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We present a theory to describe the equilibrium states and nucleation phenomena in ferromagnetic tubular
nanostructures. We show that, in a broad range of geometrical parameters, the magnetic state of a nanotube is
a mixture of vortex states, at tube ends, and a uniform magnetization state along the tube axis. The incomplete
vortex structures confined at the tube ends are growing domain walls which can be set in motion with external
fields, current-driven techniques, or thermal assistance. We also show how the well-known nucleation problem
can be better understood with basis in the theoretical model presented in this paper.
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I. INTRODUCTION

Since the progress to synthesize and characterize nano-
structures, there is always the interest to evaluate the poten-
tial of one-dimensional nanostructures as functional compo-
nents in device fabrication. In particular in the last few years,
the fabrication of magnetic nanotubes of different materials
�organic and inorganic� has triggered a new and broad re-
search field, including their physical properties and its pos-
sible applications in different areas. Although the physical
properties of ferromagnetic nanowires have been extensively
investigated, magnetic nanotubes have been poorly explored
so far in spite of some potential advantages over solid cylin-
ders. Nanotubes exhibit a core-free magnetic configuration,
which avoids a mathematical singularity in the tube axis,
leading to a more controllable and faster reversal process,
guaranteeing reproducibility and efficiency, and therefore a
better manipulation of their rich magnetic properties. Ferro-
magnetic tubular structures are objects of current research
not only for the understanding of their basic properties but
also because they exhibit many potential applications in
nanotechnology and biotechnology. Data storage, magnetic
sensors, microelectronics, and magnetic imaging1–5 as well
as biomedical applications, such as cell separation, drug de-
livery, or biosensing,6–8 are some examples of the multifunc-
tionality of tubular magnetic structures, which due to their
low density can float in solutions making them suitable for
many applications in biotechnology.6–8

From the experimental point of view, there are several
methods for the fabrication of magnetic tubes, which
includes, for example, hydrogen reduction,1

electrodeposition,2,3 and atomic layer deposition5 into porous
membranes. From the theoretical side, the knowledge of ba-
sic magnetic properties, such as the internal magnetic struc-
ture or equilibrium states, magnetization reversal process,
nucleation field, and coercivity, is of fundamental impor-
tance. Magnetic measurements,5 numerical simulations,4 and
analytical calculations9,10 on such tubes have identified two
main equilibrium states: an in-plane magnetic ordering,
namely, the flux-closure vortex state, and a uniform state
with all the magnetic moments pointing parallel to the axis
of the tube. Besides these two main states, micromagnetic
simulations have demonstrated the existence of a “mixed”

�M� state, which is a mixture of the ferromagnetic �F� and
vortex �V� states.4,11,12 This new state �see Fig. 1� presents a
uniform magnetization along the middle region of the tube
and near the lower and upper surfaces the magnetization de-
viates from the uniformity in order of reduce stray or dipolar
fields. The predominance of one of them depends upon the
specific geometry of the nanotube and also on the material of
which the nanotube was synthesized. Moreover, the exis-
tence of the mixed state is closely related with the phenom-
enology of nucleation and subsequent reversal process of the
magnetization. Recently, it was shown that the size-
dependent reversal process occurs via nucleation and propa-
gation of domain walls, which can be a transverse wall for
tube radius �R� smaller than a critical radius �Rc���� or a
vortex wall for R�Rc���.13 This critical radius depends on
the magnetic material13 and on a shape factor, which is de-
fined as ��Ri /R, with Ri as the internal radius of the tube.
This critical radius ranges from a few nanometers to 20 nm
approximately, and therefore, since nanotubes experimen-
tally fabricated have usually R�Rc���, we can expect that
the nucleation and propagation of a vortex domain wall be
the dominant magnetization reversal mechanism for mag-
netic nanotubes.13 Thus, it is natural to think that in zero
applied field, the deviation of the magnetization near the tube
ends is most likely an incomplete vortex domain wall struc-
ture, as pointed out recently by Lee et al.,11 as well as by
Chen et al.12 In this paper we present a theory to describe the
actual magnetic equilibrium state in ferromagnetic nano-
tubes. Our model enables us to investigate the size-
dependent equilibrium states as well as the nucleation field,
that is, the value of the external field such that the magneti-

FIG. 1. Illustration of the mixed state in magnetic nanotubes. In
the middle region the magnetization is uniform, whereas in the
extremes we have incomplete vortex domains.
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zation begin to deviate from the saturated state, which is a
quantity closely related to the coercivity. Also we will rein-
force our theoretical study with numerical simulations at the
atomic level, based on the Monte Carlo method with scaling
of the exchange constant.14–17 We perform simulations on
different geometries with the aim to reproduce the equilib-
rium states based on Monte Carlo simulations.

This paper is organized as follows. In Sec. II we describe
our theoretical model, whereas in Sec. III we describe our
numerical simulations. In Sec. IV we present the results and
discussion comparing theory and simulations. Nucleation
phenomena as well as magnetization reversal are also dis-
cussed here. Conclusions are summarized in Sec. V and
mathematical details are presented in the Appendix.

