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We address the calculation within density functional theory �DFT� of defect formation energies in alumina,
a ceramic oxide often considered an archetype for a wide variety of other similar oxides. We examine the
conditions under which calculated defect formation energies, especially those of charged defects, are indepen-
dent of the principal approximations of the plane-wave DFT formalism, most significant of which is the
finite-sized supercell in which the calculation must be performed. We introduce a variation on existing methods
of extrapolation to infinite system size to reduce dependence of the result on finite-size errors in the electro-
static and elastic energies of a periodic supercell containing a defect. We also show how the results can be
made relatively insensitive to the choice of exchange-correlation functional and pseudopotential by a suitable
treatment of the chemical potentials of the atomic species. Our results for formation energies of charged defects
are less sensitive than traditional approaches to supercell size and choices of exchange-correlation functional
and pseudopotential, and differ notably from previous results.
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I. INTRODUCTION

Density functional theory �DFT� using the plane-wave
pseudopotential method1 is well established as a highly ver-
satile tool for ab initio calculation of properties of point de-
fects in metals and semiconductors. Most such calculations
use the supercell approximation2 to model a localized defect
embedded in a periodic host. The success of the method in
predicting the structures of defects, their formation energies
and thus concentrations, and their optical, diffusional, chemi-
cal, and other properties is well proven.3–6

While the structures and formation energies of point de-
fects in metals and semiconductors are obtained accurately
using standard DFT methodology, defects in ionic insulators
present a greater challenge. Different choices of the approxi-
mations that go into the method, namely the size and shape
of the supercell, the choice of exchange-correlation func-
tional, and the choice of pseudopotential, can make a signifi-
cant difference to the predicted physical properties. Supercell
calculations of materials with defects having significant lo-
calized charge give rise to strong defect-defect interactions
and strongly localized defect states cause errors due to self-
interaction. For some elements, the total energy of the ther-
modynamic reference state is poorly described by DFT, lead-
ing to uncertainties in the calculated formation energies of
defects involving the addition or removal of atoms. These
difficulties mean that many previously reported defect for-
mation energies, although obtained using technically correct
DFT calculations, are not suitable for use in direct compari-
son with and interpretation of experimental results.

In this paper we attempt to calculate as accurately as pos-
sible the defect formation energies determining defect con-
centrations under real experimental conditions. We study the
native point defects of aluminum oxide in the corundum
structure—a highly important material both in industry and
as a model to test theoretical methods. While formation en-
ergies can be tentatively inferred from experiments in some
cases, a great deal of uncertainty surrounds the interpretation
of diffusion in alumina7–9 and a theoretical understanding of

the formation energies would be of great help. In attempting
to calculate accurate formation energies for the point defects
of this system, we bring together a previously reported
technique10,11 to reduce the dependence of the chemical po-
tentials of the species present on the approximations used,
and a variation of an existing method to extrapolate the re-
sults of supercell-size-dependent formation energy calcula-
tions to infinite size. In this way, we find results only weakly
dependent on the approximations used.

For the calculation of defect formation energies we use
the formalism of Zhang and Northrup.12 The defect forma-
tion energies required as input to the law of mass action13

and calculations of defect concentrations are differences be-
tween the total Gibbs free energies of the system before and
after the creation of a defect at a specific site, including
contributions from the chemical potentials of the atomic spe-
cies and electrons added or removed. The standard form of
DFT yields only zero-temperature total energies and does not
provide the entropic and pV contributions to the Gibbs free
energy per particle. For gases, these contributions are large
and strongly dependent on temperature and pressure, but can
be calculated easily and accurately using simple ideal gas
physics. For solids, the pV contribution to the Gibbs free
energy per unit cell is negligible at reasonable pressures, and
the electronic specific heat is so small that the temperature
dependence of the electronic contribution can also be ne-
glected. Vibrational contributions can be substantial, but
largely cancel when comparing defective and perfect struc-
tures. Thus, in most cases, reasonably accurate formation
energies can be obtained by replacing the Gibbs free energy
per unit cell of the solid by the ground-state total energy.
Suitable approximations to the Gibbs free energies of the
perfect and defect crystals can thus be calculated from the
DFT total energies of perfect and defective supercells, while
chemical potentials for the constituent atomic species in the
experimentally relevant reservoirs can be determined by
combining the results of DFT calculations with some well-
known thermodynamics.

A number of previous attempts have been made to calcu-
late formation energies of defects in Al2O3. The results of
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empirical pair-potential models14,15 vary greatly according to
the potential used.16 While methods based on empirical po-
tentials are able to access a range of cell sizes beyond that
available to DFT calculations, they experience a great deal of
difficulty describing the mixed ionic-covalent bonding, the
complexity and low symmetry of the crystal structure, and
the major changes in nearest-neighbor �NN� coordination on
creation of defects. Full electronic structure calculations have
not fared very much better. Even when the defect is neutral
there is significant variation between different methodolo-
gies. For example, the DFT formation energy of a neutral
oxygen vacancy has been variously quoted as 12.9 eV,17 10.1
eV,18 5.8 eV,19 7.1 eV,20 and 13.3 eV.21 Most of this variation
can be attributed to the use of different approaches for cal-
culating the oxygen chemical potential and different treat-
ments of the problems caused by the DFT underestimation of
the band gap. Similar variation has been seen in the geom-
etries accompanying these energies, with the relaxation of
the nearest-neighbor Al ions away from the defect ranging
from 0.4 to 12%. The variation in results with DFT method-
ology is often larger for defect systems than in the corre-
sponding bulk system,22 where, for example, crystalline lat-
tice constants vary by little more than 2–3% between
different functionals.23

When the defect is charged, the situation is even worse. In
the Zhang-Northrup formalism, the formation energy of a
charged defect depends on the chemical potential of the elec-
tron reservoir from which the charge is imagined to have
come. Many calculations avoid this complication by focus-
ing on the formation energies of charge-neutral Schottky and
Frenkel combinations of defects. �We use the Kroger-Vink
notation13 for defect types, although with charge states de-
noted by numerical superscripts rather than dots and dashes.
The charge-neutral Schottky quintet is thus 2VAl

3−+3VO
2+ and

the Frenkel pairs are VO
q++Oi

q− and VAl
q++Ali

q− for some
charge q.� However, to answer questions relating to defect
concentrations and diffusion properties in the presence of
doping and variable formation conditions, it is much more
useful to consider isolated defects in all possible charge
states, resulting in individual formation energies that are
functions of chemical potentials �e and �O for the electrons
and oxygen atoms, respectively.

The approach used in this paper allows one to calculate
defect formation energies as a function of the position �F of
the Fermi level within the gap and the oxygen chemical po-
tential �O�T , pO2

� of the atmosphere in which the alumina is
formed. The former quantity depends strongly on the level of
doping by aliovalent impurities, while the latter depends
strongly on temperature and oxygen partial pressure. The
equilibrium defect densities are sensitive to all of these quan-
tities. This approach is useful because it allows us to link
predictions of formation energies and defect densities to ex-
perimentally controllable parameters; a study of ground-state
formation energies alone would not permit direct contact
with experiment. In Sec. II we introduce our methodology
and discuss the techniques used to remove the dependence
on the specifics of the calculation of the O2 dimer, to reduce
the effects of the band-gap errors in DFT, and the difficult
issue of supercell size dependence. Section III presents our
converged results for the formation energies of the intrinsic

defects of alumina and discusses their implications for the
concentrations of intrinsic defects in the solid.

