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The pinning force for an arbitrarily oriented individual vortex in a biaxial type-II superconductor is calcu-
lated from the collective pinning theory. It is shown that in anisotropic superconductors the critical force at
which the vortex starts to move can be smaller than the pinning force since the vortex will move at an angle
to the acting force. Explicit expressions for this angle and for the critical force and critical current density are
given.
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In a recent paper1 magnetic force microscopy was em-
ployed to image and manipulate individual vortices in a
single-crystal YBa2Cu3O6.991. Several unexpected results
were obtained in that paper. In particular, the authors found
enhanced anisotropy of vortex pinning in this crystal. Be-
sides this, they discovered a dramatic enhancement of the
response of a vortex to pulling by a magnetic tip when the tip
is wiggled transversely. Importantly, such experiments allow
one to measure directly the interaction of an individual vor-
tex with the local disorder potential of the superconductor.

Within the collective pinning theory, pinning of an iso-
lated vortex in a uniaxial anisotropic superconductor was
theoretically investigated in Ref. 2 �see also review�.3 Using
the ideas of collective pinning theory,3 Auslaender et al.1

estimated the pinning force in a biaxial superconductor for a
flux line aligned with the c axis. However, in their
experiment1 the vortex was generally tilted at large angles
��1 to the c axis. So, to provide a basis for the analysis of
the experimental data obtained in Ref. 1 or in similar experi-
mental investigations, in this Rapid Communication we
study pinning of a tilted vortex in a biaxial superconductor.
We first obtain the line tension for such a vortex and then
calculate the pinning force. For clarity in this derivation we
follow the ideas in Ref. 2 rather than the scaling approach.3,4

We also discover an effect that is absent in isotropic crystals:
in an anisotropic superconductor the critical force for a given
direction can be smaller than the maximum pinning force for
the same direction. The critical force is defined as the force
at which the vortex starts to move, and it is proportional to
the critical current density. This effect is due to the deviation
of the direction of vortex motion from the direction of the
acting force.

Consider a biaxial superconductor and let the x, y, and z
axes of the coordinate system coincide with the anisotropy
axes a, b, and c of this superconductor, respectively. The line
tension �l of a vortex can be derived from its line energy5

el�� ,��, where the angles � and � define the direction of the
vortex, i.e., we describe this vortex direction by the unit
vector �sin � cos � , sin � sin � , cos �� �see Fig. 1�. Within
anisotropic London theory, the line energy of the vortex in a
biaxial superconductor is6,7

el��,�� = �0
��2����sin2 � + cos2 � , �1�

where ���ab /�c is the parameter of the anisotropy and �0
= ��0 /�ab�2 ln��ab /�ab� / �4�	0�; �0 is the flux quantum,

�ab=��a�b, �ab=��a�b, �a and �b are the coherence lengths,
�c, �a, and �b are the London penetration depths, and we
have used the notation

���� = 
 cos2 � + 
−1 sin2 � , �2�

in which 
=�a /�b is the parameter of the anisotropy in the
a-b plane. In particular, for YBa2Cu3O6.995 one has 
�1.3
and ��1 /7,8 i.e., �2�1.

When the vortex described by the angles � and � is sym-
metrically deformed over a distance 2L by an amplitude L�
�L� is the height of an isosceles triangle with basis 2L and
two small angles � in the direction defined by the angle �
�Fig. 1�, the energy increase in one segment with the length L
is
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Geometrical considerations yield �L�L���2 /2, and
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FIG. 1. Definition of the angles �, �, and �. The angles � and �
specify the direction of the vortex shown as bold solid line. The
angle � in the plane perpendicular to the vortex defines the direc-
tion of a small vortex deformation; � is measured from the line that
is the intersection of this plane with the plane containing the vortex
and the z axis.
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sin � cos �

sin �
���2. �4�

Since the total deformation involves two segments of length
L with opposite �, the contributions to �el that are linear in
� are canceled in the second and third terms of Eq. �3�.
That is why we also take into account the terms proportional
to ���2 in formulas �4�. These terms are due to the fact that
the vortex deformation at �=� /2 changes not only the angle
� but also the angle � a little. Similarly, the deformation in �
slightly influences ��.

