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We use a simple elastic Hamiltonian for the vortex lattice in a weak impurity background, which includes
defects in the form of integer-valued fields to calculate the free energy of a vortex lattice in the deep H,.,
region. The phase diagram in this regime is obtained by applying the variational approach of Mézard and Parisi
developed for random manifolds. We find a first-order line between the Bragg-glass and vortex-glass phases as
a continuation of the melting line. In the liquid phase, we obtain an almost vertical third-order glass transition
line near the critical temperature in the H-T plane. Furthermore, we find an almost vertical second-order phase
transition line in the Bragg-glass as well as the vortex-glass phases, which crosses the first-order Bragg-glass—
vortex-glass transition line. We calculate the jump of the temperature derivate of the induction field across this
second-order line as well as the entropy and magnetic-field jumps across the first-order line.
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I. INTRODUCTION

The phase diagram of high-T,. superconductors as a func-
tion of the magnetic field H and temperature 7 is mainly
governed by the interplay of thermal fluctuations and
quenched disorder,'-? leading to various different states of the
vortex matter summarized in Fig. 1. At low magnetic field
the vortex solid melts into a vortex liquid (VL) via a first-
order melting transition. Prominent examples of high-7. su-
perconductors exhibiting a solid-liquid melting transition are
the anisotropic compound YBa,Cu;0,_s (YBCO) and the
strongly layered compound Bi,Sr,CaCu,Og (BSCCO). The
position of the melting line in the H-T plane is mainly influ-
enced by the anisotropy of the superconductor.> In YBCO
with its low anisotropy, most of the melting line B,, lies in
the vicinity of the upper critical field H,,, i.e., B/H,,=0.5,
where B~ H is the induction field in the relevant regime. The
phase diagram for superconductors with a melting line in this
regime was discussed by us in Ref. 4. This magnetic-field
regime consists of a vortex lattice or vortex fluid, with over-
lapping vortex cores, if we use elastic constants calculated in
Refs. 5 and 6. The phase diagram was derived on the basis of
a defect melting model set up in Refs. 7 and 8. The model is
Gaussian in the elastic strains and takes into account the
defect degrees of freedom by integer-valued gauge fields.
From this we derive effective Hamiltonians for the low-
temperature solid and high-temperature liquid phases by
summing over all defect fields. By further integrating out
vortex degrees of freedom we obtain the partition functions
of both phases. This is done with the help of the variational
approach of Mézard and Parisi,” originally developed for
random manifolds and applied later to vortex lattices without
defects in Refs. 10 and 11. A similar approach was used
recently to calculate the glass transition line for YBCO via
Ginzburg-Landau theory.'?

When including weak pinning, the solid phase becomes a
quasi-long-range ordered Bragg-glass.' At higher magnetic
fields, the quasi-long-range order is destroyed and there exist
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also a vortex-glass phase. The transition is marked by the
disappearance of Bragg peaks in scattering data. We obtain
in Ref. 4 a phase diagram consisting of a unified first-order
phase line between the Bragg-glass phase and the vortex-
glass phase and the vortex-liquid which is sketched for
BSCCO in Fig. 1. We point out that the first-order character
of the transition line between the Bragg-glass phase and the
vortex-glass phase is not experimentally established yet for
YBCO. It is deduced from magnetic anomalies in response
to the external magnetic field. For BSCCO, the first-order
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FIG. 1. (Color online) Sketch of the phase diagram of BSCCO
or similar high-7, superconductors where the phase transition lines
lie far below H_,. The solid line denotes a first-order phase transi-
tion line being a first-order melting transition between the BG1-VL,
BGI1-VGI1 phase and a disorder induced first-order transition be-
tween the BG2-VG2 phase. The (blue) dashed curve denoted by 7,
is found to be a second-order glass transition line (Ref. 19). The
intersection point with the first-order line is denoted by GP2. The
(red) dashed-dotted curve is the T, line found by Fuchs et al. (Ref.
20) using surface barrier experiments. It intersects the first-order
line in the point GP1.
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character of the Bragg-glass—vortex-glass line was measured
by supercooling'? and magnetic-field shaking techniques.'*

Beside the unified first-order line found within our model
for YBCO (Ref. 4) (seen before within the Ginzburg-Landau
model in Ref. 15), a third-order glass transition line emanates
near the critical point on the melting line as a phase bound-
ary between the Bragg-glass and the vortex-liquid phases.
We have shown in Ref. 4 by using hyperscaling relations that
the higher-order character (more than second order) of this
line is in accordance with experiments and numerics, which
determine the scaling of the disorder phase correlation
length.'®!7 This glass transition line exists also for BSCCO.
But beside this parallel of the glass transition lines of YBCO
and BSCCO, Beidenkopf et al.'® found for BSCCO an addi-
tional second-order glass transition line in the Bragg-glass
phase by using also the magnetic shaking technique. The line
showed up by plotting the derivate of the magnetic induction
field with respect to the temperature. A jump was observed
which also exist for the glass transition line in the vortex-
glass phases. Thus in contrast to YBCO, they found for
BSCCO that both lines are of second-order characteristics.
Both lines meet in a single point within experimental uncer-
tainties. This point is not the critical point found for general
doping,' which is characterized by a vanishing of the en-
tropy jump'* being the maximum of the unified first-order
line. We label both second-order lines in Fig. 1 by 7,. The
intersection with the first-order line is denoted by GP2. Both
lines divide the vortex-glass phase named by VG2 from a
phase named VGI1 in Fig. 1 lying in the high-magnetic-field
part above the first-order line. In the low-magnetic-field part
the T, line divides two Bragg-glass phases denoted by BG2
and BG1 in Fig. 1

Finally, we show in Fig. 1 a possible additional phase
boundary labeled by T,, which was found by Fuchs et al.?
by measuring the vortex penetration through surface barriers.
A similar line was also found by magnetization
measurements.?! This line divides the vortex liquid denoted
by VL from the phase VG1 shown in Fig. 1. It meets the
melting line in a point to be referred as GP1. Note that it is
not experimentally clear whether the 7, line has the charac-
teristic of a phase transition. The 7', line does not correspond
to the irreversibility line where magnetization sweeps show
hysteresis. The position of this line in the case of BSCCO is
mostly influenced by surface barriers® in contrast to YBCO
where the pinning mechanism is responsible for the irrevers-
ibility. This leads to a coincidence of the irreversibility line
with the glass transition line between the vortex glass and
vortex liquid.>* It was shown in Ref. 21 via Josephson
plasma experiments that the 7', line is not accompanied by a
Josephson decoupling between the layers, ruling out the pos-
sibility of a transition from vortex lines to weakly coupled
pancake vortices. That such a transition exists was proposed
theoretically in Refs. 24-26. So far we point out that it is not
experimentally clear yet what kind of phase VG1 is.?’ There
are, for example, hints that this phase could be a disordered
flux line liquid.?’ This is suggested by muon spin rotation
experiments, which however are in contradiction to other
experiments which reported Bragg-peaks in this phase.”® In
the interpretation of VG1 as a disordered flux line liquid,
VG2 consists of a quasi-two-dimensional vortex solid.
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It is the purpose of this paper to investigate the above
phase transitions in the defect melting model mentioned
earlier>”3 used in Ref. 4 to calculate the phase diagram of
YBCO. We will first review briefly the model. A more com-
prehensive discussion can be found in our former papers and
the book.” In contrast to YBCO, BSCCO is a strongly lay-
ered material where the coupling between the layers is de-
scribed by the Josephson coupling in the Hamiltonian of the
system. For high magnetic fields beyond the first-order line,
one obtains a suppression of the Josephson coupling between
the layers?!?® with respect to the electromagnetic coupling.
In our elastic model with defects, we cannot get this decou-
pling. We shall accommodate it effectively via an appropriate
modification of the elastic moduli of the vortex lattice system
in this region of the magnetic field. With the help of the
elastic moduli of Brandt’® for BSCCO, we show that one
expects two thermal decouplings for the vortex strings in the
liquid phase, corresponding to the two glass transition lines
in Fig. 1, in contrast to the single line in YBCO.* On this
way, we carry out the Mézard-Parisi analysis for the Hamil-
tonian of the vortex lattice system with pinning. It consists of
a variational approach to fit the free energy of the replicated
system with the free energy of a quadratic Hamiltonian. We
obtain an almost vertical third-order depinning glass transi-
tion line in the liquid high-temperature phase located in the
vicinity of the T, line in Fig. 1, separating a full replica
symmetric saddle point solution at high temperatures and a
full replica symmetry broken solution at lower temperatures.
We show that the saddle point equation to the variational free
energy has no solution for very low temperatures. This is
also the case when going beyond the Mézard-Parisi theory
within variational perturbation theory.’® This is a systematic
extension of the Mézard-Parisi theory to higher orders. It is
well-known phenomenon of higher-order variational pertur-
bation expansion of the quantum mechanical anharmonic os-
cillator that variations in the trial free energy do not neces-
sarily have to show a minimum or a maximum,’® where the
odd orders of variational perturbation theory possess a mini-
mum, but even orders have no saddle points but only turning
points. It is shown in Ref. 31 for the anharmonic oscillator
that also turning points are acceptable. This is the principle
of minimal sensitivity. Motivated by good results for the an-
harmonic oscillator we generalize the variational approach of
M¢ézard-Parisi by using the principle of minimal sensitivity
for the calculation of the variational free energy. With the
help of this extension we shall obtain a variational free en-
ergy in the whole interesting regime of the H-T phase dia-
gram for the vortex lattice. This phase diagram looks rather
similar to the phase diagram in Fig. 1. The glass transition
line T; corresponds then within our model to the temperature
where saddle point solutions to the variational free energy
stops to exist and the best solution corresponds to turning
points at lower temperatures where these turning point solu-
tions are still full replica symmetry broken. The transition
show second-order characteristic and can be interpreted as a
thermal depinning transition, where an almost equally dis-
placed substring due to disorder forming a plateau decouples
from the impurities due to temperature fluctuations.