II. METHODS

A. Bulk alumina

The DFT results presented here were calculated with the
CASTEP �Ref. 24� code, using a plane-wave basis set.1 To
allow comparison of different approximations, both Vander-
bilt ultrasoft25 pseudopotentials �USPs� and norm-conserving
pseudopotentials26 �NCPPs� were used. In each case, the Al
and O pseudopotentials retain three and six valence elec-
trons, respectively, with the rest being pseudized. For each
type of pseudopotential, adequate plane-wave energy cutoffs
were determined by examining the convergence of a suitable
supercell of bulk and then verifying that this cutoff was also
sufficient for an example defect system. With the USPs, the
total energy of a supercell of bulk was converged to 0.015
eV/atom at Ecut=550 eV �relative to calculations at 850 eV�,
so this cutoff was used throughout the USP calculations. It
was further verified that energy differences of the form ET

def

−ET
perf between typical defect and perfect cells were con-

verged to within 0.02 eV at this cutoff. For the considerably
harder NCPPs, Ecut=1700 eV was required for similar con-
vergence but 3000 eV was in fact used as it aided the gen-
eration of orbitals for further calculations within the diffu-
sion Monte Carlo method, to be reported separately.

Exchange-correlation potentials were treated using both
the local-density approximation27,28 �LDA� and the PBE
parametrization29 of the generalized gradient approximation
�GGA�. For each of these approximations, the accuracy of
prediction of the bulk geometry and properties was tested. �
alumina belongs to the trigonal crystal system, with a rhom-
bohedral primitive cell containing ten atoms �2 f.u.�, where
all atoms of each species are in equivalent positions in the
perfect crystal. Each O ion is surrounded by a distorted tet-
rahedron of four nearest-neighbor Al ions, two of which have
shorter bonds �by about 5%� than the other two. Correspond-
ingly, each Al ion is surrounded by a distorted octahedron of
O ions, three of which are 5% closer than the other three. To
maintain the 2:3 coordination, in any column of atoms down
the c axis, one in three aluminum ions is missing and the
remaining pairs move together slightly, requiring a long unit
cell corresponding to four aluminum ions in this direction.

Starting from the experimentally reported geometry,30 op-
timization was carried out in the rhombohedral primitive cell
of 2 f.u. of Al2O3 by adjusting four parameters: arhom, the
rhombohedral lattice parameter; �rhom, the angle between lat-
tice vectors; and the two positions uAl and vO that define the
distortion of the lattice resulting from the unoccupied sites in
the Al lattice. In an hcp structure, uAl and vO would both be
1/3—their deviations from this value are the result of move-
ment of oxygen ions toward the aluminum ions and of slight
pairing of aluminum ions. Table I shows the minor variation
in geometry parameters with the pseudopotential �PSP� and
exchange-correlation �XC� functional used. Also shown is
the mean Al-O bond length aAl-O. All of these results repre-
sent a satisfactory match to published experimental values30

in line with expectations of the accuracy of DFT. As usual,
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the LDA underestimates the lattice constant, while the GGA
mildly overestimates it. Convergence of total energies and
geometry parameters to the accuracy shown in the table was
achieved with a 4�4�4 mesh of Monkhorst-Pack k points,
with no further variation relative to those at 8�8�8.

B. Defect calculations

Supercells containing defects were generated by con-
structing an l�m�n array of copies of the 30-atom non-
primitive hexagonal unit cell of the bulk structure and re-
moving or adding an atom at the center as required. The
hexagonal cell corresponding to the LDA-USP values above
measures 12.8 Å along the c axis by 4.7 Å along the a and
b axes, so in order of increasing minimum defect-defect dis-
tance the cells used consisted of 2�2�1, 2�2�2, 2�2
�3, 3�3�1, 4�4�1, and 3�3�2 multiples of the hex-
agonal cell, containing 120, 240, 360, 270, 480, and 540
atoms, respectively. Figure 1 shows the structure of the
smallest of these cells, the 2�2�1 supercell.

Geometry optimization for the defect structures was first
performed in the smallest of these supercells �2�2�1� for
each defect under consideration. The optimization was car-
ried out in two stages to allow the effects of electrostatic
interactions and elastic relaxations to be investigated sepa-
rately. First, atoms within 3.5 Å of the defect were allowed
to relax—this set includes the first nearest-neighbor �1NN�,

2NN, and 3NN in all cases. The resulting partially relaxed
structures were retained for use in the investigation of defect-
defect interactions. For the final results, all the atoms within
the supercell were allowed to relax. In most cases, the energy
gained in the second, longer-ranged, relaxation was under
0.25 eV, but for highly charged defects such as VAl

3− it could
be over 1 eV. Energies obtained using only the shorter-
ranged 3NN relaxations were therefore deemed insufficient
for the determination of defect formation energies. The 3NN-
relaxed positions from the 2�2�1 cell, padded with perfect
crystal, were, however, used as a starting point for relaxing
the larger cells, to speed up the geometry optimization while
avoiding a discontinuity in strain at the boundary of the em-
bedding region. The unrelaxed energies of the larger cells
were first recorded and then these structures were allowed to
fully relax. The results of these investigations of finite-size
errors are detailed in Sec. III. Convergence of total energies
with k-point sampling was achieved in the hexagonal unit
cell with a 4�4�2 k-point grid centered on �. Supercells of
size 2�2, 3�3 and 4�4 in the ab plane were sampled with
2�2, 2�2 and 1�1 k points in the reciprocal-space ab
plane, respectively. Supercells containing 1 and 2 repetitions
of the hexagonal cell along the c axis were sampled using 2
and 1 planes of k points along the reciprocal-space c axis. As
alumina is such a good insulator, the defect states are only
very weakly dispersive and the dependence of the formation
energies on k-point sampling is very small.

In the Zhang-Northrup formalism, the formation energy
�Ef�Xq� of defect species X in charge state q is

�Ef = ET
def,q − ET

perf − �
i

�ni�i + q�e, �1�

where ET
perf and ET

def,q are the total energies of the perfect and
defect supercells, �i is the chemical potential of atomic spe-
cies i, �ni is the number of atoms of element i removed
�negative �ni� or added �positive �ni� to create the defect,
and �e is the chemical potential of an electron in the perfect
crystal. Note that q=−�ne, where �ne is the number of elec-
trons removed �negative �ne� or added �positive �ne� to cre-
ate the defect. The electron chemical potential �e can be
defined by choosing a Fermi level �F within the gap relative
to the valence-band maximum of the perfect crystal, such
that �e=EVBM

perf +�F. Here �F lies in the range 0 to Eg, where
Eg is the energy gap of the perfect crystal, and EVBM

perf is the

TABLE I. Optimized geometry parameters for bulk alumina compared to experiment. The results for
different choices of exchange-correlation functional �LDA and GGA� and different types of pseudopotential
�ultrasoft and norm-conserving� are all in reasonably good agreement with the experimental parameters.