The line tension �l of the vortex in the direction specified
by the angle � is defined by the relation

1

2
�l��,�,��L���2 = �el. �5�

Substitution of formulas �3� and �4� into this relation gives

�l��,�,�� = el + cot �� �el
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At the specific case �=0 this expression reduces to Eq. �18�
of Ref. 9. Using formulas �1� and �6�, one can directly cal-
culate �l�� ,� ,��. In the subsequent analysis we shall imply
that the vortex is not too close to the a-b plane, i.e.,
�2 tan2 ��1. Then, we arrive at

�l��,�,�� =
�0�2

cos �

� cos � cos �

cos �
− sin � sin ��2

+
�0�2

cos �

1



� sin � cos �

cos �
+ cos � sin ��2

. �7�

If 
=1 and �=0 or � /2, formula �7� reproduces the two
so-called out-of-plane and in-plane line tensions in a uniaxial
superconductor.2,3 At �=0 we obtain from expression �7� the
line tension,

�l��,�� = �0�2��� + �� , �8�

which is much smaller than the line energy el=�0 	Eq. �1�
.10

Since at �=0 the planes of � and � coincide, the angle
�+� specifies the vortex-distortion direction measured from
the x axis. In this case we reproduce the result in Ref. 1.
Expression �7� is immediately applicable if the characteristic
length of the vortex deformation is essentially larger than the
appropriate London penetration depth. In the opposite case,
for example, in the problem of vortex pinning, which in-
volves short-wavelength distortion of the vortex line, the
logarithmic factor should be omitted in �0.3

We now use the collective pinning theory3 to find the
pinning force produced by point defects. The pinning energy
of a vortex segment of length Lc is of the order of
Epin�Up�nSLc�1/2, where Up is the characteristic pinning en-
ergy produced by one of the point defects, n is their density,
S is the cross-section area of the vortex core, and the collec-
tive pinning length Lc is characterized by the condition that

for this segment the averaged amplitude of the vortex distor-
tions due to pinning is of the order of the coherence length �.
This length Lc is found from the balance of the pinning
energy Epin and the elastic energy of the segment,
Eel��l�� /Lc�2Lc. The balance leads to the formula

Lc � � �l
2�4

Up
2nS

�1/3

. �9�

The coherence length � is anisotropic in a biaxial super-
conductor and can be obtained from the Ginzburg-Landau
functional, yielding

�2��,�,�� = �ab
2 �
�sin � cos � cos � + cos � sin ��2

+
1



�cos � cos � cos � − sin � sin ��2

+ �2 sin2 � cos2 �� , �10�

where the last term should be omitted in our approximation
�2 tan2 ��1. Here and below we indicate the direction of �
using the angles � and � for the appropriate vortex and the
angle � defining this direction in the plane perpendicular to
the vortex line. The dimension of the vortex core is deter-
mined by ����, and Eq. �10� shows that the cross section of
this core is an ellipse with area S=��ab

2 cos �. Since �l and �
depend on the angle �, one will obtain different Lc for dif-
ferent �. But the vortex relaxes to the pinning potential
choosing the mode characterized by the smallest collective
pinning length. Thus, to calculate Lc, it is necessary to find
the minimum of �l����2��� over the angle �. Both �l��� 	Eq.
�7�
 and �2��� 	Eq. �10�
 are quadratic forms in the variables
cos �, sin �. Omitting the last term in Eq. �10� and making

the substitution �= �̃+� /2 in �2���, one finds that the qua-

dratic forms �l��� and �2��̃� are proportional to each other.
Thus, they have the same eigenvectors which are generally
not along the directions �=0 and �=� /2. Along these vec-
tors the quadratic forms reach their maximum and minimum

values. Due to the relation �= �̃+� /2, �l��� is maximum
when �2��� is minimum and vice versa. The product
�l����2��� turns out to be minimum along these vectors and
equals �0�2�ab