Finally, we point out here as was also the assumption for
YBCO (Ref. 4) that we will only consider the phase diagram
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in the H-T regime in the vicinity of the melting line. Going
beyond this restriction would take much more effort being
out of the scope of this work.

The paper is organized as follows: In Secs. II and III we
state the model and the Mézard-Parisi approach to the free
energy of the vortex lattice system for BSCCO. In Sec. IV
we discuss solutions of the saddle point equation within the
M¢ézard-Parisi approach. In Sec. V we consider the regimes
where this equation is not solvable. Section VI goes beyond
lowest order variational perturbation theory using general-
ized principle of minimal sensitivity. Section VII discusses
observable consequences of our theory. In Appendices A and
B we supply additional material to Secs. V and VL

II. MODEL

The partition function to be used to describe the vortex
lattice without disorder was proposed in Ref. 3. It is moti-
vated by similar melting models for two-dimensional square’
and triangular® crystals. In Ref. 4 we derived from this par-
tition function a low-temperature representation. This corre-
sponds to the partition function of the vortex-lattice in the
crystalline phase

Zy= J\/H {J u,-ix) i|eXp[— k;_T(Ho[Mi] + Hgi[u;])
(1)

with the low-temperature Hamiltonian
Holu;]=Hrp_olu;] = %E (ﬁiui) (e = 2066)(61'“,') + %(Vﬂj
+ V) cos(Vite; + V) + (Vaup)cqa(Vauy)
=32 (Va)en(Vaus) + (Vsur)eaa( V)

+ (Viug)ces(Viur) + (Vaug)cgy(Vaug). (2)

Here u;=P;u is the longitudinal part of the displacement,
where the projector P; is given by (PL)jkE—(l/\/W)Vj
®(1/ v’ﬂ)ﬁk. The transversal part of the displacements is
then given by uy=P;u=u-u;. By using the dual represen-
tation in the form of stress fields we obtain a high-
temperature representation of the partition function. This par-
tition function describes the vortex system in the fluid phase.
We obtain a partition function of form (1) with Hamiltonian

Holu) = Hy_Lu]) = 53 (V) ey, = coo) (T

X

+ (Vsu)cqs(Vauy) = 52 (Vaug)(cqy = cee)(Viuag)

X

+ (Vaup)cga(Vaup) + (Viug)cas(Viur) (3)
and N'=1/(47B)N. In the following, the subscripts i, j have
values 1,2, and [, m, n have values 1,...,3, where N de-

notes the number of lattice sites. The parameter [ is propor-
tional to the inverse temperature, 8= vcqe/ kpT(27)?, where
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the volume v of the fundamental cell is equal to \3a’a;/2
for the triangular lattice. Here a is the transverse distance of
neighboring vortex lines, and a5 the persistence length of the
dislocation lines introduced in Ref. 3. Note that a3 is as-
sumed to be independent on the disorder potential in the
average.*” Its value is given by?

AN
a3%4a\/;)\—ab. (4)

(&

The lattice derivates V; are built from the link differences
around a plaquette in the triangular lattice. These expressions
can be found in Refs. 3 and 8. By analogy V; is the lattice
derivate in z direction.

The second term in the exponent of Eq. (1)

Hglu]= 2 V(x +u), (5)

accounts for disorder. We have suppressed the spatial argu-
ments of the elastic parameters, which are functional matri-
ces ¢;i(x,x’')=c;(x—x"). Their precise forms were first cal-
culated by Brandt® and generalized in Ref. 3 by taking into
account thermal softening relevant for BSCCO. The elastic
moduli ¢y, and cg at low reduced magnetic fields B/H,,
<0.25 are given by

By
_% 6
O B\’ “
2\2
1+ —5+ N2 k2
B2 N B¢0 1 <u2> ab™3
Cpu = n

AN 02D 32N 1+ 2K, + N2

Bd, 1+ N2 k3/(1+\2,K3,,) o

+ n ,
32N IS 1+ N2 (1 + 202 )

where A is the penetration depth in the xy plane, and Kpy is
the boundary of the circular Brillouin zone (BZ) K%Z
=47B/ ¢,. For BSCCO we use the two-fluid model** \(T)
=NO[1=(T/T)*T"  and  HT)=EO)[1-(T/T,)*]">/[1
—(T/T,)*]. When calculating c4, in Eq. (6) we have used a
momentum cutoff in the two-vortex interaction potential k
=12/(u*)"?, rather than the inverse of coherence length
1/€,, as in Ref. 5. We shall not give here the explicit func-
tional dependence of the elastic module c;;. This can be
found in Ref. 5. One can show that c¢;;>cyy and cg4 in the
vicinity of the melting line.? This leads to the conclusion that
one can neglect longitudinal fluctuations in comparison to
transverse ones in the interesting regime.* This will be done
in the following.

The last term in ¢4y of Eq. (7) comes from the electromag-
netic coupling between the layers. Its first two terms are due
to the Josephson coupling (both terms are vanishing for
N/ Ny —0), resulting in a vanishing of these terms in the
case of zero Josephson coupling. It is possible to find ap-
proximations for ¢4, in Eq. (7), leading to tractable results for
the calculation of the free energy expressions of Eq. (1). In
Ref. 3 we used the approximations
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B, for b L
(k.k3) 32N, (1 + N}, K3y R
Caq\K,K3) == B, 1n(1+23)\ab/¢0cL) ’
—a or ky= —
32w\ K Nab

(8)

which are justified for |ks| < 7r/a;. Here, the Lindemann pa-
rameter ci:(u2>/ a’ restricted to the transversal fluctuations
is given by

1 1
J d*kdky——— 9)
BZ

Ca4 Co63
KK+ a3K3K,

2
, a3 kgT
=" T —

Clzl) VBZ
Caq

where the average is taken with respect to low-temperature
Hamiltonian (2) without disorder representing the elastic en-
ergy of the vortex lattice. The momentum integrations in Eq.
(9) run over the Brioullin zone of the vortex lattice whose
volume is V,=(27)*/v, as indicated by the subscript BZ. K
is the Fourier transform of V. 3 Appr0x1mat10n (8) for cyy is
correct in the regime B )\ab/8¢o ln(l/cL) =<1 which is
valid in the vicinity of the melting line.? In this regime we
obtain that ¢44(k,k;) is dominated by the last term in Eq. (7)
for |ksy| < r/as. For higher magnetic fields than the disorder
induced first order BG2-VG2 line (see Fig. 1), we have
Bﬂ3)\2b/8¢0 In(1/¢7)=1,’ meaning that the first term in ¢,y
of Eq. (7) is dominated over the third term in the region k;
=~ 17/ a;. This implies that approximation (8) would result in
a wrong approximation for the magnetic-field regime above
the BG2-VG2 line. We can see from Egs. (2) and (3) that the
string tension ¢4y is not renormalized going from the vortex
lattice to the vortex liquid. For deriving full elastic constants
(6) and (7) one uses a quadratic approximation for the Jo-
sephson coupling cosine phase difference term in the
Ginzburg-Landau model for BSCCO. It was shown in Refs.
34 and 35 theoretically and in Refs. 21 and 29 by determing
Josephson plasma frequencies for BSCCO that one gets a
suppression of the full Josephson energy between the layers
when going from the vortex solid to the vortex liquid cross-
ing the BG2-VG2, BG1-VGI line. This leads effectively to a
softening of the Josephson terms of ¢4, in the VG1 and VG2
phases being the first two summands in Eq. (7). This justifies
to use Eq. (8) as a good approximation for the full string
tension in the whole interesting regime when also including
Josephson decoupling.

The disorder potential V(x) due to pinning is assumed to
possess the Gaussian short-scale correlation function

V—/ _ d)gg?zb ’
V(') =Alx;=x) 3, —d(T)as—)\4 K(x;=x;) 0 v
ab )
(10)

where K(x;—x/)=1/(¢')? for |x-x'|<¢ and zero else-
where. The parameter ¢, is the magnetic flux quantum ¢,
=hc/2e, and parameter ¢’ is the correlation length of the
impurity potential, which has a similar value as the coher-
ence length &, in the xy plane. In the following, we use an
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effective disorder correlation function with the Fourier trans-
form:

K(q) =2 exp(~ £°¢}12), (11)

leading also to an exponentially vanishing of the disorder
correlation function in real space. In Ref. 4 we have used this
form for the correlation function in the solid phase for
YBCO. In the present material BSCCO, this is even more
justified because the disorder potential looks ¢ like for the
vortices due to the large thermal fluctuations of the vortices
near the melting transition line.3

The temperature dependence of the parameter d(7) has
two sources. One is the temperature dependence of the cor-
relation length and the other is based on the pinning mecha-
nism, where we discuss in the following the 6T .-pinning or
&-pinning mechanisms: '

d(T)=dy(1-T/T)""? for 6T, —pinning, (12)

d(T)=dy(1 -T/T¢)** for 8l —pinning. (13)

III. MEZARD-PARISI METHOD

We now carry out the calculation of partition function (1)
which is still complicated due to disorder. In Ref. 4 we have
done this for YBCO by using a quadratic approximation in
the disorder strength. This leads to a reentrant behavior of
the melting line in the H-T plane, which did not agree with
experimental results. By using the variational approach of
Mézard-Parisi’ to go beyond the quadratic approximation
this reentrant behavior is disappeared, leading to good results
for the form of the melting line and agreement to the transi-
tion line between the Bragg glass and vortex glass. Here we
use again the Mézard-Parisi theory to perform a similar cal-
culation in the case of BSCCO. In order to go beyond
second-order perturbation theory in the impurity potential,
we use first the well known replica trick.’® The Mézard-
Parisi theory consists in replacing the nonquadratic part of
this replicated Hamiltonian as quadratic with a possible mix-
ing of replica fields. By using the Bogoliubov variational
principle we can find the best quadratic Hamiltonian so that
its free energy named F,,, is as close as possible to the actual
free energy of the system. This means that we have to search
the minimum of

Fyar = Fiia + <H - Htrial>trial (14)

with the harmonic trial Hamiltonian

trld] 22 E ua(X)Gaﬂ(X X,)UB(X ) (15)

xx' @B

Here (-)i stands for the average with respect of the Gibb’s
measure of the trial Hamiltonian H,;,, while H denotes the
replicated Hamiltonian. The indices « and 8 denotes the rep-
licas.

