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Using numerical diagonalization techniques, we explore the effect of local and bond disorder on the finite-
temperature spin and thermal conductivities of the one-dimensional anisotropic spin-1/2 Heisenberg model.
High-temperature results for local disorder show that the dc conductivities are finite, apart from the uncorre-
lated XY case where dc transport vanishes. Moreover, at strong disorder, we find finite dc conductivities at all
temperatures T except at T=0. The low-frequency conductivities are characterized by a nonanalytic cusp shape.
Similar behavior is found for bond disorder.
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The effect of correlations on localized states in disordered
system1 is a long standing problem2 that is attracting re-
newed theoretical and experimental interests.3–7 While it is
clear that in a one-dimensional �1D� noninteracting disor-
dered system all states are localized, the introduction of cor-
relations might lead to different possible scenario. First, at
zero temperature, T=0, numerical results for fermions with
repulsive interaction in a disordered system reveal that local-
ization persists in spite of correlations,8,9 although some
types of interactions might destroy the localized states lead-
ing the system to a normal diffusive state or even one with
diverging low-frequency conductivity.10 Even if the system
remains localized at T=0, an arbitrary low temperature could
delocalize it or a finite critical temperature4,5 might be
needed to drive it to a normal state at high temperatures.
There are also indications that in the presence of large dis-
order even at high T many-body states can appear effectively
localized.6,11

To explore this issue, the 1D �in general� anisotropic spin-
1/2 Heisenberg chain is a minimal model that allows us to
investigate the interplay of disorder and correlations on
transport. In the XY limit, mapped by the Jordan-Wigner
transformation to a system of noninteracting spinless
fermions,12 it is expected to have all single-particle states
localized under any amount of local or bond disorder consis-
tent with the Anderson localization phenomenon.1 The spin
�in fermionic representation equivalent to charge� conductiv-
ity as well as the thermal dc conductivities are expected to
vanish at all T, while ac conductivities are finite but
nontrivial.13

Without disorder, the anisotropic XXZ model is a strongly
correlated spin system, with nearest-neighbor interaction in
the fermion picture. It is integrable using the Bethe ansatz
method for any value of the anisotropy and it is known to
show ideal spin/charge �in the easy-plane case� and thermal
�for any anisotropy� conductivities at all temperatures.14

Besides the theoretical interest of this model quasi-1D
magnetic compounds have recently been synthesized which
are described exceedingly well by the 1D isotropic spin-1/2
Heisenberg model and show unusually high thermal conduc-
tivity due to a magnetic transport mode contribution.15 Rel-

evant to this work, experiments are underway to study the
effect of disorder by nonmagnetic as well as magnetic impu-
rities.

In this work, we will use state of the art numerical diago-
nalization techniques—the exact diagonalization �ED�, the
finite-temperature Lanczos method �FTLM� �Ref. 16�, and
the microcanonical Lanczos method �MCLM� �Ref. 17�—to
see what they can offer to this issue of disorder and correla-
tions. While we will study the spin and thermal conductivity
of the spin-1/2 anisotropic Heisenberg model, the spin con-
ductivity maps directly to that of the charge conductivity of a
spinless fermion model.

We first consider the 1D anisotropic spin-1/2 Heisenberg
model in the presence of a random local magnetic field,

H = �
l

J�Sl
xSl+1

x + Sl
ySl+1

y + �Sl
zSl+1

z � + �
l

blSl
z, �1�

where S� ,�=x ,y ,z are spin-1/2 operators, J is the magnetic
exchange coupling, � is the anisotropy parameter, and
−W /2�bl� +W /2 are random local fields from a uniform
distribution. We assume periodic boundary conditions, �
=�B=1, and take J as the unit of energy.

Our analysis will be based on standard linear-response
theory. The spin conductivity is given by
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1
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with j representing the spin current. The corresponding ther-
mal conductivity is given by

��	� =
�

	L
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+


dt eizt���j��t�, j���� , �3�

where �=1 /T. The energy current j� in an inhomogeneous
system can be defined via the dipole operator as18
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P� = �
l

rlhl, j� = i�
lm

rl�hm,hl� , �4�

whereby hl are local energy operators and rl are the corre-
sponding coordinates. Taking into account that locations of
local-field energies are on sites and exchange energies on
bonds, respectively, one arrives at

j� = J2�
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bl + bl+1

2
jl,l+1,

jl
� = �Sl+1
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zSl−1

y − Sl+1
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x � + ��x → y,z;y → z,x;z → x,y� .