II. THEORETICAL MODEL

Geometrically, tubes are characterized by their external
and internal radii, R and Ri, respectively, and length L. It is
convenient to define the ratio ��Ri /R so that �=0 repre-
sents a solid cylinder and �→1 correspond to a very narrow
tube. We adopt a simplified description of the system in
which the discrete distribution of magnetic moments is re-
placed by a continuous one, defined by a function M�r� such
that M�r��v gives the total magnetic moment within the el-
ement of volume �v centered at r. The total magnetic energy
is composed of four contributions which are taken from the
well-known continuum theory of ferromagnetism.18 That is,
E=Ex+Ed+EK+EZ, where Ex=A����mi�2dv is the ex-
change energy,18 with mi=Mi /Ms �i=x ,y ,z� as the Cartesian
components of the magnetization normalized to the satura-
tion value Ms �m=M /Ms� and A as the stiffness constant.
The dipolar contribution is written as Ed= ��0 /2��M ·�Udv,
with U as the magnetostatic potential,18 whereas EK is the
magnetocrystalline anisotropy, which can be cubic �c� or
uniaxial �u� depending on the sample. The last contribution
is the Zeeman term EZ=−�0�M ·Hdv, where H is an exter-
nal field. We will proceed to describe the magnetization of
the mixed state and evaluate the magnetic energy of the sys-
tem.

A. Mixed state magnetization

The arrangement of magnetic moments in a tube can be
seen as a uniform state in the middle region of the tube but
with two deviations of the magnetization, such as an incom-
plete vortex walls localized at the tube ends �see Fig. 1�. The
magnetization field of such a magnetic configuration can be
written in the following way:

m�z� = mz�z�ẑ + m��z��̂ , �1�

where

mz�z� = cos ��z�, m��z� = sin ��z� . �2�

We adopt a trial function for ��z� with four adjustable pa-
rameters, which is given by

��z� = �	0�d − z�/d , 0 
 z 
 d

0, d 
 z 
 L − �

	L�z − L + ��/� , L − � 
 z 
 L ,
	 �3�

where d and � �see Fig. 1� are the dimensions of the regions
where the magnetization deviate from the z axis. 	0 and 	L
correspond to angles of the magnetization with the z axis
evaluated at the tube ends �z=0 and z=L, respectively�. For
example, in the bottom surface of the tube �z=0�, ��0�=	0,
and mz�0�=cos 	0, that is, the z component of the tube mag-
netization. With this form for the magnetization we can de-
scribe in detail the mixed state as a function of the tube
geometry. Also we can obtain the full ferromagnetic order in
the limit mz�0�=mz�L�=1 �	0=	L=0� which occurs particu-
larly for smaller dimensions. The set of model parameters

d ,� ,	0 ,	L� enables us to investigate in detail the magnetic
properties of nanotubes whose geometrical parameters are R,
�, and L. The model parameters are such that they minimize
the total energy for each set of geometrical parameters. It is
worth mentioning that the four-parameter variational prob-
lem can be simplified considerably if the tube is symmetric,
that is, if there is no difference between both tube ends.
Therefore, in some special cases, the four-parameter model is
reduced to a two-parameter model 
d ,	0� when d=� and
	0=	L.

Another characteristic of our model is that we can inves-
tigate the nucleation of a vortex domain wall. Usually, and
for simplicity, the nucleation field it is calculated in the so-
called curling mode, assuming an infinite sample.18–21 In the
curling mode there is no dependence on the axial coordinate
�z� and the first deviation of the magnetization occurs along
the entire sample, not only in the tube ends, as expected. In
our model we can obtain with precision the value of the
external field at which the vortex wall nucleates. Thus the
nucleation field is such that the angles 	0=	L�0. A detailed
study of the nucleation field and coercivity will be published
elsewhere.

B. Mixed state energy

If we know the magnetization vector M�r�=Msm�r� �Eq.
�1�� and the geometry of the ferromagnetic body, we can
obtain the total energy, E=Ex+Ed+EK+EZ, of the magnetic
nanotube in the mixed state, which is calculated in the con-
tinuum approach described above. After straightforward cal-
culations �see the Appendix�, the exchange energy �Ex� of the
mixed state can be cast in the form

Ex = A ln�1/��fx + AR2�1 − �2��	0
2

d
+

	L
2

�
 , �4�

where

fx � d�1 −
sin�2	0�

2	0
 + ��1 −

sin�2	L�
2	L

 . �5�

The dipolar term Ed can be separated in surface and volu-
metric contributions, that is, Ed=Eds+Edv, and is given by
�see the Appendix�
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Ed =
�0Ms

2

2
�

0

�

g2�q��q��q� − ��q��dq , �6�

where g�q���R /q��J1�qR�−�J1�qR��� �here J1�x� are
Bessel functions of first kind� and ��q� and ��q� �Eqs. �A5�
and �A7�� are related to the surface and volumetric contribu-
tions, respectively. Usually, the anisotropy contribution EK
can be cubic Ec or uniaxial Eu depending on sample prepa-
ration and magnetic material. The uniaxial anisotropy Eu can
be written as

Eu = − KuR2�1 − �2��L − fx/2� , �7�

where Ku is the uniaxial anisotropy constant and fx is given
by Eq. �5�. If the easy �hard� direction is the axis of the tube,
then Ku�0 �Ku�0�. Also, the cubic anisotropy Ec gives

Ec =
Kc

256
R2�1 − �2�fc, �8�

where fc��44	0−8 sin 2	0−7 sin 4	0�d /	0+ �44	L
−8 sin 2	L−7 sin 4	L�� /	L. Finally, the Zeeman energy can
be expressed as

EZ = − �0MsHR2�1 − �2�

��L − d�1 −
sin 	0

	0
 − ��1 −

sin 	L

	L
� . �9�

With above expressions for the different energy contribu-
tions, we can investigate the magnetic equilibrium state dia-
gram �or phase diagram� as well as describe nucleation phe-
nomena. We remark that the total energy is further reduced if
the nanotube is symmetric �when d=� and 	0=	L�. In those
cases we minimize the total energy only with regard to d and
	0.