In the general form, the search for an extremum is a com-
plicated problem. A strong simplification for this was
founded by Parisi for random-spin systems where he sug-
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gests dealing with a trial Hamiltonian within some subalge-
bra known as the Parisi algebra. This restriction can be mo-
tivated by physical arguments.3” It will be clear soon for the
solid as well as the fluid phase that the transverse part of G4
can be chosen to have the form

ap=G0' Oup+ Oup (16)

where G is the transverse part of the Green’s function of
Hamiltonian Hy[u;] (2) in the solid phase and Eq. (3) in the
fluid phase.

Within the Parisi algebra, the self- energy matrix o,z de-
pends effectively only on one parameter® (see also Appendix
B). In the general form it is allowed to be a continuous
function o(s) with 0<s<1.° Then the variational free en-
ergy has the form*?

Afvar = AFvar/]\/ = fvar(B[A]) _fvar(o)
_ &t J ds| ~ J ™ 188 g(8) + DOBIAW)]
W) 5] ana e peBAGD |

(17)

fvar(o)=_k3
1{ 1f ) { (27TkBT )}
23— | dPkdks In| det| “2~G,
2| Vezlaz va
+D(0)}>, (18)

1
g(A)=—
VizJ Bz

T( lln N
N

where
Pldiy(Gy' + A7 (19)
N is the number of lattice sites, and Gal is given by

3
4
Ggl(k,k3) = —6424 [2 -2 cos(kzas)] + —6626 |:4 - 52 cos(ke,a)]
a I=1

as
(20)

in the solid low-temperature phase corresponding to Eq. (2),
and

Gy (k. ky) = 4
as

[2 -2 cos(kzas)] (21)

in the liquid high-temperature phase corresponding to Eq.
(3). Here e, are the three unit link vectors around a plaquette
in the triangular lattice. The gap function A(s) and the self-
energy function o(s) are related by

As) = f ds's 'd"(s . (22)

B[A(s)] is given by
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1

BIAG)] = gl - ds's%gm(s’)]

1
ds'o'(s")

N

= —g[A(l)]— — g'[AGs)].

(23)
In order to find a saddle point of F,./N we have to take

the derivative of Eq. (17) with respect to A(s). This results
in“

o(s)= —Zk— D' (2B[A(s)]), (24)

where D’ (x) is the derivative (d/dx)D(x). The disorder func-
tion D is given by*

443
as  bobu f d’q f((q)e—qz/2<u2>
(kgT)* Ny, J (2m)°

as ¢o§ab 1
(kgT)* Ng, &7+ )

In the following, we discuss solutions of this equation in
the cases that o(s) does not break the replica symmetry, pos-
sesses one-step replica symmetry breaking, or a continuous
replica symmetry breaking.

In order to solve Eq. (24), we first have to calculate g(A)
in Eq. (19), which we will denote by g”~°(A) with Eq. (20)
in the solid phase, and by g’ ~*(A) with Eq. (21) in the fluid
phase. We shall use the elastic constants cgs of Eq. (6) and
approximation (8) for cy. In the liquid case, the result is

D(2(u?)) = d(T)

=d(T) (25)

1 & 1 a2 1
g =T+ ST;T’
2c44 AV2(1 + A/a)'2 Cis (1+2ZVA12)
(26)
and for the vortex solid
0.0987aa \,3 1 a -
T—0 3 172
g A= ———— —A
Vegsel) 2 dmcg
a3 1
+1. 38—— (27)

C44 1+ Z(O)A/Z)

where A=Ad?/cll), and ) denotes the function cy4(K, k3
—0) of Eq. (8) for ky3=<1/\,,, and c44 denotes cyy of Eq. (8)
in the region k3= 1/\,, for k3=1/as, i.e.,

RO B,
32w\, (1+ 05K

o @3By In(1 + 2B\2,/ doct)

= 28
“ 32m\Y, 28)
For the derivation of Eq. (27) we have used the approxima-
tion a%c%/ a c£4)<1 valid in the vicinity of the melting line.
We used further the abbreviation
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(1) 2
c N
zZV=2. 138% (—) > 1. (29)
a

In the solid phase the following abbreviations will be useful:

ﬁ
0o 138 aled] Ny g
* T 0.098ma aa
1673 [ Vege N [Ny )
7V =1238? Eai( & Selab ) s 1. (31)
C44 a a

Note that \,,=~a in the vicinity of the critical point on the
melting line where the disorder is most influential the shape
of this line. In this regime we obtain large numbers on the
right hand sides of Egs. (29)—(31). In Egs. (26) and (27) the
last terms have their origin in the integration in Eq. (19) over
momenta 1/\;, =< |ks| = 7/ as. The other terms come from the
integration over small momenta. Expressions g’ ~°(A) in Eq.
(27) and g"~*(A) in Eq. (26) are not exact results of the
integration in Eq. (19). They are good approximations for

g(A) but also for g’(A) and g"(A) in the region A=1 in the
fluid phase and A < ((\,/@)?/ Z*)?? for the solid. It will be

seen below that these are the relevant regimes for F,,.
We now define the quantity

44025/2

A j—
kBT as

) (32)
which will be useful below. Comparing g(A) in Egs. (26) and
(27) with the corresponding expressions for YBCO, we ob-
tain that only the last terms are different. The first term in Eq.
(26) leads in the case of YBCO to the decoupling scenario in
the fluid high-temperature phase.! This is the regime where
temperature fluctuations starts to dominate over disorder
fluctuations for the coherently pinned vortex line pieces
given by D(0)A ~ 1. The length of such line pieces are given
the Larkin length L. where disorder fluctuations grow to
value &'.

One can now show by generalizing the calculation of the
vortex fluctuations due to pinning and thermal fluctuations
for YBCO in Ref. 38 that the additional last term in Eq. (26)
causes a new length scale beyond the Larkin length. At this
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length scale, the vortex fluctuations are approximately con-
stant forming a plateau. This length scales hke LT—a3(Z(0)
for thermal fluctuations, and like Lp= a3(Z )2/ 3 for disorder
fluctuations at low temperatures. Beyond these lengths, the
displacement fluctuations starts to increase proportional to
the cubic distance due to pinning, and proportional to the
distance for thermal fluctuations. Both lengths, that of the
coherently pinned vortex line pieces and the vortex substring
on the plateau, can decouple due to thermal fluctuations.
Below we find two different depinning phase transition
temperatures: One takes place when the temperature fluctua-
tions exceed the disorder fluctuations over the coherently
pinned vortex line pieces where the Larkin length fulfills
L.> L. This leads to the well-known depinning temperature
of the coherently pinned vortex substring given by D(0)A
~ 1, corresponding to the third-order phase transition in Eq.
(56) below. The second depinning transition takes place
when the temperature fluctuations exceed the disorder fluc-
tuations over the plateau in the regime where the Larkin
length is given by L.<Lp. This leads to the depinning tem-
perature D(O)A~Z,0), corresponding to the second-order
phase transition in Eq. (57) given below. Of course one can
also see both depinning temperatures mentioned above in the
temperature dependency of the Larkin length L.(7).%

IV. SOLUTION OF THE MEZARD-PARISI
SADDLE POINT EQUATIONS

In the following, we discuss the solutions of the Mézard-
Parisi Egs. (22)—(24) in the liquid and the solid phase.

A. Liquid phase

In order to solve the Mézard-Parisi equations we transfer
the analysis for YBCO of Ref. 4 to BSCCO. Note that by
neglecting the second term in Eq. (27) we obtain a similar
expression for g7 ~*(A) as for YBCO.* This leads to the fol-
lowing results: The stable solution for A(s) is replica sym-
metric for D(0)A=2/y 3 and full replica symmetry broken in
the case D(0)A>2/13. That for example the one-step rep-
lica symmetry breaking solution is not stable can be seen
from the following fact: The one-step self-energy function

A, is given by*

A
~ Z§0>_1 70 3
8 = A 2 22( 1
ﬁl)(o) VA, +2 log(1+Z§0)?1)— — 1+T§Z \/—_+ L =1. (33)
V3~ A v A A
(7A1A) 1 +z§°)?‘ Ay +z§°>7‘

The one-step symmetry breaking solution of the saddle point Eq. (24) is stable when the replicon eigenvalue
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is larger than zero. By comparing Eqgs. (33) and (34) we

obtain that A <0 when ZEO)&I/ 2=13, meaning that the one-
step replica symmetry breaking solution is unstable in this
range. More generally one can show similarly as in Ref. 4
that all finite step replica symmetry breaking solutions are
unstable for D(0)A=2/43.