Method
arhom

�Å�
�rhom

�deg� uAl vO aAl-O �A�

Experimenta 5.136 55.28 0.352 0.306 1.915

LDA-USP 5.052 55.30 0.352 0.307 1.885

GGA-USP 5.150 55.29 0.352 0.306 1.921

LDA-NCPP 5.147 55.39 0.352 0.305 1.921

GGA-NCPP 5.169 55.29 0.352 0.305 1.928

aReference 30.

FIG. 1. �Color online� Supercell of Al2O3 containing 2�2�1
copies of the hexagonal unit cell with 120 atoms. Left: side view
along the a axis. Right: top view down the c axis.
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position of the valence-band maximum in the perfect crystal.
The use of EVBM

perf as a reference amounts to a choice of the
zero of potential and has no effect on the accuracy of calcu-
lated defect formation energies. We shall see in Sec. III,
however, that the difficulty of relating the zeros of potential
in the perfect and defective supercells is an important source
of finite-size error.

As explained in Sec. I, the use of total energies ET
perf and

ET
def in place of the corresponding free energies assumes that

the vibrational contributions cancel between the perfect and
defect systems, and that the pV and temperature-dependent
electronic terms are negligible for solids. Effects due to ther-
mal expansivity may also play a role: the lattice constant at
1800 K is 1–2% larger than the zero-temperature lattice con-
stant, and this produces a slight change in the band gap.
Again, however, these effects can be presumed to cancel to
the accuracy available in current formation energy calcula-
tions.

C. Chemical potentials

The chemical potentials of the atomic species in a nonele-
mental crystal are inherently troublesome quantities to de-
fine, since it is not possible without further information to
assign specific fractions of the total Gibbs free energy of the
crystal to the various species present. In reality, the atomic
chemical potentials are set by the experimental conditions,
which define the properties of the reservoirs of atoms in
equilibrium with the sample. If, for example, the sample of
alumina has been annealed in an oxygen atmosphere, the
chemical potential of the oxygen atoms is the same as in
gaseous molecular oxygen at the experimental partial pres-
sure and temperature. The chemical potential of the oxygen
atoms in well-annealed alumina is thus strongly dependent
on temperature and pressure. The aluminum chemical poten-
tial �Al is tied to the corresponding �O by 2�Al+3�O
=�Al2O3

, where �Al2O3
is the total Gibbs free energy per for-

mula unit. If the relatively small temperature and pressure
dependence of the chemical potential per unit cell of the
solid is neglected, one can therefore assume that ��Al=
− 3

2��O, where ��O is the change in oxygen chemical po-
tential relative to some defined reference value. The strong
dependence of �O on annealing conditions therefore implies
an equally strong variation of �Al.

Although the values of the atomic chemical potentials de-
pend on experimental conditions, one can use the formation
energies of the species in their elemental states and the for-
mation energy of the crystal to determine useful bounds. The
thermodynamic stability of alumina implies that the chemical
potentials of the atoms cannot be higher in the crystal than in
their elemental states, gaseous O2 and fcc aluminum metal,
under the same conditions. Hence, in terms of �Al�s�, the total
free energy per atom of fcc solid aluminum, and ��1/2�O2�g�,
the total free energy per atom of molecular oxygen in gas-
eous form, we have the inequalities

�O � ��1/2�O2�g��pO2
,T�, �Al � �Al�s�. �2�

Note that we have dropped the weak temperature and pres-
sure dependence of the chemical potential of solid aluminum

but not the much stronger dependence of the chemical po-
tential of gaseous oxygen. The Gibbs free energy balance for
the formation energy �Gf

Al2O3�pO2
,T� per formula unit of

alumina at temperature T and oxygen partial pressure pO2
gives

�Gf
Al2O3�pO2

,T� = �Al2O3
− 2�Al�s� − 3��1/2�O2�g��pO2

,T� ,

�3�

where the temperature and pressure dependence of �Al2O3
has also been dropped. Additionally, we know that under
equilibrium conditions in the solid, �Al2O3

=2�Al+3�O. We
can now combine these four expressions to obtain

1
2�Gf

Al2O3�pO2
,T� � �Al − �Al�s� � 0, �4�

for the Al ions and

1
3�Gf

Al2O3�pO2
,T� � �O − ��1/2�O2�g��pO2

,T� � 0, �5�

for the oxygen ions, giving us a range of feasible values for
�O and �Al.

While this approach is often satisfactory if the formation
energy is small, as in III–V semiconductors, the large value
of �Gf

Al2O3 ��−17 eV at standard temperature and pressure�
makes it unsatisfactory for alumina. The allowed ranges of
�O and �Al are wide and one cannot determine where spe-
cific experimental conditions lie without further calculation.
Here, instead, we make direct contact with experiment by
assuming that the alumina has been annealed in an oxygen
atmosphere at some chosen temperature T and oxygen partial
pressure pO2

, implying that �O must be equal to the chemical
potential ��1/2�O2�g��pO2

,T� per oxygen atom in gaseous mo-
lecular oxygen.

A second difficulty is that the variation in the values of
��1/2�O2�g� calculated with different functionals and pseudo-
potentials is of order an eV, due to the comparative failure of
DFT to describe the oxygen dimer accurately. To circumvent
this problem, we follow Finnis et al.11 and obtain the chemi-
cal potential ��1/2�O2�g�

0 of oxygen gas at standard temperature
and pressure from Eq. �3� at standard temperature and pres-
sure, with �Gf

Al2O3�pO2

0 ,T0� taken from experiment and
�Al2O3

and �Al�s� approximated by the corresponding zero-
temperature total energies. The use of the experimental for-
mation energy of the oxide renders the calculation of the
DFT total energy of the oxygen dimer unnecessary and
greatly reduces the sensitivity of the results to details of the
DFT methodology. The chemical potential ��1/2�O2�g��pO2

,T�
of oxygen gas at the chosen formation conditions is obtained
from ��1/2�O2�g�

0 using simple ideal gas relations. Comparison
to thermodynamic data shows31 that this is a good approxi-
mation. The T=0 total energy of fcc aluminum metal is cal-
culated from a DFT calculation with the same cutoffs as that
of the bulk alumina, with a 14�14�14 Monkhorst-Pack
k-point grid in a four-atom primitive cell, and a separately
optimized lattice parameter for each combination of pseudo-
potential and functional. The Gibbs free energy of formation
of alumina at standard temperature and pressure,
�GAl2O3

f �pO2

0 ,T0�=17.37 eV, was obtained from tables,32 as
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were the values SO2

0 =0.0021 eV /K and CP
0 =7kB /2

=0.000302 eV /K of the molecular entropy and constant
pressure heat capacity of oxygen gas required to calculate
��1/2�O2�g��pO2

,T� from ��1/2�O2�g�
0 . The full expression for

��1/2�O2�g��pO2
,T� becomes

��1/2�O2�g��pO2
,T� =

1

3
��Al2O3

− 2�Al�s� − �Gf
Al2O3� + ���T�

+
1

2
kBT log� pO2

pO2

0 � �6�

with the rigid-dumbbell ideal gas form for ���T�:

���T� = −
1

2
�SO2

0 − CP
0 ��T − T0� +

1

2
CP

0 T log� T

T0� . �7�

Experimental samples of alumina are generally annealed un-
der one set of conditions and probed under another. The con-
ditions relevant for calculations of defect concentrations are
normally the annealing conditions, which determine the de-
fect concentrations “frozen in” after the anneal.