�5�

For vanishing random fields, W=0, the energy current j�

commutes with the Hamiltonian for all values of the aniso-
tropy � and thus the system is an ideal thermal conductor14

at all T. It has also been shown that the uniform, W=0,
system exhibits ballistic spin transport in the XY regime, �
�1, at all temperatures although j does not commute with
H.19

Let us start the analysis with the high-T limit, T→
,
which exhibits nontrivial ��	� and ��	�, being in fact quite
generic for all T0. The difference between spin and ther-
mal transport can be realized already from the spin Mn

s

=		n��	�d	=��mn
s and corresponding energy Mn

�

=��2mn
� frequency moments. Moments can be evaluated

analytically at T→
, e.g., m0
s = �j j� /L, m2

s = ��H , j��H , j�� /L,
etc. One gets m0

s =J2 /8 and

m2
s =

J2

16
�J2�2 + 4�b2�� ,

m0
� =
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J4
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J2

16
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where �b2�=W2 /12 and �b4�=W4 /80. Equation �6� reveals
the difference between spin and thermal transport since the
finite dispersion ��=
m2

� /m0
� of ��	� is induced solely by

W0 whereas �s=
m2
s /m0

s remains finite even for W=0.
Although the lowest-frequency moments can serve as a

reference, they are insufficient to reveal the most challenging
	→0 behavior. For the latter we have to rely on numerical
calculations. The most favorable case for simulations on a
finite-size lattice is the strong disorder limit where we expect
the localization length � to be shortest. In the following we
consider W=2, where an estimate of T=0 localization length
� exists in the literature,9 which suggests that � is less than
ten sites in the cases we are studying.

In Figs. 1 and 2 we present results for ��	� and ��	�,
respectively. The data for L=14, with a Hilbert-space dimen-
sion of 3432 states in the Sz=0 subsector, were obtained by
exact �full� diagonalization. The � peaks at the excitation
frequencies are binned in windows �	=0.01, which also
gives the frequency resolution of the spectra. There is an
average over Nr=10 random-field configurations. For L

=16–24 the MCLM �Ref. 17� is used, which is particularly
suitable for high T��J�, with typically 2000 Lanczos steps
and random-configuration sampling Nr100. In the same
plots, we show the noninteracting case for L=1000 and av-
eraging Nr=1000, where we expect the dc conductivities
�dc=��	→0� and �dc=��	→0� to vanish. All the spectra
are normalized to a unit integral.

Data for various sizes L indicate a convergence of the
finite-size effects at moderate sizes L16 �at least for �
0.5� for the chosen rather strong disorder W=2. In particu-
lar, we show in Fig. 1 the comparison of L=14 and L=24
results for �=1. In Fig. 2, for the same parameters, the
curves are also nearly indistinguishable for L between 14 and
24 sites.

These results clearly reveal that apart from the XY limit,
�=0, the system is conducting, i.e., both spin �dc and ther-
mal �dc dc conductivities are finite. Nevertheless, due to the
large disorder W the dynamics is non-Drude type since the
maximum of ��	� as well as of ��	� appears at a finite 	�

0, in analogy with the localization at �=0. Hence, at �
0 and large W we are dealing with pseudolocalized
dynamics.6,11 Another feature of this regime appears to be a
generic �nonanalytic� cusplike behavior at low frequencies,
��	���dc+��	� and ��	���dc+��	�, for which so far we
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FIG. 1. �Color online� Dynamical spin conductivity ��	� at T
→
 for local disorder W=2 and various � �curves normalized to
unity� evaluated via ED �L=14� and for �=1 also via MCLM �L
=24�.
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FIG. 2. �Color online� Dynamical thermal conductivity ��	� at
T→
 for W=2 and various � �curves normalized to unity� evalu-
ated via ED �L=14� and MCLM �L=24�.
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cannot offer an analysis. It might be attributed to long-time
tail effects although, in such a case, the low-frequency drop
of the conductivity was found to be only a few percent20 and
not by an order of magnitude as in our case. Such a fre-
quency dependence is strongly reminiscent of the behavior in
strongly disordered two-dimensional �2D� system as has
been analyzed theoretically and observed experimentally.21

Apart from a qualitative similarity between ��	� and
��	� in Figs. 1 and 2 there are also some differences. ��	� is
more sensitive to �, as it is already evident from the mo-
ments �Eqs. �6�� and the corresponding �s. They originate
from the fact that even at W=0 ��	→0� changes qualita-
tively at �=1, not being the case for ��	→0�.14

As our numerical simulations indicate, a similar qualita-
tive behavior persists by decreasing the disorder to W=1.0
�not shown�. With decreasing W the pseudolocalized form
gives way to a more Drude-type form with 	�→0 and
strongly increased �dc and �dc. However, reducing the disor-
der further we are running to long localization lengths �for
�=0� and in general less controllable finite-size effects pre-
venting reliable conclusions.