III. NUMERICAL SIMULATIONS

Let us consider for simplicity a hollow cylindrical struc-
ture which is characterized by two parameters, its radius R
and its length L. According to these values the internal mag-
netic structure shows different behaviors. The scaling tech-
nique was developed by d’Albuquerque e Castro et al.14 and
was used to build a phase diagram showing the relative sta-
bility of three magnetic configurations as a function of the
cylinder geometry. To build such a phase diagram, a smaller
cylinder than that of the real system was used, in such a way
that the treatment of much less atoms was possible. The idea
behind this technique is to reduce the exchange interaction
constant J and to scale the geometrical dimensions �R and L�
of the cylinder by means of a factor �. Therefore, if we want
to obtain the magnetic configuration of a cylinder whose
geometrical size is given by R and L and its physical ferro-
magnetic exchange parameter is J, we only need to consider
a much smaller system characterized by new parameters R�,
L�, and J� which are related with the real ones as follows:

R� = ��R, L� = ��L, J� = �J , �10�

where ��1. The scaling exponent determined in nanosized
magnetic system has a nearly universal value of �=0.55,

different from the value of 0.5, which is the value found by
using the continuum theory.16,17 In spite of this apparent con-
tradiction with continuum theory, we have to stress that this
technique gives equivalent results as the micromagnetic
simulation technique does, and therefore it can be viewed as
an alternative method to simulate magnetic phases in nano-
scopic systems. For a nanotube whose internal to external
radii ratio is given by the geometrical factor �, we must scale
both radii, Ri and R, and therefore its ratio �=Ri /R=Ri� /R�
=�� remains unchanged.

We use a scaling technique described above to study the
magnetic properties of isolated nickel nanotubes. The physi-
cal parameters for this material are lattice parameter a0
=0.356 nm, magnetic moment per atom �=0.6�B, and a
stiffness constant A=1.5�10−11 J /m corresponding to an
exchange constant J=4004.56 kOe /�B. Nickel has an fcc
cubic structure, with nearest-neighbor distance a=a0 /�2
=0.252 nm. We have simulated a single-wall nickel nano-
tube, which is generated by rolling up the compact surface �a
square two-dimensional �2D� lattice� in such a way that the
distance between all atoms is a after rolling up. This form of
arranging the atoms in a tube geometry allows us to have the
same number of atoms in every transversal ring of the nano-
tube. We have considered tubes where the nearest-neighbor
number of every atom is 4 except in the two atomic rings at
both extremes of the nanotube, where the number of nearest
neighbors is 3.

The radius of a studied nanotube is limited by the follow-
ing condition: the tube is composed of parallel rings sepa-
rated by a distance a and the distance between neighbor at-
oms along a ring is also a. So the coordination numbers
always satisfy the condition indicated above. We used a scal-
ing factor of �=3.885�10−4; therefore the real size of the
nanotubes are given by Eq. �10�, where R� and L� are the
radius and length of the scaled �smaller� tube used in the
simulation. Table I shows the geometry of the simulated
nanotubes where Nr is the number of atoms in every ring, Nc
is the number of parallel rings forming the nanotube, and NT
is the total number of atoms of the nanotube. Note that Nr is
related to the scaled radius and the nearest-neighbor distance
through Nr=2R� /a, whereas Nc=L� /a. We have arbitrarily
chosen tubes with Nr=20 and 30 to perform Monte Carlo
simulations. We have used a equivalent temperature of T
=1 mK, therefore the magnetic configurations shown repre-
sent the magnetic equilibrium states.

TABLE I. Geometry of simulated nanotubes.

Tube Nr Nc NT

L�
�nm�

R�
�nm�

L
�nm�

R
�nm�

NT1 20 72 1440 18.12 0.8 1361.6 60.2

NT2 20 36 720 9.06 0.8 680.8 60.2

NT3 20 27 540 6.79 0.8 510.6 60.2

NT4 20 18 360 4.53 0.8 340.4 60.2

NT5 30 27 810 6.79 1.2 510.6 90.3

NT6 30 18 540 4.53 1.2 340.4 90.3
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IV. RESULTS AND DISCUSSION

In this section we show the results of magnetic equilib-
rium states for ferromagnetic nanotubes obtained by means
of Monte Carlo simulations and theoretical calculations, as
described in Secs. II and III. We begin with the Monte Carlo
simulations, and then we provide a geometrical characteriza-
tion of the mixed state based in our theoretical model. We
also analyze the occurrence of different magnetic states by a
comparison of their relative energies. This procedure allows
us to obtain phase diagrams for magnetic nanotubes where
the magnetic states are F �or uniform state�, V, and M states.
Finally, we apply a magnetic field to the mixed state and
show how with our model we can study the nucleation of a
vortex domain wall.

A. Mixed state

1. Monte Carlo simulations

In Fig. 2 we show the zero-field magnetic configuration of
nanotubes NT2, NT3, and NT4 defined in Table I �NT1 is not
shown due to their greater length�. From this figure, we can
see that the atoms at both tube ends tend to orient themselves
perpendicular to the tube axis in a vortex configuration,
whereas the atomic moments of the internal layers are ori-
ented ferromagnetically parallel to the tube axis; i.e., the sys-
tem shows a mixed magnetic state. Moreover we also ob-
serve that the ferromagnetic portion grows as the tube length
grows and the vortex region remains approximately the same
as the tube length grows. This is in agreement with our the-
oretical model where, provided that the tube length is greater
than the size of the vortex region �d�, the parameter d is
independent of the length; it depends only on the tube cross
section. We also observe no differences in the magnetization
at both tube ends for all simulated cases. This is reasonable
because asymmetries in the magnetization arise from imper-
fections of the nanotube geometry, surface defects, or differ-
ences in chemical composition as well, which we are not
considering in this work.