2 /cos �. Thus, we find

Lc =
Lc

c

cos �
, Epin = Epin

c , �11�

where Lc
c��4/3��0

2�ab
2 /Up

2n��1/3 is the collective pinning
length and Epin

c ��2/3Up�n��ab
2 Lc

c�1/2 is the pinning energy for
the vortex directed parallel to the c axis in the supercon-
ductor without the anisotropy in the a-b plane �i.e., at 
=1�.
Note that the obtained Lc and Epin in the biaxial crystal ex-
actly coincide with the appropriate quantities calculated2,3

for the uniaxial superconductor.
The pinning force is perpendicular to the vortex. Its value

�per unit vortex length� in the direction � is determined by
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fp��,�,�� �
Epin

Lc������,�,��
= fp

c �ab cos �

���,�,��
, �12�

where fp
c �Epin

c / �Lc
c�ab� is the pinning force for the vortex

along the c axis in the uniaxial superconductor. Consider fp
in some special cases. At �=0 Eq. �12� yields

fp�0,�,�� =
fp

c

��� + � + �/2�
, �13�

where ���� is defined by formula �2�. Since at �=0 the
planes of the angles � and � coincide with each other, the
sum �+� simply specifies the direction of the force in the
a-b plane relative to the a axis. Expression �13� slightly cor-
rects the appropriate formula in the supplementary informa-
tion to Ref. 1.

If ��0, but �=0, we obtain from formula �12� that

fp��,�,0� =
fp

c

��� + �/2�
. �14�

Note that this force does not depend on �, i.e., on the tilt of
the vortex, and in fact, it coincides with the force for the
vortex aligned with the c axis 	Eq. �13�
. This property of the
force is quite similar to that of the uniaxial
superconductors.2,3

At ��0 and �=� /2 the pinning force is applied in the
a-b plane. In this case it follows from Eq. �12� that

fp��,�,�/2� =
fp

c cos �

����
. �15�

When � tends to zero, this expression is in accordance with
Eq. �13�. Finally, in the case of the uniaxial superconductor
�i.e., at 
=1� Eq. �12� reduces to

fp��,�,�� =
fp

c cos �

�cos2 � cos2 � + sin2 ��1/2 . �16�

This formula agrees with the results in Refs. 2 and 3.
In anisotropic superconductors flux-line pinning has a

property that is absent in the isotropic case: under an applied
force exerted by the critical current, flux lines can move in a
direction that differs from the direction of the force.11 In the
considered case this property can be reformulated as follows:
if one applies a force along the direction defined by the angle
�, the critical value of this force, fc���, at which the vortex
overcomes pinning and begins to move, can be smaller than
the maximum pinning force in this direction, fp���. This oc-
curs because it is favorable for the vortex to start to move in
some other direction �1. The mechanism of this effect is
explained in Fig. 2. The projection of the force f applied
along the direction � on some other direction �1 is
f cos��−�1�. If this projection reaches fp��1�, i.e., if

f =
fp��1�

cos�� − �1�
, �17�

the vortex can move in this direction �1. The critical force,
fc, is the minimum force f over the angle �1. Differentiation
of formula �17� over �1 gives the equation for this angle,

tan�� − �1� =
fp���1�
fp��1�

, �18�

where the prime means d /d�1. On determining �1, one finds
fc��� from formula �17�,

fc��� = �	fp��1�
2 + 	fp���1�
2. �19�

At this critical force fc��� the vortex starts to move in the
direction �1 given by Eq. �18�. Interestingly, the described
difference between fc and fp appears even in uniaxial super-
conductors if ��0.

The critical force fc permits one to find the value of the
critical current density jc� in the plane perpendicular to the
vortex,

jc���� =
fc�� − �/2�

�0
, �20�

where �0 is the flux quantum and the angle � defines the
direction of the current. In experiments it may also be useful
to know the critical current density jc in the a-b plane for a
tilted vortex. Let this jc flow at an arbitrary angle � to the a
axis. Using the results in Ref. 11 �Appendix A�, we obtain

jc��� =
jc����

	1 − cos2�� − ��sin2 �
1/2 , �21�

where � is determined from the relation tan �
=tan��−�� /cos �, while the vortex direction is still defined
by the angles � and �. The denominator in formula �21� is
due to the fact that the currents in the a-b plane are not
perpendicular to the vortex, and this denominator is the sine
of the angle between the current and the vortex.