Thus, we expect a continuous replica symmetry breaking
solution in this parameter range. Note that continuous step
replica symmetry breaking solutions of the saddle point Eq.
(24) are stable in general.*** We now calculate this solution
by using the methods given in Ref. 4. First, the full replica
symmetric solution for D(0)A=2/43 is given by

— E
A(s)=0 for %D(O)AS 1. (35)

The continuous replica symmetry broken solution for
D(0)A=2/43 can be derived from the saddle point Eq. (24)

p
0
_ (1 + (Z(O))2A3/2)5/3
K(s) =S >
: 5(250))3A5/2
1+ 7O 123 E
Usz 25 _ (‘—D(O)A
\ 1+ (ZEO))2A3/2 2

where we used Z\”/A=c2a?/2£€>1 in the vicinity of the
melting line’ and the abbreviation Z"'=Z{"/(1+Z"A/2).

This means that A is constant for s=s,. The constant s, is
given by the equation

[1 +(Z(O) 2A3/2( )]5/3

3 113
( D(O)A) 5o (39)
1+§(Z§O))3A5/2(SC)

Finally, we can calculate the disorder part of the varia-
tional free energy Af,,, in Eq. (17) in the liquid phase.* With
Afyu= AN AP where A" is the kinetic part repre-

var?

(3]

1+ = =+ —"— (34)
3 A X N
(1+ZO>A_) 34( g, 5
2 2

[~ 173 1
<\’3D(0)A> s for 77 ="
( 3
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by differentiating both sides with respect to s, resulting in

kpT\?
0’(s)=—0’(s)4(7> g'[A(s)ID{2B[A(s)]}.  (36)

This means that o(s) is either constant or solves Eq. (36)
divided by ¢’ (s). Dividing Eq. (36) by ¢’ (s) and forming the
derivate with respect to s, we obtain with Eq. (22)

2( I%T )g’[A(S)]ZD"’{ZB[A(S)]} =—sg"[A(s)ID"{2B[A(s) ]}

(37)

Equations (36) and (37) can be solved algebraically for the
unknown functions A(s) and B[A(s)], leading to

1
for SS< =

\3 )1/3’
—D(0)A
D)

2p0)A

)1/3 =85=5, (38)
2

for s,=s=1,

sented by the first term in Eq. (17) of the disorder energy and
Af™ is the potential energy part of the disorder energy [sec-

var

ond term in Eq. (17)], we obtain

 kgT| ([ 1{ - Z\v
Aft;;;=_ih ds—2<A”2(s) @y ——A%s ))
4 (\3D(0)A/2)13 S

Zon2
{2 )

X O[\3D(0)A/2 - 1] (40)

and
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)2/3

4
Sl,’

X f ds
1/(V3D(0)A/2)!73

EI/Z(SC)
¢ (1+ (ZEO))ZES/Z(SC))IB
X 9[\3D(0)A2 - 1].

\3

kBT( —D(0)A

Affe=

&1/2(5,)
(1+ (ZEO))Z&S/Z(S)) 1/3

|

By taking into account Egs. (38) and (39) we obtain that the

+(1-s

(41)
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glass trans1t10n line separating the phases VGI1-VL at
D(0)A= \3/2 is of third-order. We found the same order for
the depinning transition in YBCO.*

B. Solid phase

In the solid phase one can show that finite-step replica
symmetry breaking solutions are unstable.* Similar as in the
discussion of the fluid phase in the last subsection we obtain
the following continuous replica symmetry broken solution
of the saddle point Eq. (24):

.
X203 (1+ZDR12)0 (a3 po ]m< o §>2/ss ol
~ 1 +2Z0ZVR3"2 3(@/2)1/3 g2 .
0= 0.0983(1 + Z\0)3 3 2\1/2 (42)
N + s Copd3
/ Srie e\ g2 [D(0)A] for s,=s=1,
\ 1+ Zs A ciia

where we used ZEO)/Azciaz/ 2&%>1 in the vicinity of the
melting line* and the abbreviation Z@EZ@/ (1+Z§0)5/ 2).
The constant s,.. is given by equation

ADA1/2 5/3
gy L2 8 o)
1+2Z0ZPR(s,)

( 77)2/2
T 3(\32)13 P04 ]1/3(

2
6693

1) 5 (43)

2/3
See

Finally, we can calculate the disorder part of the varia-
tional free energy Af,,, in Eq. (17). We obtain for this energy

in the solid phase
)
R S— ds_
0 S

C66a3
7(1) _

“l1==1=
s,/ \3

1/3 2

) (277)1/3(666‘13

Ca4

(l)az
51/6(5,)
( +’Z‘(1)A‘1/2(s))1/3

|

50)
( A3/2(s)+ -

]

52(s)>

(44)

and

4\ 2

2

+(1-s

1/3
Afoer= ) [D(0)AT

ds

51/6(SC)
¢ (1 +Z(1)&1/2(sc))1/3

(45)

V. EXISTENCE AND STABILITY OF SADDLE
POINT SOLUTIONS

Trying to solve the implicit equation for A(s,) in the lig-
uid phase [last line in Eq. (38)] and the solid phase in Egq.
(42) we obtain that in both cases a solution is not existing for
very large D(0)A = (D(0)A),. corresponding to low tem-
peratures or large disorder strengths according to Egs. (25)
and (32).

We obtain from Eq. (38) taken at s=s, or directly from
Eq. (36) for [D(0)A ] at low temperatures

2 A2
[D(0)A] 0 =~ 2" ~ (—) : (46)
V3 a
_ 32/5
A = W, (47)
(S)max = 1, (48)

where A=A, and 5,=(5.) pax at D(0)A=[D(0)A],x. In the
solid phase we have from Eq. (42)

2 A
_Z(O) — (
3

2
—_<
b

a

[D(0)A ]nax = (49)

~ 1

@z o

max
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9

(SImax = 5 (51)

The calculation was done by maximizing the left-hand side
of the implicit equations (38) and (42) for s,=<s=<1 with
respect to A. This then gives the maximal D(0)A value given
by (D(0)A) .« Where we still get a solution for both implicit
equations. Summarizing we obtain that the continuous rep-
lica symmetry broken solutions in the liquid as well as the
solid phase stops to exist for ['D(O)A]max~22(0)/ V3. It was
shown in the last paragraph that stable solutions of the saddle
point equations are infinite replica symmetry broken [where
we have the restriction to D(0)A =2/+3 in the liquid phase].
More generally we obtain that every saddle point solution of
Eq. (24) irrespective of its form is unstable for \3D(0)A/2
>Z§ because the replicon eigenvalue*

2
A=1 +4<I%T) g’[A(1)]D"{2]%Tg[A(1)]}, (52)

where A(1) is the self-energy function at s=1, is negative in
this range.

We point out that in the liquid phase similar to the con-
tinuous replica symmetry breaking solution discussed above
also the one-step replica symmetry breaklng solution (33) is
no longer existing for \3D(O)A/ 2=47, ) This can be seen
by Taylor expanding the left-hand side of Eq. (33) with re-

spect to Z;O)E /2. Note the difference in the prefactor of Z}O)
compared to Egs. (46) and (49). This leads us to the more
generally assumption that there is no saddle point solution of
Eq. (24) for \V3D(0)A/2 larger than ~Z, This is proved in
Appendix A where it is shown that this is true for every
finite-step replica symmetry-broken solution of Eq. (27) by
using results derived in Ref. 4.

We point out that D(0)A ~Z§O) is in fact a relevant param-
eter region for the glass transition line because we expect
that the critical point is around D(O)A~Z§0). Here we use
Eq. (27) with the fact that the quadratic approximation to the
disorder energy at the peak should be approximately kgT,*
ie., D(ciaz)kBT~kBT. Note, as is shown in Fig. 1, the glass
transition lines separating the phases BG2-BG1 and VG2-
VG1 cross the first-order line BG2-VG2, BG1-VGI1 in the
vicinity of the critical point for optimal doping.

In the variational perturbation treatment of the anhar-
monic quantum mechanical oscillator we obtain a similar
phenomenon. The even variational approximations to the
free energy posses no extremum in the variational
parameter.’® Only the odd perturbative orders, where the
Mézad-Parisi theory belongs to the lowest-order approxima-
tion within this perturbation theory, has a true minimum. In
order to see whether we have a similar situation here, i.e.,
whether higher-order variational approximations to the free
energy posses a physical plausible extremum for A(s), we
will calculate in Sec. VI higher-order variational approxima-
tions to the free energy.

PHYSICAL REVIEW B 79, 014512 (2009)

VI. BEYOND LOWEST ORDER VARIATIONAL
PERTURBATION THEORY

In this section, we will go beyond lowest-order variational
perturbation theory outlined in Sec. III. Starting from Eq.
(14) we can immediately write down the next beyond lowest
orders of the free energy F within variational perturbation
theory3°

Fvar =Ll + <H - Htria]>trial,c

1 (=1)
E()

l' (k T)] 1<( trial)l>trial,c7 (53)
((H=Hyia)Vsiarc is the averaging of (H—Hy,)' with respect
to trial Hamiltonian (15), where we only take the connected
expectation value part, which means for example in second-
order <(H_Htria1)2>trial,c:<(H_H[rial)2>tria]_<(H_Htrial)>[2rial- In
order to calculate the free energy F,, as in Sec. III within
mth-order variational perturbation theory, we limit the / sum
in Eq. (53) to I=m. F,, corresponds to the exact free energy
of the system for m— o, which means that F, does not
depend on the choice of the trial Hamiltonian H,;,. The trun-
cated sum depends on the choice of H,;,. Since the infinite
sum is H;, independent, the best truncated sum should de-
pend minimally on H;,. A first approximation would be in
taking a saddle point of F,, with respect to the trial Hamil-
tonian H;, leading to Eq. (24) in the case m=1.