Additionally our results show that the vortex region in-
creases with the tube radius. For example, NT3 and NT5 �not
shown here� have the same length and different radii, show-
ing an increasing vortex region with the radius, and thus the
fraction of ferromagnetic aligned magnetic moments dimin-

ishes with an increasing radius. This behavior is also ob-
served from our analytical model, where we find that the size
of the vortex region �d� increases with the radius as shown in
Fig. 6.

We remark that all the simulated tubes show magnetic
configurations without radial component of the magnetiza-
tion vector. This can be seen in Fig. 3, where we show the
equilibrium states for nanotubes NT4 and NT6 as indicated
in Table I. We observe that for the nanotube with smallest
length and largest radius �NT6�, the ferromagnetic region has
vanished and all magnetic moments deviate from the tube
axis direction forming a vortex state. Thus we observe a
transition from the mixed state to a vortex state, as a result of
the increment in the tube radius. This point will be made
clearer further on in this paper. In all cases, the magnetic
equilibrium states of the nanotubes have the following prop-
erty: the transition of the magnetization from one extreme to
the other in a nanotube occurs by smooth changes in the
axial and tangential components of the individual magnetic
moments. We do not see any radial component of the mag-
netization because this would cause an increase in the total
energy, principally as shape anisotropy �or dipolar energy�.
However, in a forthcoming work22 about the dynamic motion
of a vortex domain wall, it is shown that the magnetization
can adopt a radial component, M��z�=Ms sin p sin ��z�,
which is created by the torque exerted by the applied field.
Thus, the static magnetization is obtained with p=0, and
depending on the dynamic regime of the vortex wall motion,
the angle p can increase.22

To be more specific, we have calculated the axial compo-
nent of the magnetization �Mz�z�� in every tube cross section.
We show the results in Fig. 4, where we can see that the
deviation of the orientation from the z axis of the atomic
spins is practically symmetric for all tubes. The small dis-
crepancies are due to incomplete relaxation in the Monte

FIG. 2. �Color online� Equilibrium states at zero applied field
for samples NT2, NT3, and NT4 �see Table I�. The arrows represent
the spins at each atomic site. We see clearly that these nanotubes
show a symmetric mixed state.

FIG. 3. �Color online� Equilibrium states at zero applied field
for nanotubes NT4 and NT6 �see Table I�, both with the same
length. We see clearly that the smaller tube �NT4� shows a symmet-
ric mixed state, whereas NT6 shows a vortex state. The lower panel
depicts the top view, illustrating the null radial component of the
magnetization in both tubes.
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Carlo simulations. The number of points in each curve is
equal to the number of rings of each nanotube. We can ob-
serve that nanotube NT4, corresponding to the smallest
nanotube, only reach the value 1 in one point, indicating that
this ring is the only one aligned ferromagnetically along the
tube axis. On the other hand, the curve for NT6 depicts the
result obtained for a wider nanotube of the same length that
of NT4. Here we see that the z component of the normalized
magnetization never reach the value 1, indicating that ferro-
magnetic portion has disappeared; indeed it is always less
than 0.6. This result indicates that there is a transition from a
mixed magnetic state to a vortex like state as the radius of
the nanotube increases for a constant length.

An important and subtle issue to discuss is the sense of
rotation of the vortex domains confined at the tube ends. In
Figs. 2 and 3 we have represented the magnetic equilibrium
state of the nanotubes, where we can observe differences in
the sense of rotation of the magnetization at both extremes of
the nanotubes. We can clearly appreciate that in some cases
the senses of rotation of the magnetization are equal, whereas
in other cases they are inverse. For instance the magnetiza-
tion of NT3 �Fig. 2� has the same sense of rotation at both
ends, whereas NT2 and NT4 have opposite senses of mag-
netization rotation. In general we have not found a sequential
behavior of the rotation alignment of magnetization in both
tube extremes as a function of their length or radius. None-
theless, the micromagnetic simulations of Wang et al.4

showed that the nearly zero-field equilibrium state is the so-
called twisted bamboo phase which corresponds to the mixed
state with an opposite circulation of the spins in the top and
bottom extremes. This behavior was also observed by Lee et
al.,11 performing micromagnetic simulations on a Permalloy
nanotube. The existence of a mixed state with opposite cir-
culation of the magnetic moments at the tube ends remains to
be fully acquainted for the case of single-wall magnetic
nanotubes and will be reported elsewhere.

2. Analytical model

From the Monte Carlo simulations we see the basic phe-
nomenology of the mixed state, but we cannot obtain a com-
plete geometrical description of the problem. This can be
investigated from our theoretical model described in Sec. II.

Performing a minimization procedure of the total energy of
the mixed state, we can obtain the variation in the magneti-
zation of this state with the geometrical parameters. The
magnetization �see Eqs. �2� and �3�� is thus given by the
parameters of the model, that is, the size of the vortex do-
mains, d, and the angle 	0, corresponding to the angle be-
tween the magnetization at the extremes of the tube, with the
axis of the tube. Note that the axial component of the mag-
netization evaluated at the extremes is given by Mz�z=0,L�
=Ms cos 	0. We find that, provided that the tube length L is
greater than 2d, the size of the vortex domains is indepen-
dent of L, and it only depends on � and R.