D. Band-gap errors

In the region surrounding a defect there may exist occu-
pied orbitals referred to as “defect levels,” that are localized
around the defect site. These states, the energies of which lie
in the band gap, can either be derived from former
conduction-band states which have been lowered in energy
by the presence of the defect, or from valence-band states
which have been raised in energy. In the latter case, as the
defect level is composed of states that would be occupied in
the perfect crystal, there is no problem. In the former case,
however, with a localized defect orbital composed of unoc-
cupied conduction-band states, the eigenvalue of the defect
state will suffer from the well-known DFT band-gap
problem,33 whereby energy gaps to conduction-band states
are underestimated.

If such defect states are occupied, the eigenvalue and de-
gree of localization of the eigenstate may be underestimated.
The resulting underestimation of the formation energy is an
intrinsic problem of DFT calculations on defects. A common
approach to try and make the DFT defect formation energies
match experimental results is to apply a rigid shift to the
energy eigenvalues of the occupied defect levels. In the sim-
plest picture, if there are m electrons occupying defect states
derived from the conduction band and the energy gap is un-
derestimated by �Eg, one adds m��Eg to the energy of the
defect cell.34,35 In semiconductors this adjustment appears to
be vital to make the calculated defect formation energies
agree with experiment. However, it represents a severely un-
controlled approximation in the case of strongly ionic insu-
lators, where the defect states are often so localized that it is
unclear whether they are derived from the conduction or va-
lence band. In these cases, it is not obvious that the band-gap
adjustment should be applied at all. Even worse, because
such solids generally have large band gaps, �Eg itself is
large.

The only approach likely to be able to fix this problem in
a reliable manner would be to use a functional capable of

correctly localizing the electron states and giving a correct
gap. Such might be provided by a hybrid functional, al-
though the fraction of exact exchange to be used could be
regarded as an additional empirical parameter.36 The compu-
tational demands of hybrid exchange calculations in a plane-
wave basis would be very large for the supercells considered
in this work, preventing us from pursuing this approach here.

Instead, we follow a much earlier suggestion of Baraff
and Schlüter,37 and calculate an effective value of m directly
from the nature of the defects states themselves. A purely
empirical approach to the construction of a Hamiltonian that
widens the DFT band gap by �Eg to obtain the experimental
gap is to add a so-called scissor operator of the form

�EgP̂cond to the DFT Hamiltonian, where P̂cond is a projec-
tion operator onto the conduction bands of the perfect crys-
tal. A first-order estimate of the contribution made by this
additional term to the electronic energy of a system with
defect levels in the gap may be obtained by summing the
expectation values of the scissor operator in the occupied
defect states. The effective modification to the total energy
then becomes

meff�Eg = �
i def

�
j cond

��	i
def�	 j

cond	�2�Eg �8�

= �
i def

�1 − �
j val

��	i
def�	 j

val	�2��Eg, �9�

where the superscripts “val,” “cond,” and “def” refer to the
valence and conduction states of the perfect crystal and the
defect states of the defective supercell, respectively. This
technique was applied to the defect states calculated with
norm-conserving pseudopotentials to give one value of meff
which was then used for that defect across all methods.

This approach is not well justified and may not be very
accurate, so it is fortunate that the band-gap error does not
affect the formation energies of the most important defects in
alumina. Because alumina is a very wide band-gap insulator,
the most stable defects are those, such as VO

2+ and Ali
3+, with

full ionic charges. These defects do not have occupied states
in the gap and are unaffected by the band-gap error. The
scissor-operator technique only affects defects such as oxy-
gen vacancies and aluminum interstitials in charge states be-
low their ionic values, VO

1+,0 and Ali
2+,1+,0, which have higher

formation energies than the full-charge versions over most of
the available range of Fermi energy. Moreover, whenever a
band-gap error reduction technique is applied to such de-
fects, it serves only to raise their formation energies, making
them even less likely to form. The band-gap error has no
effect on any conclusions drawn about the concentrations of
the dominant defects in alumina for any reasonable forma-
tion conditions.

E. Defect-defect interactions

The use of a plane-wave basis set in DFT has many ad-
vantages in computational cost and accuracy. However, the
price is that one is restricted to periodic boundary conditions.
Any defect formation energy, especially one for a defect with
a nonzero charge, therefore contains spurious interactions
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from the potentials of nearby periodic copies of the defect,
the magnitudes of which depend strongly on the size of the
supercell.

A number of methods exist to reduce the effects of un-
wanted periodic boundary conditions in defect calculations.
The simplest is to attempt to take account of the change in
average potential caused by the periodic copies of the defect.
In this approach, the “average” potentials Vav

perf and Vav
def are

calculated by averaging over a number of points in some
range as far from the defect as is possible within the super-
cell, and the difference is found between this part of the
defect cell and the same region of perfect crystal. The result-
ing potential shift is then applied to the valence-band maxi-
mum, EVBM, used as the zero of potential in the defect cell.
The otherwise unknown monopole-background potential
contribution to the defect cell total energy ET

def is thus can-
celed from the q�e term in the formation energy, as �e con-
tains EVBM. In principle this should make the result indepen-
dent of cell size. However, this approach fails in practice as
the definition of “far” from the defect in a periodic supercell
containing strongly localized defect charge is highly inexact.
For example, in the case of the aluminum vacancy of charge
−3, small movements of the line or plane along which this
averaging is done can change the average potential shift ap-
plied to formation energies by 0.9 eV at smaller cell sizes. In
effect, while this approach is valid for the delocalized defect
states in a semiconductor, no region in the supercell of an
ionic crystal is far enough from the defect for this procedure
to be accurate. Figure 2 shows the wide variation in results
this method can generate as the size of the supercell is var-
ied.

A more promising route would appear to be to cancel out
the potential from the periodic images of the defect. A recent
paper by Dabo et al.38 summarizes attempts to date to reduce
finite-size errors in potentials for nonperiodic systems and
classifies them according to the method used to cancel the
potential from periodic images. Employing pointlike coun-
tercharges results in a theory akin to that suggested by Leslie
and Gillan39 and later expanded upon by Makov and
Payne,40 whereas a Gaussian countercharge corresponds to
the local moment counter charge method of Schultz.41,42

Dabo et al. contrast these approaches with the ideal solution,
which would involve a density countercharge based on the
full nonperiodic part of the density with all its moments and
suggest a means by which this ideal solution could be imple-
mented efficiently. However, applying such methods post
hoc to the final total energy of a periodic supercell calcula-
tion neglects any contribution from the polarization response
of the medium and any contribution to the kinetic energy
resulting from the change in the wave functions caused by
the change in the potential. Modifying the potential during
the self-consistency cycle of the simulation would be better,
but the polarization response outside the cell would still be
neglected and steps would have to be taken to ensure that the
potential remained continuous at the supercell boundaries.

The most commonly used finite-size error reduction
method is the one due to Makov and Payne,40 which relates
the energy of a defect in a cubic supercell of size L to that of
the isolated defect �L→
� limit via

ET�L� = ET�L → 
� −
q2�

2�L
−

2�qQ

3�L3 + O
L−5� , �10�

where q is the monopole aperiodic charge, Q is the quadru-
pole moment of the aperiodic charge, � is the relative dielec-
tric constant of the medium in which the charges are embed-
ded, and � is the Madelung constant, which is a property of
the shape of the supercell only and is easily calculated using
the Ewald method.43 For a simple cubic system, �=2.8373;
for our hexagonal system, with different lengths in the a and
c directions, � is a function of both lengths. Since dipole-
dipole terms do not necessarily cancel in noncubic systems,
the higher-order Q contributions may also be important.