The next issue is the temperature dependence of the dy-
namical �in particular dc� conductivity and the eventual ex-
istence of a critical temperature Tc below which the system
becomes insulating.4,5 To study this question we employed
the ED method for L=14 �using Nr=10� and the FTLM for
L=16–20 with 200–400 Lanczos steps for high-frequency
resolution and Nr100. The results are qualitatively similar
whereby the FTLM, properly interpolating between the T
=0 �ground-state� Lanczos method and T0 behavior, is
more reliable for small T�0.5 due to larger L and denser
low-energy spectra. Results for ��	� and ��	� in the isotro-
pic case �=1 and at fixed W=2 are shown in Figs. 3 and 4
for various T=0–2 and L=20 �being essentially equal to the
results obtained for L=16�. The data again indicate that �dc
and �dc remain finite at all T0 and vanish only at T=0. A
rather abrupt drop of �dc appears at T0.1 which is however
in the range of finite-size temperature Tfs �for available L
=20� below which the FTLM results are not to be trusted.16

These data suggest a zero critical temperature of localization-
delocalization transition, although of course we cannot ex-
clude an exponentially small one, which is beyond the reach
of actual numerical simulations.

In connection with existing 1D magnetic compounds15

more relevant appears to be the spin-1/2 �anisotropic� Hamil-
tonian with bond disorder, i.e., disorder in exchange cou-
plings,

H = �
l

Jl,l+1�Sl
xSl+1

x + Sl
ySl+1

y + �Sl
zSl+1

z � , �7�

where Jl,l+1=J�1−sl,l+1� and we assume −W /2�sl,l+1
�W /2 uniformly distributed random numbers. Such disorder
can be induced, e.g., by coupling to static lattice
displacements.22 The local spin current is now jl,l+1
=Jl,l+1�Sl

xSl+1
y −Sl

ySl+1
x � while the energy current is given by

j� = �
l
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An open question is whether a 1D spin chain with bond
disorder10 behaves qualitatively different to the site disorder
discussed above. Our results indicate that it is not the case.

In Figs. 5 and 6 we present T→
 results for ��	� as well
as ��	� for �=1 and different bond disorder strengths W
=0.5,1 ,1.5. Results were obtained using the MCLM method
on L=20 sites. Results for larger W=1,1.5 are well con-
verged with size and clearly indicate that we are again deal-
ing with finite dc limits �dc0 and �dc0. With respect to
the site disorder case in Figs. 1 and 2 there are similarities
and also differences as follows: �a� for bond disorder we are
restricted to W�2 to have a meaningful model without a
possibility of a broken bond, �b� the pseudolocalization is
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FIG. 3. �Color online� Spin conductivity ��	� for �=1 and W
=2 for various T.
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FIG. 4. �Color online� Thermal conductivity ��	� for �=1 and
W=2 for various T.
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FIG. 5. �Color online� T→
 results for ��	� and for �=1 and
different disorder W �curves are normalized�.
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less pronounced at least for ��	� and shows up only closer to
W=2, e.g., for ��	� at W=1.5, �c� ��	� in Fig. 6 reveals a
quite abrupt crossover with disorder strength from a Drude-
type response �at W=0.5� to a localized-like one with 	�

0 at W=1.0, and �d� at least for ��	� two energy scales are
evident in Fig. 5 which are not present in the random-field
case.

In conclusion, our results of numerical simulations on the
interplay of disorder and correlations in the spin and thermal
transport within Heisenberg spin chains can be summarized

by the following scenario: �a� finite random-field disorder
W0 induces localization and vanishing dc transport at any
T in the XY limit, corresponding to noninteracting fermions,1

and as well generally at T=0 �Refs. 8 and 9� �for �0
considered here�; �b� apart from the latter two limits the sys-
tem appears to behave as a normal conductor with finite
�dc0 and �dc0 both for various �0 and T0; in par-
ticular, we do not find any evidence for a phase transition by
varying T or W; �c� dynamical transport �at least for larger
disorder� reveals a generic cusplike nonanalytic behavior for
	, analogous to long-time tails in classical dynamical sys-
tems in low-dimensional23 or 2D strongly disordered sys-
tems; �d� with increasing disorder the system reveals a cross-
over from the Drude-type to a pseudolocalized dynamics
with very low dc �dc and �dc �Ref. 11�; and �e� similar con-
clusions seem to hold for the bond disorder.

Clearly, several caveats are in order. The considered cases
mostly correspond to substantial disorder, where the finite-
size effects are well under control and results converged
within available L, at least for TTfs and not too small �
0. Also, numerical results cannot exclude the localization
on a very long scale ��L although we do not find any sig-
nature of such a development.
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