In Fig. 5 we show the angle 	0 as a function of the tube
radius normalized to the exchange length, lx= �2A /�0Ms

2�1/2,
for L=2000lx and � varying from �=0.50 to 0.95 as indi-
cated in the figure. We see that, for a special value of R, the
angle 	0 goes to zero, which means that the magnetization is
fully oriented with the tube axis in a ferromagnetic state.
Therefore we can define a critical radius RF-M��� below
which the magnetization is practically uniform along the
axis, whereas above RF-M��� the mixed state develops. The
behavior of this critical radius as a function of � is shown in
the inset of Fig. 5. We also observe that as R increases above
RF-M���, the angle 	0 increases sharply until 	0=70°. Above
70° the increment of 	0 with the radius is less abrupt and
asymptotically tends to 90°.

In Fig. 6 we show the size of the vortex domains normal-
ized to lx as a function of R / lx for L=2000lx and �
=0.50–0.95. We see that d / lx increases with R / lx approxi-
mately as �R / lx�5/2. However, this increment is bounded by a
natural limit, that is, the tube length L. Our calculations show
that, as d reach the value L /2, which means that the vortex
domains in both extremes joins in the middle of the tube �z
=L /2�, the vortex state has a lower energy than the mixed
state. This can be seen in the phase diagrams of Sec. IV B as
shown in Fig. 7. We also perform simple fits of the curves in
Fig. 6, and then, depending on �, we can estimate the size of
the vortex domains with the simple formula

FIG. 4. �Color online� Axial magnetization �Mz� at zero applied
field for simulated nanotubes NT1–NT6 �see Table I�. Note that
NT1–NT5 show a mixed state, whereas NT6 is most likely a vortex
state although there remains some axial magnetization.

FIG. 5. �Color online� Variation in 	0 with the radius �R� for
different form factors �. The parameter 	0 corresponds to the angle
between the axis of the tube and the magnetization of the vortex
domains at the extremes of the tube. These curves show the transi-
tion from ferromagnetic state �	0=0� to the mixed state as R in-
creases. The radius has been normalized to the exchange length lx.
The inset shows the critical radius at which 	0=0.
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d/lx = 6 + �0.208 − 0.189�6.18��R/lx�5/2. �11�

We remark that our results are more suitable for nanotubes
with ��0.5 because we do not consider a possible depen-
dence of the magnetization with the radial coordinate. As we
have already characterized the mixed state, we are in position
of determine the magnetic phase diagrams for ferromagnetic
nanotubes, including the F, M, and V states.

Another interesting point to discuss is about the effect of
other identical nanotubes in the equilibrium state. It has been
show recently that, in the case of square arrays of magnetic
nanodots in the vortex-core state, interdot dipolar interac-
tions may change the equilibrium magnetization.23 This di-
polar induced change in the vortex-core size depends on the
characteristics of the array �number of dots, interdot distance,
and lattice� and also on the relative orientation of the vortex
cores within the array: parallel cores shrink the core size in
order to reduce the positive interaction energy, whereas cores
oriented in opposite directions have a negative interaction
energy and therefore the vortex core expands to lower the
total energy.23 More recently, Escrig et al.24 investigated the
magnetostatic coupling between two magnetic nanotubes
with uniform magnetization. In the special case of two nano-

tubes without vertical separation �s=0 in Ref. 24�, starting
from their equations, it can be easily shown that the interac-
tion energy is positive if the magnetizations are parallel and
negative if the magnetizations are antiparallel. This interac-
tion energy must be further reduced if we consider the mixed
states instead of the uniform states because the mixed states
enclose the magnetic field in the tube ends reducing the stray
field. However, the calculations of dipolar interactions be-
tween nanotubes in the mixed state have not been carried out
yet. Nonetheless, we can expect changes in the mixed state
as a result of interactions between nanotubes, that is, 	0 and
d must depend on the relative separation between both nano-
tubes. Once the interaction energy between two tubes in the
mixed state it is calculated, one can extend the result to an
array of nanotubes by using the methods presented by Laroze
et al.25

B. Magnetic phase diagram

If we only consider the ferromagnetic and vortex states, it
has been shown recently9,10 that the phase diagram depends
on the topological form factor �. In the limit of L�R, the
critical line �EF=EV� that separates magnetic phases �F and
V� follows the simple equation L / lx=����R3 / lx

3, where ����
is a number of the order of 0.1 �see Figs. 3 and 4 in the paper
of Escrig et al.9�. Thus, to the left �right� of this curve we
have EF�EV �EF�EV�.9 However, if we evaluate the energy
of the symmetric mixed state along the critical lines, we find
that the mixed state has a lower energy than the two main
states �F and V�, over a wide range of geometrical param-
eters, and consequently the critical lines that separates phases
F and V splits now in two lines, separating now phases F and
M as well as M and V.

The energy of the ferromagnetic and vortex states was
already calculated by Escrig et al.;9 for instance see Eqs. �6�
and �7� in that paper. We can also obtain the energy of the F
state from the energy of the symmetric mixed state, in the
limit 	0→0 or mz�z�=1. The exchange energy of the F state
is zero, as can be obtained in that limit from Eqs. �4� and �5�.
Furthermore, the dipolar energy �Eq. �6�� reduces to

EF = �0Ms
2R2�

0

� 1 − e−qL

q2 �J1�qR� − �J1�qR���2dq ,

because from Eqs. �A5� and �A7� we find that ��q�=2�1
−e−qL� /q and ��q�=0, in agreement with Eq. �6� in the paper
of Escrig et al.9 Therefore, our model for the mixed state
enables us to study the F state as well. On the other hand, the
energy of the vortex state is given just by the exchange
contribution,9 in virtue of the flux-closure nature of the V
state and reads EV=2LA ln�1 /��. With the above expres-
sions for the energy of the three magnetic states, we can
obtain the phase diagrams for different values of the form
factor �. It is worth to mention that the mixed state requires
a special treatment because a change in the tube radius in-
duces changes in the mixed state, as we can see from Figs. 5
and 6 in Sec. IV A 2. Thus, by comparing the relative ener-
gies of the three states we can compute phase diagrams in the
R / lx-L / lx plane, containing now three regions corresponding
to the three equilibrium states, as shown in Fig. 7.