Castleton et al.44 gave an exhaustive comparison of use of
the first, and first and second terms of the Makov-Payne
formula and the adjustment of the average potential. None of
these methods proved very reliable, but the indications were
that the form, although not the magnitude, of the terms of the
Makov-Payne formula appeared accurate. Castleton et al.
also found that if they used fitted parameters, rather than the
calculated or experimental values of �, �, and Q, they ob-
tained much better results. Shim, Lee, and Nieminen45 and
Lento, Mozos, and Nieminen46 reached similar conclusions.

In this work, we use a variant on the above fitting proce-
dure which has several useful features. Examining Eq. �10�,
we see that the first-order term, which dominates for single
highly localized defects where the monopole-quadrupole and
dipole-dipole terms are small, contains the Madelung poten-
tial vM =� /L. The Madelung constant is defined such that
−q2� /2L is the potential energy per unit cell of an infinite
periodic lattice of identical unit cells, each of which contains
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FIG. 2. �Color online� Correction of the formation energy of the
aluminum vacancy VAl

3− by “average potential” shifts. Groups of
bars represent different supercell sizes indicated on the axis. Within
a group, different colored bars represent different choices of region
over which to average the potential. The variation with cell size and
choice of region over which to average the potential remains unac-
ceptably large even at large supercell sizes. As the supercell size
increases, the variation in the shift begins to converge, but still
varies by 0.5 eV depending on the choice of region at 3�3�2
hexagonal cells. As the size and shape of supercell are varied, even
at the larger end of the size range, calculated formation energies still
vary by 1.0 eV.
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a point charge q plus a uniform neutralizing background.
Defect charges are very well localized in alumina, and our
DFT supercell includes a canceling uniform background if
the defect is charged, so it is physically reasonable that the
finite-size error should scale like −q2� /2�L, where the divi-
sion by � takes account of the polarizability of the solid.

The Madelung energy −q2� /2L is normally negative �and
hence � is positive� because it is dominated by interactions
between the point charge and the canceling background
charge around it, which is on average closer than the other
point charges. In some lattices with long thin unit cells, how-
ever, in which some pairs of point charges are unusually
close together, the reverse applies. The Madelung energy is
dominated by the contributions from nearby pairs of point
charges and � is negative.

Previous methods have chosen a fixed cell shape, and
hence a fixed �, and used the behavior of the total energy as
a function of L for that fixed lattice geometry to estimate �.
However, this is unnecessarily limiting: we can change the
shape of the supercell alongside the size by varying the re-
peat length along one axis at a time, and thus change � as
well as Li. If we then plot the total energy against vM �a
function of Li and �� for a wide range of cell shapes and
sizes, we can still extrapolate to an infinite cell by taking the
limit as vM →0. In practice this is accomplished by fitting a
straight line E�vM�=E
+bvM to the calculated energies.
Comparing with Eq. �10� gives b=−q2 /2�, so we can also
find an effective dielectric constant.

This variant of Castleton’s finite-size scaling approach has
two advantages. The first is that, because it does not rely on
uniform scaling with L, one can access a much larger range
of cells within feasible system sizes. The smallest supercell
that can reasonably be used to study defects in alumina con-
tains 120 atoms. Doubling this cell in each direction would
result in a cell of 960 atoms—already beyond the limit where
traditional plane-wave DFT begins to hit the cubic scaling
“wall.” Further uniform doublings would be impossible.
Therefore, with the original method, one would be fitting a
line to only two points. This method makes it possible to
compare six to ten different cells within the feasible range
and plot a meaningful extrapolation through all of them. The
second advantage of this variant of the method is that it is
possible to include supercells where the Madelung constant
becomes negative, so that we have points on either side of
vM =0. Rather than making an unreliable extrapolation to a
point outside the range of the data, we can therefore interpo-
late �in the strict mathematical sense; we are still extrapolat-
ing the system size, of course�, which is in general more
reliable.

This approach to system-size extrapolation assumes that
the finite-size errors depend only on vM and neglects quad-
rupole and higher terms, which scale differently with system
size. A further advantage of studying supercells of different
shapes, as well as different sizes, is that it provides enough
data points to enable the deviations from the straight line
E�vM�=E
+bvM to be assessed; these deviations provide a
useful measure of the importance of the neglected terms. In
alumina, and presumably also in other wide band-gap insu-
lators with highly localized defect charges, we shall see that
the higher-order terms are relatively small.

III. RESULTS

A. Convergence

We first consider the calculation of the chemical poten-
tials �O and �Al, comparing the standard approach, in which
they are fixed at one end or the other of their range, to the
method suggested by Finnis, Lozovoi, and Alavi11 �FLA�. In
the former method, which we will call method �a�, we ob-
tained ��1/2�O2�g� from the value of ET
O2�g�� calculated with
the same PSP and XC choices as for the bulk. We then set the
formation conditions to represent the oxidation limit 
the up-
per bound of the chemical potential in Eq. �5�� and simply
took �O=��1/2�O2�g�. To illustrate the effect of this procedure,
Fig. 3�a� shows the calculated formation energy of the oxy-
gen vacancy VO

q in various charge states, with no attempt
made to reduce the errors due to the DFT underestimation of
the band gap. The free energy of formation �Ef of the most
stable charge state of the defect is plotted as a function of
Fermi level in the range �F=0 to �F=Eg. The sudden slope
changes occur because the most stable charge state depends
on the Fermi level varying from q= +2 when the Fermi level
is low in the gap to q=0 near the top of the gap. Method �a�
is seen to give a result with a strong dependence on the
choices of pseudopotential and exchange-correlation func-
tional, as the total energy of O2 represents a challenging
problem for DFT for well-documented reasons. Therefore,
when we compare formation energies, we find they vary by
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FIG. 3. �Color online� Comparison of formation energies of the
oxygen vacancy �a� without and �b� with the improved chemical
potential scheme. With method �a�, there is a spread of values of
�Ef of over 1 eV between different XC functionals and PSPs. With
method �b�, the results all fall within about 0.2 eV of each other.
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as much as 1.5 eV between different PSP/XC combinations.
This situation is reproduced across other species of defect
resulting in a highly unsatisfactory dependence of the forma-
tion energy on the choice of approximation scheme.

We contrast this with Fig. 3�b�. Here we show analogous
plots, but this time obtaining �O using the FLA approach,
which we call method �b�, bypassing the calculation of
ET�O2� by using the experimental oxide formation energy.
The results obtained using different functionals and pseudo-
potentials now disagree by no more than about 0.2 eV. This
suggests that the majority of the disparity in formation ener-
gies seen in Fig. 3�a� originates from the calculation of the
ground-state energy of the O2 molecule rather than from the
solid-state calculations. This is in line with our expectations
of where DFT will produce accurate answers and where it
will fail. For the rest of this work we use the FLA method for
chemical potentials.