To calculate F,,. beyond lowest order for a trial Hamil-
tonian H;, within the Parisi algebra is not an easy task.
When going beyond lowest order we expect that the continu-
ous replica symmetry breaking self-energy functions are still
the relevant ones as was shown in Sec. IV via stability con-
siderations for the Mézard-Parisi case, corresponding to first-
order variational perturbation theory. We carry out the calcu-
lation of the free energy in Appendix B within second-order
variational perturbation theory (m=2). We show that for
D(0)A > (D(0)A) pax ~ Z\” there exist also in this case no
continuous solutions of the saddle-point equation in this
second-order case. Thus, in contrast to the anharmonic oscil-
lator, where the variational perturbation theory leads to a
solution of the saddle point equations for every odd order,
a similar phenomenon is not existent in our case. Without
explicit proof we now state the conjecture that this is true for
every finite order within variational perturbation theory. This
means that there exist no saddle point of F,, for large
\3D(O)A/2>Z O which is a relevant physical regime out-
lined at the end of Sec. V. One way out of this dilemma is to
continue the continuous replica symmetry broken solutions
given in Eq. (38) for the liquid and Egq. gé_lZ) for the solid to
the regime D(0)A > (D(0)A) 0 = ZZEO)/ V3 by looking closer
to the anharmonic oscillator problem solved in Ref. 30 via
variational perturbation theory. As mentioned above, for
equal orders within the variational perturbation expansion,
which means m € 27 in Eq. (53), one does not find a saddle
point with respect to the trial harmonic Hamiltonian H;y
being a quadratic potential in the anharmonic oscillator case.
There it is shown that one gets good accordance with nu-
merical solutions of the Schrédinger equation when inter-
preting the requirement of the minimally dependence of F,,
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on H,;, mentioned above by a vanishing of the second-order
derivation of F,, with respect to H;,. This is equivalent to
the demand that the first order variation in F,, on H;, is
minimal.

Transforming this general rule to our case by using Eq.
(24), the self-energy function o(s) is given by the minimum
of the functional

kgT
1+ —-2-

o(s) v

where we assume as a first approximation that this minimum
is not dependent on s. This leads us to the following result
for D(0)A=[D(0)A],,.:

The solutions A(s) of Eq. (54) where o(s) and A(s) re-
lated by Eq. (22) are given by Egs. (38) and (42) with the
substitution D(0)A —[D(0)A],.x. The variational energies
Af,, are given by Egs. (40) and (41) in the liquid phase and
Egs. (44) and (45) in the solid phase with the same substitu-
tion. Furthermore, one has to multiply the potential part of
the disorder energies in Egs. (41) and (45) by a correction
factor [D(0)A]/[D(0)A]nax for D(0)A>[D(0)A]ax-

Summarizing, we obtain for BSCCO a third-order glass
transition in the liquid phase, having its reason in the break-
ing of the full replica symmetry across the transition line at
D(0)A=2/ V3. A similar transition was also found for
YBCO 4 Besides this transition we will show in Sec. VII that

g (54) leads addltlonally to a second-order glass transition
hne at D(0)A= 2Z(O)/ V3 in both phases. We point out that
this transition is not reasoned in the generalization of the
saddle-point criterion for the variational free energy to the
more general principle of minimal sensitivity (54). Up to
now, we have only searched a saddle point of the variational
free energy in the self-energy matrices o, of the Parisi form
[see the discussion below Eq. (15)], which could be moti-
vated physically’” as an Ansatz for the glassy-state self-
energy matrices. Nevertheless, it could also be possible that
the restriction to this subspace is the reason that we do not
find a saddle point of the variational free energy for D(0)A
= ZZ )/\3. On the other hand it is clear that also in this case
the leavmg of the stable saddle-point solutions from the sub-
space of self-energy matrices of the Parisi form leads in gen-
eral to a nonanalyt1cally of the free energy at the point
D(0)A=2Z, /43 and thus to a phase transition.

As we explamed above the reason that the saddle-point
solutions of the variational free energy stops to exist within
the Mézard-Paris theory lies in the nonsolvability of Eq. (36)

for s=s,. This follows further from the fact that g(A)~1/ A
for large A and that D"{2B[A(s.) ]} =D"(0)&'%/B[A(s,) ] for
the relevant A(s,) values where g begins to show the behav-

ior g[A(s.)]~1/A(s,). In deriving the approximation for D"
above we use cia’>¢'? for BSCCO [see the notes below
Egs. (38) and (42)]. In contrast to this we find for YBCO
cia2< &2 leading to the existence of the saddle-point solu-
tions of the variational free energy in the whole H-T plane,

although we have also g(A)~ 1/A for large A in this case.*
This is the reason that one does not find the second-order
glass transition line in YBCO.

PHYSICAL REVIEW B 79, 014512 (2009)

Finally, we note that Giamarchi et al. in Ref. 10 only

consider the small A behavior of g(A), which is presumably
the reason that they did not find the second-order glass tran-
sition line at least in the solid phase. The reason that we can
compare only our low-temperature solid phase results with
results in this paper lies in the fact that they did not consider
defects as we do here being relevant in the high-temperature
liquid phase. Note that they did not use temperature-softened
elastic constants in their calculation relevant for BSCCO.3

VII. OBSERVABLE CONSEQUENCES

In the following, we use the intersection criterium?® with
variational free energies (17) and (18) to get the first-order
line separating the phases BG2-VG2, BG1-VGlI, and BGI-
VL. This results in

L1 (-1 ¢
Bm(T) = B B B
192 \r '’ N (0NZ(0) (kgT)
X exp| — k,TT(A TO_AfI) |, (55)
where Afvar is given by the disorder part of the variational

free energy, which is the sum of Egs. (40) and (41) in the
liquid case. Af! " corresponds to the disorder part of the
variational free energy in the solid case given by Egs. (44)
and (45).

Beside this first-order transition line we obtained a third-
order glass transition line of the depinning form in the fluid
phase separating the VL and VGI phases

DO = = (56)
V3

and a second-order glass transition line separating BG1 with
BG?2 in the solid phase and VG1 with VG2 in the liquid
phase given by Egs. (46) and (49)

D(O)A = [D(O)A ]y, = 2. (57)

/
/

This means that we obtain within our analytical approxima-
tion a unified glass transition line in both phases in corre-
spondence to the experimental findings shown in Fig. 1.

In the following figures, we use parameter values for op-
timal doped BSCCO given by \,,(0)=2300 A and &,(0)
~30 A, CuO, double layer spacing a,=14 A and T,
=90 K, and the anisotropy parameter y= )\ o/ Nyp=250. Due
to the small coupling between the layers, the Josephson form
of the interlayer coupling leads to a non-negligible softening
of N\, or y=\_./\,, respectively, as a function of B and 7. In
Ref. 29 it was found by Josephson plasma experiments that
N.B,T) is nearly of the form 1/)\2(B T)=[1
+F(B/B,)]/\? 2(0,7) with some function F, which can be
found in Ref. 29 and further that \*(0, T)/)\Z(B,,,,T) 0.6.
This leads to y=N.B,T)/\,,=250 in the vicinity of the
first-order line separating the phases BG2-VG2, BG1-VGl,
and BG1-VL. Here we used A.(0,7)/\,,(T)=200 as in
Ref. 3.
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FIG. 2. (Color online) The BG2-VG2, BG1-VG1, BG1-VL first-
order transition lines B,,(T) given in Eq. (55) for 6T.-pinning (up-
per figure) and &l-pinning (lower figure). The solid (black) lines
are calculated with parameters for d, which gives one of the best
fits to the experimentally determined phase diagram in Ref. 18
(square points) within the pinning mechanism (dy=2.5X 107 for
8T ,-pinning, dy=4X107% for &l-pinning). Dotted (red) curves
are calculated by a variation in these parameters given by doi
=(1*1/2)d,. The vertical markers denote the intersection points of
the VG2-VG1, BG2-BGl1 glass transition line and the disorder in-
duced first-order line BG2-VG2, BG1-VG1 named GP2. GP1 de-
notes the intersection point of the third-order VG1-VL glass transi-
tion line with the first-order melting line BG1-VG1, BG1-VL.