FIG. 6. �Color online� Variation in d with the radius �R� for
different values of �. Here d corresponds to the size of the vortex
domains confined at the extremes of the tube. The dimensions �d
and R� have been normalized to the exchange length lx.

FIG. 7. �Color online� Magnetic phase diagrams for nanotubes
with �=0.5 �solid lines�, �=0.7 �dashed lines�, and �=0.9 �dash-
dotted lines�. The thin lines depicts the transition between F and V
states, which splits into two lines corresponding to the transitions
F-M and M-V.
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Here we show phase diagrams for magnetic nanotubes
with �=0.5, 0.7, and 0.9, as indicated in Fig. 7. The thin
lines depict the transition between F and V states for three
indicated beta values and without considering mixed �M�
states. Each one of these thin lines splits into two lines cor-
responding to the F-M and M-V transitions. We can clearly
see that the mixed state is the equilibrium state in a wide
region of the phase diagrams. The region of stability of the
mixed state show a subtle behavior as we change the form
factor �. An increment of � moves slightly the F-M transi-
tion line to the right. The M-V transition line also moves to
the right but more than the F-M line. Finally, we see that
thin-walled nanotubes �� close to 1�, as the ones currently
fabricated,1–5 show mixed states with a wider region in the
phase diagram.

We remark that our results are most suitable for tubes
such that L�2d because our model for the mixed state does
not consider configurations with touching vortex domains,
and thus the phase diagrams cannot be accurately obtained
for small values of L. For this reason, in the phase diagrams
we focus on nanotubes with L�R. However, we do not per-
form the mathematical limit L�R in our equations for the
total energy; instead of it we search for solutions for d which
are less than L /2.

C. Comparison between theory and simulation

A comparison between the analytical approach and the
Monte Carlo simulations is appropriate. The principal diffi-
culty in this direction is to give to our simulated nanotubes
an accurate value of the form factor �=Ri /R. As mentioned
earlier, we use the scaling technique performed on a 2D cy-
lindrical shell, with a tube wall thickness w�=R�−Ri�=R��1
−���. This quantity cannot be larger than the nearest-
neighbor distance a=0.2517 nm; indeed it should be less
than that because of the curved geometry but also larger or
equal than the atomic radius of Ni which is �ra�=0.135 nm.
On the other hand, w� has to be considered as a scaled di-
mension such as R� and L� and therefore, the real nanotube
must have the same value of �, that is, ��=�. Thus, if we
write �=1−w� /R�, with 0.135�w��0.2517 nm, the value
of � must be constrained depending on the radius used in the
simulations, R�=aNr /2. For NT1–NT4 the scaled radius
correspond to R�=0.8 nm and therefore the value of � must
be constrained to the interval 0.69���0.83. Analogously,
for NT5 and NT6 we have R�=1.2 nm, and therefore the
value of � must satisfy 0.79���0.89. A more accurate
value of � can be found by comparing the simulation results
with the theory. This can be done by calculating the behavior
of the axial magnetization m�z� along the tube axis.

The axial component of the magnetization is plotted in
Fig. 8 along the nanotube axis normalized to L. The results
of the Monte Carlo simulations are shown for NT1 �circles,
lower panel� and NT2 �squares, upper panel�, whereas the
lines correspond to our model for different values of �. The
considered nanotubes have a fixed radius and different
lengths indicated in Table I. The curves with �=0.8 �solid
lines� shows good agreement with the points obtained by
means of Monte Carlo simulation although the curves with

�=0.69 �dashed lines� also present good agreement. How-
ever the curves with �=0.9 �dash-dotted lines� are less ad-
equate to describe the Monte Carlo results. This is in agree-
ment with the above discussions, where NT1–NT4 are better
described by values of � which satisfy 0.69���0.83, and
for that reason �=0.9 does not represent the simulations.

D. Nucleation of a vortex domain wall

In this section we discuss the effect of an applied mag-
netic field �H=Hẑ� on the nanotube magnetization. Similar
to the Brown equations of magnetism,18 our theory does not
include dynamical effects, and therefore we can only focus
our attention to a quasistatic applied fields or near to equi-
librium processes. Under those assumptions we can use our
energy calculations to gain some insight into the complicated
magnetization process driven by an external field.