Figure 4 illustrates the effect of the band-gap error in
calculations of the oxygen vacancy. The neutral vacancy VO

0

has two localized electrons on the vacancy site, which pre-
viously contained an O2− ion with a filled 2p shell of six
electrons; if the defect has charge +1, there is one localized
electron; if it has charge +2, there are none. In this case,
therefore, m=2 for VO

0 , m=1 for VO
1+, and m=0 for VO

2+. Note
that even though there is no longer an oxygen nucleus at the
defect site, it is not necessarily the case that the localized
defect states must derive from the unoccupied aluminum 3s
orbitals at the bottom of the conduction band—they may still
have the symmetry of the now-missing oxygen p orbitals.
The lowermost curve in the figure shows the formation en-
ergy of the defect as a function of �F with no attempt made to
reduce the band-gap error; the topmost curve shows the for-
mation energy with a full m��Eg adjustment applied �Eg in
LDA is 6.88 eV, compared to the real gap of 9.12 eV, so �Eg
is 2.24 eV�. In the case of the neutral vacancy, the difference
between the top and bottom lines is a full 4.48 eV and our
uncertainty about the true value of this error brings into
question the apparently high accuracy obtainable elsewhere
in the calculation.

The value of meff suggested by Eq. �9� treads a middle
ground between these two extremes and is better physically

motivated than either. The results obtained using this projec-
tion approach are expected to be better than those obtained
using the other two methods, but its success can only really
be tested by going to a higher level of theory such as quan-
tum Monte Carlo. In the case of the oxygen vacancy in LDA,
the value of meff calculated via the defect-valence band over-
lap consistently fell around meff=0.37, independent of
whether VO

1+ or VO
0 was considered. This value corresponds

closely to the position of the defect state eigenvalue within
the gap ��def−EVBM�2.52 eV, Eg=6.88 eV in LDA�, sug-
gesting that ��def−EVBM� /Eg may provide a suitable first ap-
proximation for meff.

The defect state associated with the neutral oxygen va-
cancy VO

0 has previously been identified as a “deep” defect
level.5,19 Figure 5 shows a projection in the ab plane of a
three–dimensional �3D� isosurface of the square modulus of
the Bloch state at � associated with this level. It can be seen
that most of the weight is contained within the vacancy re-
gion in an s-like state, with some delocalization onto the
1NN O sites with p-like symmetry. None of the visible
weight is distributed on the Al sites lending further support
to the idea that the defect state is only minimally
“conduction-band-like.”

Figure 6 illustrates the procedure detailed in Sec. II E for
extrapolation of formation energies to infinite separation. Re-
sults for the highest charge states of the principal intrinsic
defects are shown, since these are the dominant defects under
most circumstances and suffer from the largest finite-size
errors. The defect formation energies were calculated using a
range of different supercells but the same value of �e in
every case. Figure 6 includes only the results of calculations
at fixed geometry—that of the 2�2�1 cell surrounded by a
region of perfect crystal—excluding the effects of elastic re-
laxation far from the defect.

The unadjusted results all show a clear linear trend in
�Ef�vM�, with finite-size errors of several electron volts for
reasonably sized systems. Using a least-squares fit, we ex-
tract a “permittivity” �fit and a corresponding Makov-Payne
finite-size extrapolation term �EFS=q2vM /2�fit. This also
gives us a “statistical” uncertainty on the permittivity and the
corresponding finite-size extrapolation term. Once the �EFS
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FIG. 4. �Color online� The effect of the band-gap error on the
formation energy of an oxygen vacancy. The lowermost line shows
the unadjusted formation energy as a function of �F; the topmost
line applies the full m��Eg adjustment and the middle line applies
the adjustment of Eq. �9�.

FIG. 5. �Color online� 3D isosurface projected into the ab plane
of the defect state associated with the VO

0 defect. Lobes associated
with weight on 1NN oxygen p states can be seen, but most of the
weight is in a diffuse s state on the vacancy site. The isosurface
plotted corresponds to �	�r��2=0.1.
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adjustment has been added to the total energy, the results
become nearly independent of size: the sloping line in each
panel shows the unadjusted results, while the nearly flat line
shows the adjusted results. The residual variation with super-
cell size and shape is less than 0.2 eV for all cell sizes con-
sidered. This residual variation is likely to be due to dipole-
dipole and monopole-quadrupole terms, which cannot be
expressed in terms of the Madelung potential but decay more
rapidly as L increases and are negligible when L is large.

Figure 7 shows analogous results obtained allowing the
whole defect supercell to relax until the residual forces are
below 0.1 eV /Å. The ionic relaxation provides additional
dielectric screening of the interactions between the periodic
replicas and there is a marked reduction in the slopes of the
lines. Since the elastic relaxations are driven primarily by the
long-ranged electric field from the defect charge, the elastic
contributions to the finite-size errors are expected to scale
more or less as the electrostatic contributions. It is clear,
however, that this is only approximately true, and that the
uncertainties in the final defect formation energies are greater
when elastic relaxations are included than when they are ig-
nored. This suggests that a full anisotropic treatment of the
elastic response may be required, although that would be
beyond the scope of this work. However, in no case does the

final energy differ from its infinite-system limit by more than
0.5 eV, which is still small enough to allow a reliable
extrapolation/interpolation to infinite size.

Table II shows the effective isotropic permittivities de-
rived from the gradients of the lines in Figs. 6 and 7, all of
which were obtained using the LDA and USPs. The finite-
size errors in formation energies calculated using specific
defect supercells can be reduced by adding
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FIG. 6. �Color online� Finite-size errors in the formation ener-
gies of the principal intrinsic defects of alumina in their highest
charge states. The results for larger supercells were obtained by
embedding the relaxed structure of the smallest 2�2�1 defect
supercell in a region of perfect crystal, ignoring the effects of
longer-ranged relaxations. �a� Aluminum vacancy, charge −3. �b�
Aluminum interstitial, charge +3. �c� Oxygen vacancy, charge +2.
�d� Oxygen interstitial, charge −2. This finite-size error reduction
method works best for VAl

3− but leaves a residual uncertainty of no
more than around 0.2 eV in all cases.
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FIG. 7. �Color online� Finite-size errors in the formation ener-
gies of the principal intrinsic defects of alumina in their highest
charge states including the effects of long-ranged elastic relaxation.
Note the compressed scales relative to the graphs of Fig. 6. �a�
Aluminum vacancy, charge −3. �b� Aluminum interstitial, charge
+3. �c� Oxygen vacancy, charge +2. �d� Oxygen interstitial, charge
−2. While there is more variation than for the pure electrostatic case
shown in Fig. 6, it is still possible to interpolate reliably to vM =0 to
within around 0.2 eV.

TABLE II. Effective dielectric constants obtained by fitting the
electrostatic and elastic finite-size errors of defect supercell total
energies and resulting additions to the total energy required to re-
duce the Coulomb finite-size error of the 2�2�1 cell in its LDA
geometry with ultrasoft pseudopotentials. Errors due to the statisti-
cal nature of a least-squares fit are 0.1–0.2 eV.