In Fig. 2 we show Eq. (55) corresponding to the first-
order line separating phases BG2-VG2, BG1-VGI, and
BG1-VL for 6T, pinning given by correlation function (12)
(upper figure) and &I pinning [Eq. (13)] (lower figure) for
various constants d,. The square points in the figure denote
the experimentally determined first-order BG2-VG2, BGI-
VG, and BG1-VL lines of Beidenkopf ef al. in Ref. 18. The
d, values of the straight (black) curves are chosen in such a
way that we reproduce in one of the best ways the experi-
mentally given curves of Beidenkopf et al. and also the glass
intersection point GP2. We obtain dy=2.5X 107 in the &7,
pinning case and d,=4 X 107° for & pinning. The curves of
representative variations in these almost best parameter val-
ues are given by the (red) dotted lines in Fig. 2. We obtain
discrepancies in the form of the first-order BG2-VG2, BG1-
VG1, and BG1-VL lines from the experiment. There are a
large variety of the concrete forms of this line in the litera-
ture (see for example Ref. 14 for an almost horizontal BG2-
VG2 line with a small kink near the intersection point GP2).
The reason for the discrepancies comes mainly from the sen-
sitivity of the curve on the disorder function* but also the
neglect of the layeredness of BSCCO in our case could be
one factor. Without taking into account dislocations, we ex-
pect a Josephson decoupling transition which is nearly tem-
perature independent for low temperatures.®> The melting
line and the decoupling line lies on top of each other when
taking into account dislocations, leading to the first-order
BG2-VG2, BG1-VGI, BGI1-VL transition line. Note that the
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FIG. 3. (Color online) Phase diagram for BSCCO in lowest
order variational perturbation theory corresponding to the Mézard-
Parisi theory. Lines represent the theoretical determined phase tran-
sitions between the various phases calculated for &/ pinning with
dy=4 X 107 corresponding the solid line in the lower picture in Fig.
2. Points represent the experimentally determined phase diagram of
Beidenkopf et al. (Ref. 18). The solid (black) line denotes the first-
order BG2-VG2, BG1-VG1, BG1-VL line calculated by Eq. (55).
The glass transition lines BG2-BG1, VG2-VGI1 are given by the
(blue) dashed lines calculated from the numerical generalization to
the approximation (57) as described in Sec. V. The red dashed-
dotted line is the glass transition line VG1-VL derived by using
expression (56).

Josephson decoupling is not complete when crossing the
transition line and further that the latent heat due to the Jo-
sephson degree of freedom is only 16% of the total latent
heat over the first-order transition line.?* The competition
between the temperature-independent decoupling transition
and the temperature-dependent three-dimensional first-order
line should take into account the correct form of the whole
first-order line for layered materials.

The small vertical marks on the curves in Fig. 2 denote
the glass intersection point GP2. We obtain especially for the
OT, pinning case differences in the location of the glass in-
tersection point GP2 with the experiment. In all shown three
OT, pinning cases the glass transition point GP2 lies in the
vicinity of the critical temperature 7., where in both pinning
mechanisms also the glass intersection point GP1 is located.
Summarizing, we obtain as was also the case for YBCO
(Ref. 4) that the &l pinning mechanism gives a better accor-
dance to the experimental curves and glass intersection
points than the 8T, pinning mechanism.

In Fig. 3 we show for dy=4 X 10~° with &l pinning corre-
lated impurities the whole phase diagram calculated with
Egs. (55)—(57), corresponding to the parameter values d,, of
the (black) solid line in the lower picture in Fig. 2. Note that
H_, cannot be resolved in this figure being almost vertical
directed on the right boundary. Again we show for compari-
son the experimentally determined phase diagram of Beiden-
kopf et al., where the square points denote the first-order
BG2-VG2, BG1-VG1, and BGI1-VL transition lines. The
(blue) circle points denote the experimentally determined 7,
line BG2-BG1 and VG2-VGI of Beidenkopf et al. This line
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FIG. 4. (Color online) Entropy jump AS; per double layer and
vortex (upper figure), and the magnetic induction jumps AB (lower
figure) over the first-order line BG2-VG2, BG1-VG1, BG1-VL.
Calculations are based on expressions derived in Ref. 4. In both
figures we used for the (black) solid lines the &l-pinning mechanism
with dy=4 X 107° corresponding to the parameters of the phase dia-
gram in Fig. 3. The points in both figures represent experimental
values determined by Zeldov et al. (Ref. 41).

has to be compared with the (blue) dashed lines VG2-VG1
and BG2-BGl1, calculated with Eq. (57), where we get small
discrepancies in the intersection point on the first-order line
of the upper high magnetic curve VG2-VGI in the liquid
phase with the small magnetic-field transition line BG2-BG1
in the solid phase. The reason is that we did not use the
analytical ~ approximation V’E[D(O)A]mx/zngo) for
[D(0)A] . Vvalid in both phases but the numerical deter-
mined values calculated from the condition that Eq. (36)
stops to be solvable as described in Sec. V. As mentioned by
Beidenkopf et al. in Ref. 18 it could be experimentally pos-
sible that both lines do not intersect. From Fig. 3 we obtain
that the point GP2 does not coincidence with the maximum
of the theoretical determined first-order BG2-VG2, BGI-
VGI1, and BG1-VL transition lines, which coincide with the
critical point* (see also Fig. 4). This is possible for general
doping.'” Nevertheless, we obtain a discrepancy between the
position of our glass transition lines and the experimental
findings. One reason comes from the approximations to the
elastic moduli carried out in Sec. II but also corrections to
Egs. (26) and (27) where we used ascqq/a’c'y)<1. These
approximations are getting worse for higher magnetic fields.?
This leads to an additional bending of the first-order line in
the direction to the temperature axis shown in Fig. 1 of Ref.
3 without pinning. To get the same effective bending of this
line as in the experiments we have to use a smaller d,, value
leading to BG2-BG1 and VG2-VGI lines located at smaller
temperatures according to Eq. (57). Furthermore, a source of
the additional bending can be also due to the decoupling
transition between the Josephson layers as discussed above.

Beside these reasons also the restriction to the lowest-
order variational perturbation approximation could be a
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source for the difference of our theoretical finding of the
glass transition line and the experimental ones. The calcula-
tion of the free energy within second-order variational per-
turbation theory is outlined in Appendix B. We did not carry
out the calculation of the phase diagram within this order,
which is rather nontrivial being out of the scope of this work.

Finally, the (red) dashed-dotted line in Fig. 3 shows the
VGI1-VL glass transition line calculated by the help of the
depinning temperature formula (56). We do not show for
comparison the T, line of Fuchs et al.? in the figure because
they did not use an optimal-doped crystal in the experiment.

In Fig. 4 we show in the upper picture the entropy jumps
per double layer and vortex AS; and in the lower picture the
magnetic induction jumps AB over the first-order BG2-VG2,
BG1-VGl1, and BG1-VL transition lines. The (black) full line
is calculated with dy=4 X 107 in the &I pinning case corre-
sponding to parameter values of the phase diagram in Fig. 3.
We used formulas derived in Ref. 4 for the calculation. Note
further, as was also the case in Ref. 3, that we did not use
corrections for AB by considering explicitly the difference of
the induction field B and the external magnetic field H. These
differences are negligible in the interesting regime.*! The
square points (blue) are experimentally determined values
measured by Zeldov et al.*! for optimal doped BSCCO crys-
tals. We note that there are other experiments in the literature
for nonoptimal doped crystals where AS and AB varies
significantly.'**?> The reason for this difference is not clear.
The largest difference in Fig. 4 between experimentally and
theoretically determined curves is at high temperatures near
T.. As noted in Ref. 3 this comes mainly from contributions
of thermally activated vortex loops not inherent in our vortex
lattice picture.

In the paper of Beidenkopf et al.'® the order of the glass
transition lines VG2-VG1 and BG2-BG1 was determined by
measuring the magnetic induction field and its derivate with
respect to the temperature across this line. They found a
jump of dB(H,T)/dT across the line, leading to the conclu-
sion that this transition is of second order. They also deduced
from their experiment that the jumps over the glass transition
line are of almost the same magnitude in the BG1-BG2
phase and the VG1-VG2 phase.'®!° Nevertheless the dis-
played curves in their paper show a much smoother behavior
of the magnetic induction curve and its temperature derivate
near the glass transition line in the BG2-BGI solid phase
than in the VG2-VG1 phase. The problem of determining the
order of the transition comes mainly from a large noise on
the magnetic induction curves having its reason presumably
in the spatial and temporal inhomogeneities of the system.
This is the reason that Beidenkopf e al. in Ref. 18 did not
get a clear jump in the derivative in all measurements (while
the induction itself bends sharply) to allow a systematic
quantitative study of it.*?

The magnetic induction field B is given by

B=H+ | dmth, D) —in(z )+ B
=H+ —— +
B g Ny

J 1
+ 47T(kBT) %N_UIH(ZH) 5 (5 8)

where Z, is the partition function of the static nonfluctuating
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FIG. 5. (Color online) The disorder part Bg,—aT of the
magnetic induction field defined by Eq. (59) [solid (black) curves],
and its derivate with respect to 7, i.e., dBgyi/ dT— « [dashed (blue)
curves] for two different magnetic fields B either in the VG2-VG1
phase (upper figure) or in the BG2-BGI phase (lower figure).
Here « is some subtraction parameter determined such that the
By curve is symmetric around the glass intersection temperature.
We used a=0.0055 Gauss/K in the VG2-VG1 phase and «
=0.009 Gauss/K in the BG2-BG1 phase. The left-hand y-axis de-
notes the scale for Bg—aT, the right-hand y-axis for dBgy;s/ dT— .

part of the vortex lattice. In Fig. 5 we show the disorder part
of the magnetic induction field [solid (black) curves] B given
by
B J 1A

dis__47Tan fvar’ (59)
and also its derivate with respect to T (dashed blue curves),
i.e., dBg;/ T as a function of temperature for two different
magnetic fields. As mentioned above, the magnetic induction
contribution to the induction field B from the nonfluctuating
part of the partition function log(Z,) is negligible in com-
parison to H in Eq. (58). This means that we obtain for the
jump values over the glass transition line AJB(H,T)/dT
~AdBg (B, T)/dT.