In Secs. IV A–IV C we have shown the magnetic struc-
ture of the mixed state. This state is modeled with two con-
trol parameters, 	0 and d, which depending on the geometry
assume different values, as can be seen in Figs. 5 and 6. We
note that all the zero-field mixed states exhibit angles 	0
�90°, as can be seen in the curves of Fig. 5. This statement
is also true in the overall mixed state region of the phase
diagram �see Fig. 7�. Thus, we can say that the magnetization
of the mixed state is like an incomplete vortex wall localized
at the extremes of the tube. These localized vortex walls can
be set in motion with an applied field or maybe with thermal
assistance or current-driven techniques through spin-torque
effect. In the case that a magnetic field is the driven force,
the reversal process must nucleate with an incomplete wall
structure, as the mixed state, but now with 	0=	0�H�. Within
this context, in the quasistatic limit, the nucleation field �Hn�
can be calculated from 	0�Hn�=0 because it is the field at
which the magnetization begin to change starting from the
saturated state.18 As the field is decreased from saturation

FIG. 8. �Color online� Axial magnetization along the tube axis
normalized to L. The upper panel depicts the results for NT2 and
the lower panel depicts that for NT1. Symbols represent the results
of Monte Carlo simulations, and the lines are the theoretical results
obtained for different values of � as indicated in the figure. We
found agreement between theory and simulation for �=0.69 and
0.8.
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�	0�H�=0� to the nucleation field and beyond, the magneti-
zation passes from a saturated state to a mixed state charac-
terized by 	0�H��0. We expect that a reduction in the mag-
netic field to values less than Hn shifts the angle 	0=0 to
bigger values with an increment of the vortex wall size d
=d�H�. This stage of the process can be considered as the
beginning of the reversal mechanism and the nucleation field
is precisely the field at which the original saturated state
becomes unstable and any sort of change in the magnetiza-
tion just starts.18

Our model allows us to analyze the application of a qua-
sistatic field by including the Zeeman energy �Eq. �9�� in the
exchange and dipolar contributions. In the case that the ex-
ternal field is not perfectly aligned with the z axis, the Zee-
man energy can be obtained from Eq. �9� but H must be
replaced by their component parallel to the z axis provided
the angle between the external field and the magnetization be
small enough. However, if this angle increases, we cannot
describe with our model the nucleation of a vortex because
the magnetization must deviate from the mixed state. There-
fore, we focus our attention to an external field parallel �or
almost parallel� to the z axis.

We have calculated numerically the parameters of the
model which now depends on the field H. This can be seen in
Fig. 9, where we show 	0�H� and d�H� for a nanotube with
�=0.9, R=10lx, and L=5000lx. From this figure we can in-
terpret the nucleation field Hn as the value at which 	0�Hn�
=0, and the saturated state begin to lose their stability. On the
other hand, note that as the field is decreased from saturation
and becomes negative, the model’s parameters grow quickly.
Clearly, this is a signature of a bistable magnetization pro-
cess, and we may consider the critical field �H�−0.006Ms�
at which the model parameters grow with an infinite slope as
a function of external field as a lower bound to the coercive
field. More than frequently in the literature, the nucleation
field is calculated in the so-called curling mode, which as-
sumes an infinite sample.18–21 In the curling mode there is no

dependence on the axial coordinate �z� and the first deviation
of the magnetization occurs along the entire sample, not only
in the tube ends, as expected.

A further comment is that the nucleation field is a theo-
retical concept and must be very difficult to measure. The
reason of the above premise is that, at nucleation, the value
of the net magnetization, �z, is very close to the saturation
magnetization. From our model we can calculate �z by inte-
grating Mz over the entire volume of the nanotube, that is,
�z= �1 /v��vMz�z�dv, which after replacing Mz from Eqs. �2�
and �3� reads

�z�H� = Ms�1 −
2d�H�

L
�1 −

sin 	0�H�
	0�H�

� . �12�

With this expression, we can calculate part of the hysteresis
loop shown by the full symbols in Fig. 10. As our model
allows us to describe the mixed state only with the vortex
domains confined at the extremes of the tube, we cannot
describe a domain wall within the nanotube and therefore we
cannot construct a complete hysteresis loop; the dashed ver-
tical lines are a guide for the eyes and do not represent any
calculation. However, if desired, we could use the results of
a previous work13 for the exchange and dipolar energies of a
vortex domain wall inside a nanotube and introduce a Zee-
man term to obtain a complete “quasistatic” hysteresis loop.
A complete study of the geometry dependence of the nucle-
ation phenomena, as well as a complete description of the
reversal process, will be published elsewhere. By the time,
we focus our attention to the basic phenomenology of the
nucleation problem.

In Fig. 10 we show �z�H� for a tube with �=0.9, R
=10lx, and L=5000lx. Here, the inset shows a magnification
of the curve, showing a signature of a bistable magnetization
reversal process, because at the field H�−0.006Ms, the
magnetization �z�H� changes abruptly.

FIG. 9. External field dependence of the mixed state parameters,
	0�H� and d�H�, for nanotubes with �=0.9, R=10lx, and L
=5000lx. The behavior of the parameters near H=−0.006Ms is a
signature of a bistable reversal process. The nucleation field can be
obtained as 	0�H�=0, which is near to 0.075Ms.

FIG. 10. Quasistatic hysteresis loop for nanotubes with �=0.9,
R=10lx, and L=5000lx. The curve changes abruptly near H
=−0.006Ms which is a signature of a bistable reversal process. The
inset shows a magnification of the region showed. The dashed lines
are a guide for the eyes.
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We have briefly mentioned at the end of Sec. IV A the
possible role of magnetostatic interactions between nano-
tubes in their equilibrium magnetization. To describe the ef-
fect of these interactions in the nucleation field and coerciv-
ity, it is necessary to add the full interaction energy in the
array to the total self-energy of a number of nanotubes in the
mixed state. Nonetheless, without performing these exten-
sive calculations, we can expect that these interactions would
reduce the nucleation field of any nanotube in the array be-
cause dipolar interactions prefer an antiparallel ordering be-
tween nanomagnets.23–25

We can conclude that the magnetization reversal process
in nanotube occurs with the nucleation of vortex domains at
the extremes of the tube. These domains can be set in motion
with an applied field, and we have shown that the nucleation
field cannot be used to evaluate the coercivity. Within our
framework both fields are different by 1 order of magnitude;
Hn=0.075Ms and Hc=−0.006Ms.