Defect VO
2+ Oi

2− VAl
3− Ali

3+

�fit �unrelaxed� 3.96 3.82 3.57 3.33

�fit �relaxed� 14.44 14.27 11.05 12.48

�EFS
elec�2�2�1� �eV� 1.99 2.06 4.96 5.17

�EFS
elast�2�2�1� �eV� −1.44 −1.51 −3.36 −3.89
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�EFS =
q2vM

2�fit
, �11�

using these values of �fit. The resulting permittivities deviate
significantly �approximately a factor of 2� from the experi-
mentally measured zero-frequency permittivity of alumina,
which is in any case anisotropic. This difference has several
causes: first, the approximations of DFT lead to band-gap
underestimation and thus incorrect dielectric properties; sec-
ond, our periodic defect-containing supercells represent a
highly concentrated solution of defects, the dielectric prop-
erties of which may differ significantly from those of the
bulk; and finally, the scale of the variation of electric field
considered here �nanometers� is very much smaller than that
accessed by any macroscopic measurement of permittivity.
The effective permittivity �fit can therefore be justifiably re-
garded as a fitting parameter. The values have associated
statistical error bars from the least-squares fit of between
0.05 and 0.15, leading to “statistical” uncertainty in the en-
ergy of 0.1–0.2 eV—which for obvious reasons tallies well
with the remaining variation in the results shown in Figs. 6
and 7.

In principle, if a fit of the formation energy to the first-
order term was not felt to be sufficiently accurate, the varia-
tion in the second-order term in the Makov-Payne formula
with both L and � could be incorporated, given careful as-
sumptions about the dipole and quadrupole moments of the
defect. Such an approach was not required here but could be
an interesting topic for further work.

We can split the total finite-size error adjustment �EFS
into �EFS

elec and �EFS
elast, these being the purely electrostatic

and elastic contributions, respectively, so that Edef�L→
�
=Edef�L�+�EFS

elec+�EFS
elast, as shown in Table II.

The large differences between the extrapolated defect for-
mation energies obtained with and without full lattice relax-
ation stress the importance of treating elastic and electro-
static effects together in a combined framework. If the atoms
far from a charged defect are prevented from relaxing in
response to the long-ranged electric field, the defect forma-
tion energy is substantially overestimated.

B. Defect formation energies

Having established a framework for the calculation of
size-consistent defect formation energies parametrized by �O
and �e 
which are in turn known functions of �pO2

,T� and �F,
respectively�, we now turn our attention to the formation
energies and structural and electronic properties of these de-
fects. Table III shows the relaxed and unrelaxed bond lengths
around each type of defect for all accessible charge states.
We note good agreement with the geometries of Matsunaga
et al.21 The bond-length changes clearly reflect the electronic
structures of the various defects and their charge states. In
forming an aluminum interstitial Ali

q with q=3, we are sim-
ply inserting an Al3+ ion into a vacant site without affecting
any existing bonds directly. The 1NN Al ions are signifi-
cantly repelled and the 2NN O ions attracted. However, as q
decreases to 2 and then 1, we occupy the s orbital on the Ali

TABLE III. Geometry relaxation of the region around each defect species. For each defect, the distances
to and identities of the 1NN, 2NN, and 3NN atoms in the perfect crystal are shown followed by the
corresponding distances after the geometry has been relaxed. The percentage changes in the 1NN, 2NN, and
3NN distances are also shown. As expected, positively charged defects attract the anions and repel the
cations, while negatively charged defects do the opposite, although this rule is not obeyed strictly far from the
defect.

Species 1NN Change �to� 2NN Change �to� 3NN Change �to�

AlAl 0.189 �6 O� 0.272 �4 Al� 0.336 �9 O�
VAl

0 0.204 8.05% 0.261 −3.68% 0.337 0.40%

VAl
1− 0.201 6.81% 0.250 −8.04% 0.337 0.30%

VAl
2− 0.201 6.72% 0.257 −5.43% 0.334 −0.50%

VAl
3− 0.204 7.96% 0.253 −6.81% 0.333 −0.70%

I site 0.189 �2 Al� 0.195 �6 O� 0.272 �6 Al�
Ali

0 0.222 17.46% 0.213 9.23% 0.282 3.49%

Ali
1+ 0.228 20.63% 0.185 −5.13% 0.280 2.94%

Ali
2+ 0.228 20.63% 0.184 −5.64% 0.281 3.31%

Ali
3+ 0.228 20.63% 0.183 −6.15% 0.280 2.94%

OO 0.189 �4 Al� 0.268 �12 O� 0.347 �8 Al�
VO

0 0.186 −1.59% 0.268 −0.06% 0.347 0.01%

VO
1+ 0.199 5.57% 0.265 −0.93% 0.347 0.22%

VO
2+ 0.212 12.47% 0.262 −2.05% 0.348 0.36%

I site 0.189 �2 Al� 0.195 �6 O� 0.272 �6 Al�
Oi

0 0.183 −3.17% 0.213 9.06% 0.276 1.59%

Oi
1− 0.175 −7.41% 0.218 11.79% 0.274 0.74%

Oi
2− 0.166 −12.17% 0.224 14.87% 0.271 −0.37%
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atom and the defect charge decreases. At q=0, a defect state
comprising s orbitals on 1NN Al sites is occupied, which
causes significant repulsion of the 2NN oxygen ions: the
resulting formation energy is so high that the Ali

0 defect will
be effectively absent regardless of temperature or doping
level. A broadly similar effect is seen with the oxygen inter-
stitial, although the relaxations have a smaller magnitude and
the signs are reversed because the oxygen ion is negative.

The other defect that causes significant geometry rear-
rangement is the oxygen vacancy VO

q . Removal of an O2− ion
including its electrons to create a VO

2+ defect causes a 12.5%
relaxation of the 1NN Al ions toward the vacancy. If one or
two electrons remain on the defect site �q=1 or q=0, respec-
tively�, the relaxation is greatly reduced, first to 5.6% for VO

1+

and then to −1.6% for VO
0 . The outward relaxation in the

latter case is presumably due to the reduced localization of
the electrons on the vacancy site relative to those on an O2−

ion. Removal of Al ions causes much smaller relaxations
with less dependence on the charge state, probably because
the defect states are more delocalized and associated with the
1NN oxygen atoms rather than the vacancy site itself.

From the relaxed defect supercell energies and the defect-
defect interaction and band-gap error reduction formulae of
Eqs. �11� and �8�, respectively, we can use Eq. �1� to calcu-
late the defect formation energies. Figure 8 collates the re-
sults of all of these calculations as functions of the Fermi
energy �F. The position of the Fermi level in a real sample
depends on the entire population of defects and impurities
present: doping by aliovalent impurities will raise or lower
�F, as will the creation of compensating native defects. If the
formation energies of the native defects are sufficiently high,
the intrinsic defect concentrations will be rather low. It then
becomes unhelpful to talk about “undoped” alumina, since
extremely small concentrations of dopants may be sufficient
to swing the Fermi level one way or the other, affecting the
concentrations of native defects significantly.

As a result of our methodological improvements, the for-
mation energies of Fig. 8 differ in a number of ways from
previous calculations of the same quantities. For example,
Matsunaga et al.21 applied the average potential shift to re-
duce defect-defect interactions and used full m��Eg band-

gap error adjustment; they found that the four main intrinsic
defects had nearly the same formation energies at �F=0 and
that VAl

3+ dominated for higher values of �F.
By comparing graphs like Fig. 8 for a range of tempera-

tures and pressures �and hence a range of oxygen chemical
potentials�, we find that the defect formation energy at the
crossover value of �F, where the most stable defect switches
from being a positively charged species to a negatively
charged species, is always roughly 5 eV, regardless of �O.
This is presumably the origin of the oft-quoted idea that all
of the main defect formation energies are around this
value—an idea that does indeed hold true if the Fermi energy
balances out at this point in self-consistent calculations of
systems containing neutral combinations of defects.