The upper picture in Fig. 5 shows the disorder part of the
magnetic induction field Bg, in the liquid phase for B
=550 Gauss. In the lower picture we show the disorder part
of the magnetic induction field By, in the solid phase for B
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=180 Gauss. In correspondence to Beidenkopf et al.'® we
subtract to By a term linear in the temperature 7 to get a
symmetrical curve around the glass transition temperature.
We obtain a negligible jump A dBgi(B,T)/dT over the glass
transition line in the solid BG2-BGl1 phase. This is in con-
trast to the jump AdBg(B,T)/dT in the liquid high-
temperature VG2-VG1 phase. By comparing the absolute
values of this jump with the corresponding experimentally
determined jump values AJB(H,T)/dT determined in Ref.
18, our values are about one order of magnitude smaller.
Note that for our theory AdBgy(B,T)/dT is about 107!
smaller in the BG2-BG1 phase than in the VG2-VG1 phase.
This could not be resolved within our numerics in Fig. 5.
That this is true can be seen from the following scaling con-
sideration:

d
Aa_TBdis(Ba 7)

_ 4_77AUdi_
T 98 on(s) gt

Jd 5
&T(‘)‘A( )

! 5 6 —_—
_stds (5A(s) M) fvar> A(s) A(s )}

~— %{Aft + APTZON (s )T,

A(s)

ArasA)

(60)

where we used Eq. (54) in order to substitute terms contain-
ing A/ to terms containing A", One can then see from
analytic approximations but also numerical considerations
that both terms in Eq. (60) are of almost equal value in the
liquid phase VG2-VGI but that the first kinetic term of the
disorder free energy in Eq. (60) is much larger in the solid
BG2-BGl1 phase than the potential second part. Our numer-
ics gives that the kinetic part of the disorder free energy Af,,,
in the BG2-BG1 phase is one order of magnitude smaller
than in the VG2-VGI1 phase.

One source of the difference between the jump values of
our theory and the experimental numbers could beside the
approximations we used in our theory also the additional
in-plane ac equilibrizing magnetic shaking field in the ex-
periment of Beidenkopf et al.** This shaking field is of the
same magnitude as the dc magnetic field in z direction. It is
immediately clear from the results in Ref. 18 as well as the
theoretically and experimentally determined results for an
additional in-plane dc field instead of the ac field*~#° that
the shaking field has only a small effect on the position of the
first-order line and also the jump values AS; and AB. This
can be understand by using the anisotropic scaling theory'
leading to an attenuation of the in-plane field by a factor
Aup/ N In contrast to this we obtain from Fig. 5 that due to
the smallness of the magnetic field By the shaking field can
still have an effect on the jump value AdB/JT across the
glass transition line BG2-BG1, VG2-VGI. Note that an in-
plane magnetic dc field can even put additional dislocations
in the vortex lattice.*647
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VIII. SUMMARY

In this paper, we have derived the phase diagram for su-
perconductors which have their phase transition lines at mag-
netic fields much smaller than H,,, i.e., B/H.,<<0.25 such as
BSSCO. The model consists of the elastic degrees of free-
dom of the vortices with additional defect fields describing
the defect degrees of freedom of the vortex lattice in the
most simple way. For the impurity potential we have re-
stricted ourselves to weak pinning 67, and dl-correlated
impurities.' This model was formerly used by us for describ-
ing the phase diagram of superconductors with a melting line
near H,.,.* The layered structure of the superconductor, i.e.,
the Josephson coupling form between the layers, is not ex-
plicitly considered. We take this special coupling only into
account via the elastic moduli of the lattice and an experi-
mentally and analytically based decoupling scenario.?*=2¢ In
order to treat the impurity potential approximately we use a
theory developed first by Mézard and Parisi® for random-
manifolds. This is based on a variational approach to the free
energy via a quadratic trial Hamiltonian. After stating our
model in Sec. IT we have discussed the Mézard-Parisi theory
of the vortex lattice system in Sec. III. The minimum re-
quirement for the trial free energy of the quadratic Hamil-
tonian leads to the saddle point Eq. (24) where the stable
solutions are full replica symmetric for D(0)A < V3/2 in the
fluid phase with D(0)A is defined in Eq. (25) and (32). Ev-
erywhere else, the solutions are continuous replica symmetry
broken. We expand these solutions to low temperatures. That
the saddle point Eq. (24) has no solution in general for
D(0)A=(D(0)A) nax is shown in V and Appendix A where
(D(0)A),ax is given by (57). The Mézard-Parisi theory is the
lowest-order approximation of a more general perturbation
theory known as variational perturbation theory. In Appendix
B we show how to go beyond the lowest-order approxima-
tion for the vortex lattice system up to second-order where
also in this case a saddle point solution is not existent. Mo-
tivated by good results of the variational perturbation treat-
ment for the anharmonic oscillator we generalize in Sec. VI
the minimum requirement of the variational free energy de-
termining the trial Hamiltonian to a more generalized prin-
ciple of minimal sensitivity given in (54). This leads to a
second-order phase transition line located at the points in the
H-T plane where the saddle point solutions cease to exist.

As was discussed by us at the end of Sec. VI, for YBCO
in contrast to BSCCO the magnitude of the lattice fluctua-
tions near the melting line is smaller than the correlation
length of the impurity potential, i.e., (c;a0)><<&2.* This is
the reason that one does not find a similar nonexistence of
saddle point solutions to the variational free energy, in cer-
tain regions of the H-T plane for YBCO as we obtain for
BSCCO. This leads to the absence of the second-order phase
transition line in YBCO. Further we note that Giamarchi and
Doussal,'® who calculated the physics of the vortex lattice
with pinning but without defects valid in the solid phase of
real systems, did not find in their work the ceasing of saddle
point solutions to the variational free energy in certain re-
gions in the solid phase. The reason lies in the fact that they
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only consider small trial dimensionless gap functions A(s) in
their calculation. Also they did not use temperature softened
elastic constants relevant for BSCCO.?

The procedure described above leads to the following
physical consequences for BSCCO. Due to the form of the
elastic moduli in the deep H,, region, we obtain two glass
phase transitions of the depinning form. The first transition
line of third-order is located in the fluid phase at high tem-
peratures not far from 7. It is given by (56) identified as the
depinning temperature of a coherently pinned vortex sub-
string. It separates the full replica symmetric solution to the
variational energy at high temperatures (VL phase) and a full
replica symmetry broken solution at lower temperatures
(VGI1 phase). This transition corresponds to the glass transi-
tion in YBCO. The transition line is located in the vicinity of
the experimentally found 7, line.?’ The second transition is
of second-order (57) dividing the Bragg-glass and the
vortex-glass phases in four regions. It separates a full replica
symmetry broken saddle point solution of the variational free
energy (VGI1, BG1 phases) and a full replica symmetry bro-
ken turning point solution (VG2, BG2 phases). This transi-
tion line is a temperature depinning transition where a sub-
string which is almost equally displaced due to disorder
forming a plateau decouples from the impurities due to tem-
perature fluctuations. We find that the derivate jump of the
magnetic induction field with respect to the temperature over
this glass transition line in the Bragg-glass phase is negli-
gible in comparison to the jump in the liquid phase. We
compare this line with the experimentally found second-
order glass transition line by Beidenkopf et al.!® located in
the vicinity of our line. The jumps of the temperature deri-
vate of the magnetic induction field in the vortex-glass phase
of our theory is about one order of magnitude lower in com-
parison to the experimental values of Beidenkopf et al.'®
They obtain a similar value for the jumps in the Bragg-glass
phase over the glass transition line. In comparison to the
glass transition line separating the VG2-VGI1 phases they
found a softening of the jump in the vicinity of the glass
transition line in the BG2-BG1 phase consistent with our
findings.

We calculated the first-order melting transition line and its
disorder induced continuation dividing the Bragg-glass phase
BG2 and the vortex-glass phase VG2 by using an intersec-
tion criterium for the low and the high-temperature expan-
sion of the free energy. The whole theoretical determined
phase diagram and the experimentally ones determined by
Beidenkopf et al.'® is shown in Fig. 3. Finally we compared
the entropy jumps per layer and vortex, and also the mag-
netic induction jump over the first-order line with the experi-
mental findings of Zeldov al.*! This is shown in Fig. 4.

Summarizing, we have calculated the phase diagram of a
vortex lattice model stated in Refs. 3 and 4 for BSCCO with-
out taking explicitly into account the layered structure of the
material. Although we found certain quantitative differences
in the position of the experimental determined phase transi-
tion lines, the overall phase diagrams looks rather similar.
Discrepancies are maybe due to the approximative evalua-
tion of the theory and the layered structure of BSCCO.
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APPENDIX A: GENERAL PROOF OF THE NONEXISTENT
OF FINITE-STEP SADDLE POINT SOLUTIONS
FOR LOW TEMPERATURES

In this section we show that there exist no finite-step
saddle point solution for the variational free energy Af.,. in
the range D(0)A = Z(O) within first-order variational perturba-
tion theory. This was shown in the continuous and addition-
ally in the one-step case for the liquid phase in Sec. V. In
order to derive this we use results derived in Sec. C in Ref. 4.
We obtain for an R-step replica symmetry breaking solution

S HS@E,) -8R, 142 (24, )
R Am,. AmH 2 ’
(E,'=1 m; ) ( D (2 g[AmR]))
(A1)
where we used that Ay=0, myg,; =1 and
B Als) d
S(A) =- dAA—g(A). A2
@& JO @) (82
It is shown in Ref. 4 that Z>0. We have
1o A Z02
S(A) ~ —A"2 + log(l +Z,°>—> -2 1 (A3)
2 2 1+Z§0)%
in the liquid case and
- 31 2\J2_,, 4z A
S(A) = = (c44a ) “A32 4 (OS) 5| log{ 1 +Z§O)—
2 8w\ cqea3/ | 3 Z”) 2
704
— 1—(2)& (A4)
1+ Z} )5

for the solid. Next we use the inequalities (2% a;)?
,ag and further that 5
VUmg, > <1/mi=1/m7,,

=R3R a? for real number a, ...
<A, AY/AR=53/S5, (1/im-
resulting in

Y X

42 >4<kBT>2 S s

oY X

xx' @B.v.0

((Hgi)) ) giar =

e )4<kBT)2

dzqdzq/ % A(q)A(qr)<eiq-(u“(x)—u5(x))+iq’-(u7(x’)—
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s, )
J(~ksT 2"
D (2 [AmR])]
This inequality can be only fulfilled for \3D(0)A/2
S4RZ§0) which is a generalization of the one-step replica

symmetry breaking case in the fluid phase discussed below
Eq. (52).

sGw) _ D27
RAY [

(AS)

APPENDIX B: SECOND-ORDER VARIATIONAL
PERTURBATION EXPANSION

In this section we calculate the second-order expansion
terms within variational perturbation theory (53). The aim is
to show that also to this order there are no saddle points of

F,, (53) with D(0)A >Z(0) corresponding to (46) and (49) in
the first-order case. We restrict ourselves to solutions of the
saddle point equation with full replica symmetry which were
relevant in the first-order case according to Sec. IV.