Since according to Eq. �12� the quantity fp
2��� is described

by an ellipse in the plane perpendicular to the vortex, we
shall now analyze a simple model for the � dependence of fp
that we define by the equation

ψ
1ψ

fpy

fpx

..

fc
fp

FIG. 2. Schematic plot explaining why in an anisotropic super-
conductor the critical force fc at which the vortex starts to move
may be smaller than the maximum pinning force fp. The ellipse
shows the angular dependence of the maximum pinning force fp���.
The dashed lines indicate the projections of forces f � fp acting
along � on some other directions. All these projections reach the
ellipse at angles different from �. The thick arrow shows the mini-
mum force of this type, fc���. At f = fc��� the vortex starts to move
in the direction �1.
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fp
2���� cos2 �

fp0
2 +

sin2 �

fp0
2 �

� = 1, �22�

in which fp0 and � are some constants, and for definiteness
let be ��1. This model describes an ellipse whose axes are
along the directions �=0 and �=� /2. Formula �22� imme-
diately follows from Eq. �12� if �=0. In this case one has
fp0= fp

c�
 and �=cos2 � /
2. If the angle ��0 or � /2, the
only difference is that the axes of the ellipse do not coincide
with the directions �=0 and �=� /2. Formula �22� also de-
scribes the pinning force in uniaxial superconductors at any �
and �. In this case one has �=cos2 � and fp0= fp

c. Using Eqs.
�18� and �19�, in the case of fp��� given by formula �22� we
obtain the dependence fc��� in the parametric form,

tan � =
�2� − 1 + tan2 �1�tan �1

� + �2 − ��tan2 �1
,

fc��� =
fp0

��

�� cos2 �1 + sin2 �1�1/2�1 +
�1 − ��2 tan2 �1

�� + tan2 �1�2 �1/2

.

�23�

Here the angle �1 plays the role of a curve parameter. If the
parameter ��1 /2, the critical force fc��� does not differ
essentially from fp��� although the angle �1 may noticeably
deviate from � �Fig. 3�. In this case the first formula in Eq.
�23� establishes a one-to-one correspondence between � and
�1. At ��1 /2 the situation changes. In this case spurious
branches of �1��� appear. For the physical branch, which
provides minimum values of fc, the angle �1 lies in the in-
terval from �1

cr to � /2 if � changes from 0 to � /2 �Fig. 3�.
Here tan �1

cr=�1−2�. Thus, even when the force is applied
along the symmetry direction �=0, the vortex starts to move
in one of the directions ��1

cr, and the critical value of this
force fc��=0�=2fp0

���1−�� can be noticeably smaller than
the pinning force in this direction, fp��=0�= fp0.

In the limit of large anisotropy of the pinning force, �
�1, one obtains �1

cr�� /4 and fc��=0��2��fp0. Since
fc��=� /2�=��fc0, the anisotropy of the critical force tends
to a constant value, 	fc��=0� / fc��=� /2�
=2, which is
much smaller than the anisotropy of the pinning force,
	fp��=0� / fp��=� /2�
=�−1/2.

In conclusion, we have derived the anisotropic line ten-
sion of an arbitrarily oriented vortex in a biaxial type-II su-
perconductor 	Eq. �6�
, which reduces to formula �7� in the

case �2 tan2 ��1. From this line tension the pinning force is
calculated within collective pinning theory 	Eq. �12�
. It is
shown that in anisotropic superconductors the critical force
at which the vortex starts to move can be smaller than the
pinning force in this direction and that, in general, the vortex
moves at an angle to the acting force. Formulas �18�–�21�
allow us to calculate this critical force and the critical current
density in anisotropic superconductors at any given pinning
force fp�� ,� ,��.
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FIG. 3. Top: the � dependences of the pinning force fp 	dashed
lines, Eq. �22�
 and of the critical force fc 	solid lines, Eq. �23�
 at
�=0.6 and 0.3. The forces are measured in units of fp0. Here the
principal axes of fp��� are denoted as x and y axes although they
generally do not coincide with the x and y axes introduced in Fig. 1.
Bottom: dependence of �1−� on � for �=0.6 �solid line� and
�=0.3 �dashed line�.
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