Over most of the range of �F, defects in their full formal
charge states dominate. This supports the traditional picture
in which intrinsic defects are created by adding or removing
fully charged Al3+ or O2− ions. It also ensures that band-gap
error adjustments have no effect on the formation energies of
the most important defects. However, under certain condi-
tions of �O and �e it is possible for the formation energy of
VO

1+ to be comparable to the other defects, which allows for
the experimentally observable presence of F+ centers in
many alumina samples.47

As mentioned earlier, it is common practice in the study
of defects to focus on �O- and �e-independent combinations:
Schottky quintets, 3VO

2++2VAl
3−; oxygen Frenkel pairs, VO

2+

+Oi
2−; and aluminum Frenkel pairs, VAl

3−+Ali
3+. These may

represent somewhat artificial quantities in alumina since the
high defect formation energies render the truly intrinsic re-
gime inaccessible. Nevertheless, our calculations support
previous suggestions from experiment48 and theory21 that the
energy ordering of these combinations is Schottky
�Al Frenkel�O Frenkel.

Table IV presents parametrized expressions for the forma-
tion energies of the four main intrinsic defects in alumina
including their dependence on Fermi energy and oxygen
chemical potential. This table represents the main result of
this work.
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FIG. 8. �Color online� Defect formation energies of the four
main types of intrinsic point defect in alumina calculated in DFT
with ultrasoft pseudopotentials and the LDA. The calculation of �O

was carried out at T=2371 K and pO2
=0.2 atm.

TABLE IV. Formation energies of the four simple intrinsic point
defects of alumina. Values are calculated for �O at T=2371 K,
pO2

=0.2 atm, and �F=0 �the valence-band maximum�. The depen-
dence on ��O and ��F is then shown explicitly. The experimental
range of ��O is approximately −1.5 to 2 eV �oxidation limit to
reduction limit�, while the range of ��F is from 0 eV to Eg

�9.1 eV. Errors in the formation energies due to the statistical
nature of the least-squares fit used to determine the infinite size
extrapolation are 0.1–0.2 eV.

Defects
Vacancy �Ef

�eV� Defects
Interstitial �Ef

�eV�

VO
0 6.09+��O Oi

0 8.84−��O

VO
1+ 2.58+��O+�F Oi

1− 10.72−��O−�F

VO
2+ −0.76+��O+2�F Oi

2− 13.98−��O−2�F

VAl
0 8.44− 3

2��O Ali
0 16.88+ 3

2��O

VAl
1− 9.05− 3

2��O−�F Ali
1+ 10.08+ 3

2��O+�F

VAl
2− 9.77− 3

2��O−2�F Ali
2+ 3.72+ 3

2��O+2�F

VAl
3− 11.27− 3

2��O−3�F Ali
3+ −2.32+ 3

2��O+3�F
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C. Alternative defects

Finally, although the main object of this study was the
four simple intrinsic defects, we will address briefly two
other defects that may affect diffusion in alumina. The
aluminum-oxygen divacancy, VAlO, created by the removal
of adjacent oxygen and aluminum ions, has been suggested
recently as a candidate for the mobile species in oxygen
diffusion.8,9 Because the dependence on �O is mostly can-
celed by the dependence on �Al, which changes as ��Al=
− 3

2��O, the concentration of the VAlO defect is only weakly
affected by formation conditions. As �F is varied, the defect
is stable in states ranging from q=0 to q=−2, and could be
among the defects present in detectable quantities over some
of the range, corresponding to low doping. As can be seen
from its formation energy in Fig. 9, VAlO could be a candi-
date for oxygen diffusion under certain circumstances, but
only if its migration barrier was lower than that of VO and
concentrations under reasonable formation conditions were
comparable. Such issues will be the subject of further inves-
tigation beyond the scope of this work.

The other additional defect to be considered here is an
alternative structure for the aluminum vacancy that turns out
to have a lower formation energy than the vacancy created
by removing a single aluminum atom and relaxing the lat-
tice. Instead, two aluminum atoms from the same column
along the c axis, separated by a normally vacant site, are
removed, and an aluminum interstitial is inserted into the
vacant site. The split vacancy structure obtained by relax-
ation from this starting geometry has a formation energy
lower by as much as 0.7 eV than the simple Al vacancy
considered above. Its formation energy compared to the stan-
dard vacancy is shown in Fig. 9. This structure should per-
haps therefore be regarded as the relaxed structure of the Al
vacancy. However, its formation energy is not sufficiently
much lower than the single vacancy to alter the conclusions
of the preceding sections.

IV. CONCLUSIONS

This paper considered three different methods for treating
some of the most challenging aspects of calculations of for-

mation energies of charged point defects in nonelemental
solids using DFT. The first, an extension of existing schemes
for extrapolating calculated formation energies to the limit of
isolated defects, varies both the shape and size of the super-
cell to achieve more accurate results with feasible supercell
sizes. The second, which follows the approach of Finnis,
Lozovoi, and Alavi,11 allows chemical potentials to be calcu-
lated with greatly reduced dependence on the approximation
scheme and makes it easier to relate chemical potentials to
formation conditions. The third enables band-gap error ad-
justments to be calculated without having to identify strongly
localized defect states as belonging entirely to either the va-
lence or the conduction band, by calculating an approxima-
tion to the degree to which a state is like either band. By
combining these methods, it is possible to obtain DFT esti-
mates of defect formation energies that are both more con-
verged with system size and choice of approximation and
more easily linked to specific experimental formation condi-
tions than previous results.

We have applied this methodology to the study of the
intrinsic point defects of �-Al2O3 and calculated formation
energies parametrized by the chemical potential of gaseous
oxygen and the Fermi energy. A forthcoming paper will use
these formation energies as inputs to a thermodynamic mass-
action calculation, allowing realistic point defect concentra-
tions to be obtained as functions of doping and formation
conditions.49 However, even without this thermodynamic
study, several important conclusions can be drawn from the
results presented here. First, the formation energies are suf-
ficiently high that the concentrations of intrinsic defects will
be rather low; the true “intrinsic” regime in which the effect
of impurity doping is negligible is therefore difficult to ac-
cess without exceptionally pure samples. The charge-neutral
combinations of intrinsic defects such as Schottky quintets
and Frenkel pairs, which must dominate in the intrinsic re-
gime, may therefore be of little relevance in alumina: the
effect of external aliovalent dopants providing charge and
driving the Fermi energy up or down will almost always
determine the native defect populations.

Our results also show that, while vacancies and intersti-
tials in their highest charge states ��q�=3 for Al and �q�=2 for
O� are the stablest under most conditions, there nevertheless
exist regimes in which it is possible to create significant
populations of defects such as VO

1+, which are in lower charge
states. Additionally, while we agree with previous work21

showing that Schottky disorder has a lower energy per defect
than either type of Frenkel disorder, it is not necessarily pos-
sible to neglect the contributions of interstitials to diffusion,
especially if they have a notably lower migration barrier.
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