� �1.5, 1.0, 0.5� 0.00135

5 �0.5, 0.5, 0.0� �−0.5, 1.0, 0.5� 0.00470 19 �0.5, 0.5, 0.0� �2.0, 0.0, 0.0� 0.00235

6 �1.0, 0.0, 0.0� �0.5, 0.5, 1.0� 0.00125 20 �0.5, 0.5, 0.0� �1.5, 1.5, 0.0� −0.01867

7 �0.5, 0.5, 1.0� �1.0, −0.5, 0.5� −0.00014 21 �1.0, 1.0, 0.0� �2.0, 2.0, 0.0� −0.00609

8 �0.5, 0.5, 0.0� �1.0, 1.0, 0.0� −0.04427 22 �0.5, 0.5, 0.0� �2.5, 2.5, 0.0� −0.00231

9 �0.5, 0.5, 0.0� �1.0, 0.0, 1.0� −0.00305 23 �0.5, 0.5, 0.0� �2.0, 2.0, 0.0� −0.00724

10 �1.0, 0.0, 0.0� �1.0, 1.0, 0.0� −0.00303 24 �1.0, 1.0, 0.0� �2.5, 2.5, 0.0� −0.00230

11 �0.5, 0.5, 0.0� �1.5, 0.0, 0.5� −0.00210 25 �0.5, 0.5, 0.0� �3.0, 3.0, 0.0� −0.00055

12 �0.5, 0.5, 0.0� �1.5, −0.5, 0.0� −0.00181 26 �1.0, 1.0, 0.0� �3.0, 3.0, 0.0� −0.00077

13 �0.5, 0.5, 0.0� �0.5, 0.0, 1.5� −0.00324 27 �1.5, 1.5, 0.0� �3.0, 3.0, 0.0� −0.00088

14 �0.5, 0.5, 0.0� �1.0, 1.0, 1.0� −0.00687 28 �1.5, 1.5, 0.0� �3.0, 3.0, 0.0� 0.00000
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can lead to strongly anisotropic interactions. Most of the an-
isotropic contributions can be treated within the GPM for-
malism in the framework of a fully relativistic code �see,
e.g., Ref. 66�, extending thus the approach to highly aniso-
tropic heavy-element metallic alloys.
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APPENDIX

Effective cluster interactions for two-site, three-site, and
four-site clusters are presented in Tables V–VII. In all cases,
an m-site cluster is represented by the first atom at the origin,
�0,0,0�, and �m−1� vectors corresponding to the other atoms
in the cluster as given in the tables. The interactions are
given in millirydberg. Note that the accuracy of the EMTO
calculations has been set to 10−3 mRy.
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