V. CONCLUSIONS

Equilibrium states of ferromagnetic nanotubes of Ni are
well reproduced using Monte Carlo simulation with scaling,
in agreement with previous micromagnetic simulations,4,11,12

and present more general analytical model. Magnetic phase
diagram as a function of tube length and radii shows that, at
zero external field, the mixed state is more stable than pure
ferromagnetic or vortex phases over a broad range of geo-
metrical parameters. Quasistatic approximation allows us to
estimate the nucleation field as well as coercivity under the
application of an external field.
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APPENDIX: MIXED STATE ENERGY

1. Exchange energy

The exchange energy in the continuum theory of
ferromagnetism18 is given by Ex=A����mi�2dv, and within
our model �Eqs. �1� and �2�� we can write

Ex = 2A ln
1

�
�

0

L

sin2 ��z�dz + AR2�1 − �2��
0

L � ��

�z
2

dz .

�A1�

By introducing our trial function, ��z� from Eq. �3� we ob-
tain the exchange energy �Eq. �4��.

2. Dipolar energy

The dipolar contribution can be written as18 Ed
= ��0 /2��M ·�Udv, where U is the magnetostatic potential
given by U=� n̂�·M�r��

4�r−r��
ds�−� �·M�r��

4�r−r��
dv�. It can be shown that,

for the mixed state we are describing, the potential depends
only on the coordinates � and z and therefore �U /��=0.
Moreover, the magnetization of the mixed state has no radial
component, as we can see from our Monte Carlo simulations
�for instance see Fig. 3�, and therefore in cylindrical coordi-
nates we have M ·�U=Mz�z��U /�z and the dipolar energy
can be cast in the form

Ed = �0�
Ri

R

�d��
0

L

Mz�z�
�U��,z�

�z
dz . �A2�

In what follows, we calculate the surface and volumetric
contributions to the magnetostatic potential, that is, U=Us
+Uv, and then the dipolar energy is given by Ed=Eds+Edv.
To calculate the potential we use the following expansion:26

1

�r − r��
= �

j=−�

�

eij��−����
0

�

Jj�q��Jj�q���e−q�z−z��dq .

�A3�

a. Surface contribution

Using the above expansion, and after integration in coor-
dinates �� and ��, the surface potential can be expressed as

Us =
1

2
�

0

�

g�q�J0�q���Mz�L�e−q�L−z� − Mz�0�e−qz�dq ,

where we have defined g�q����R
R J0�q���d�= �R /q��J1�qR�

−�J1�qR���. The energy associated with this potential can
be expressed as

Eds =
�0Ms

2

2
�

0

�

g2�q�q��q�dq , �A4�

where

��q� = �
0

L

mz�z��mz�L�e−q�L−z� + mz�0�e−qz�dz . �A5�

The function ��q� can be calculated easily by using our
model to the mixed state �Eqs. �2� and �3�� but the result is
long. In this paper we focus on the symmetric mixed state,
that is, 	L=	0 and �=d, where the function ��q� can be
further reduced to

��q� =
2qd2 cos 	0

�	0
2 + q2d2� �� 	0

qd
2

�e−qd − e−q�L−d��

+ �1 − e−qL�cos 	0 + �1 + e−qL�
	0

qd
sin 	0� .

b. Volumetric contribution

It is a straightforward matter to show that � ·M=�Mz /�z.
Using the expansion given in Eq. �A3� in the volumetric
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potential, and after integration in coordinates �� and ��, the
surface potential can be expressed as

Uv = −
1

2
�

0

�

dqJ0�q��g�q�� dz�
�Mz�z��

�z�
e−q�z−z��.

Clearly, �Uv /��=0, and after integration in the radial coor-
dinate, the corresponding dipolar energy can be written as

Edv = −
�0Ms

2

2
�

0

�

g2�q���q�dq , �A6�

where we have defined

��q� � �
0

L

mz�z�� �

�z
�

0

L �mz�z��
�z�

e−q�z−z��dz�dz . �A7�

The integration of the above expression has to be done care-
fully because of the term with e−q�z−z��. Once the integration
is performed, we obtain a long expression, which is further
reduced in the symmetric mixed state; nevertheless the ex-
pression for ��q� is still long. For this reason we do not write
explicitly ��q� in this appendix.

3. Zeeman energy

The energy of the mixed state associated with the
applied magnetic field H=Hẑ can be written as18 EZ

=−�0HMs�mz�z�dv, where H is the strength of the applied
field, which can be positive or negative. By integrating in the
radial and angular coordinates we can write

EZ = − �0MsHR2�1 − �2��
0

L

cos ��z�dz ,

and finally by using our model for the mixed state �Eq. �3��
we obtain the expression in Eq. �9�.

4. Anisotropy contributions

The uniaxial anisotropy is given by18 Eu=−Ku�mz
2dv and

within our model for the mixed state, we can write

Eu = − Ku�R2 − a2��
0

L

cos2 ��z�dz ,

with ��z� given by Eq. �3�. After integration we obtain ex-
pression �7�. On the other hand, the cubic anisotropy is usu-
ally given by18 Ec=Kc��mx

2my
2+my

2mz
2+mz

2mx
2�dv, and within

our model �Eqs. �1� and �2�� we can write

Ec =
Kc

8
R2�1 − �2��

0

L

sin2 ��z��1 + 7 cos2 ��z��dz .

Finally, after integration we obtain expression �8�.
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