In the following, we will calculate first the expectation
value of the disorder part of the replica Hamiltonian*

Hdis 2k3 D{};‘;g x3x'A(x +ua(X) Xi— U; ( ,))

(B1)

in which «, B run over the replica indices. We allow only for
onsite interactions which were justified in Ref. 4 for YBCO.
For the present compound this approximation is even more
appropriate for BSCCO since &, ~ &’ <a. With this disorder
part (B1) we obtain for H—H;, in (53)

H - Htria] = Hdis E E MT(X)(TCKBMT(X) (Bz)

xaﬁ

We now classify terms of higher-order variational perturba-
tion theory in two groups. When expanding ((H—H ;) )yia
in (53) we obtain first terms of the pure disorder Hamilton
form <(Hdis)l>trial,c which we denote by <(H_leial)l>lrial,c,l'
Second, there are monomials which contain at least one self-
energy matrix factor o,z in it denoted by ((H—Hyiy) )sial c -
These terms can be most easily treated by the square root
trick.3® We now calculate first terms of the pure disorder
Hamilton form.

1. Pure disorder terms in Hamiltonian

Within second-order variational perturbation theory, we
obtain

uﬁ(x’»)

Pqd?q’ A(q) A( q') X o~ kBTI0G714(G 4, 0(0)+G gp(0)=G 4 5(0)~G g 0)

X e—kBT/vq'2/4(Gw(0)+G56(O)—G75(0)—G(37(0)) % e—kBT/uq-(Gay(x—x’)+Gﬁé(x—x/)—Gﬁ7(x—x’)—Gaé(x—x'))q/' (B3)

014512-15



JURGEN DIETEL AND HAGEN KLEINERT

As before, we restrict ourselves to the transversal part of the
2X?2 Green function G(x) defined by 1/(2m)3[d*qdq;(qr
® q7)G(q)e'**43*3_ The replica sum in (B3) is of the form
Eaﬁy'gF[Galg,G.},g, quwGBS’Ga&GBx] where F[] is some
functional of the various Green functions. Since G,z is some
matrix within the Parisi algebra the functional F' has the ul-
trametric property.’”*® Following Temesviri et al.,* we de-
note the size of the Parisi blocks with p,, r=1...R, where R
is the maximum level of replica symmetry breaking. We fix
po=n and pp,;=1, the latter being the size of diagonal ele-
ments and # is the number of replica fields. The matrix ele-
ments o,p, that belong to the rth level of replica symmetry
breaking are all equal to some number o,, r=0,...,R. The
replica overlap function is defined by oM B=r when o4
=0,.

The fact that the Green function G 4 is in the Parisi alge-
bra implies that the Green function definitely depends on the
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overlap @M B which we denote in the following by G .
Furthermore, the operation N B on the replica indices has
the ultrametric property. This means that whenever we may
choose three replicas «, B, v, either all three of their overlaps
are the same, i.e., aN B=aN y=LBN vy, or one, e.g., «N B is
larger than the other two. In the latter case the two are equal,
i.e., aN B>aN y=LBN . This means that of the three Green
functions Gopr Gayy and Gg,y only two are different. Simi-
larly, of the six Green functions in F only three are different.
The various possible Green function combinations can be
most easily determined by mapping these six Green func-
tions onto the edges of a tetrahedron where the Green func-
tions on the adjacent edges of a face must fulfill the ultra-
metric property.

In the following, we restrict us to the leading term x=x’
in (B3). By carrying out the q, q' integral we obtain

§/4

((Hgis)rrian.c (kBT)2

514

> D2(0)<
4 aBy.6 (L (gua—gap) + £ (g, - 2,00 + €2) = 1) (g0 + 85— 85y — 8ud)”

(kHT(gaa gaﬁ) + g )(%—(gyy_ gy&) + 5/2)

) . (B4)

The last subtracted term in (B4) is due to the connectedness of ((Hi)*)iarc- From (B4) we obtain

Ea-aﬁ=0
B

(B5)

being the same equation as in the first-order variational perturbation theory case.*? We now restrict (B4) to the Parisi algebra

by carrying out the program outlined above leading for n—0 to

<(Hdis)2>trial,c = n(kBT)Zsz(O) ZJ ds ds,ds(~ 0,1(S1) +0(s) — ~)) (= ®s1,1(sz) + 0(sy— ~) —5,0(s5— 1)) (= ®s2,1(52)

§r4

+ 8(s3— ~) —538(s3—

— §,4
(“Tg-g,)+ &) (% @-g,)+&?

2))(("”T<g g)+ &)@ -2+ €7) - 1) (s, - 8.,

)) + f dsdsyds3 (= O 1 (s1) + 8(s; = ~))(= O (52) + S5y — 51))

X (= Oy, (53) +530(s5 =

Here g, is the momentum integrated Green function of G
according to Eq. (19). We define &(s;—~) by the functional
Jds;8(s;—~)H[g, ]=H(g) where H is some functional of the
integrated Green function 8s; and g=g,,-

For calculating the saddle point equation up to second
order variational perturbation theory corresponding to (24)
the derivate (87 8g,){(His)*)iarc 1S relevant which should be
added with an appropriate factor to the right hand side of Eq.
(24). In order to derive this equation we first give the varia-

szD((k”T(g g)+ &) =12 (g, - 8, (kﬁT(E—g53)+§’2)2

14 14
£ £ ) (B6)

tional free energy F.,, /N within second-order variational
perturbation theory denoted by f.,»

fvar,2 = fvar,l <(Hd1s) >tr1al c (B7)

2(kgT)
where f,,.; corresponds to the variational energy within
first-order variational perturbation theory given in Egs. (17)

and (18), i.e., fyar1=fvar(0)+Afyar1 Where Afy,. | is a modi-
fication of Af,,, specified in (17) according to
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Afyar1 = PiAfom+ PoASRS (B8)

var*

The additional prefactors P; are modifications due to second-
order perturbational expansion from terms proportional to
((H=Hgia)) ) iarc Eq. (B2) containing at least one factor o .
The constants P; lying between 1/2 and 3/2 will be deter-
mined in the next subsection.

Carrying out the variation in f,,., with respect to g; we
obtain

i <(Hdis)2>trial,c

1

__ kT, o _
Pio(s)=-2 . P,D'(2B[A(s)]) o (kyT)

(B9)

The calculation of (8/8g,){(Hgis)yiae is tedious but
straight-forward. Due to lack of space, we do not state the
result here.

In order to discuss the sign of ((Hgs) e and
(81 6g){(Hyi)*)iar.c We repeat the form of the Green func-
tions in the Parisi algebra’

1 1
§-g,= d*kdks| ——————
78 (277)3f S{Gal(k,h)"'A(l)

fd , a'(s)
(Gy' (K. k3) + A(s))?

(B10)

and

g= f d*kdi;Go(K, k)

2m)?
P Ay
8 { JO WGk, k3)+A(s)] (B
By using Egs. (B7) and (B9) we obtain
kgT
Py ()=~ o’<s>(2 ) (A ))(

i%)
séga‘ (kBT)2

+D (B12)

corresponding to Eq. (36) in the first-order case. Here, we
have used the differential operator

-1
b= (o0 22 Jetacn) L.
N

Dividing Eq. (B12) by ¢’(s) and forming the derivate with
respect to s, we obtain
<2kBT>2g'[A(s)P
v/ g'MA(s)]
+p-2

o <(Hd1§) >tr1al C) _
: 5gv (kBT)2 -

(B13)

2k
( L, D" OB[AS))

(B14)

In contrast to the first-order results (36) and (37) the second-
order variational perturbation Egs. (B12) and (B14) give no
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longer local algebraic equations for B[A(s)] and A(s) but
integral equations involving both quantities for different s.

From Egq. (B6) we obtain that &/ 6g((His)*)iac depends
through g, on s. One can show after a tedious but straight-
forward analysis that

((Hgi)Diiare > 0, (B15)
6 2
<(Hdis) >trial,c > O, (B16)
5gsl,‘
5 2
s 58 <(Hdis) >trial,c >0. (B17)

Here s, is defined such that ¢’(s)=0 for s,=<s=1. As in
the first-order case, s, can be determined by Eq. (B12) for
s=s, with B[A(s.)]=g[A(s.)]. Then we obtain by the
help of Eq. (B17) that Eq. (B12) is not solvable at s=s,
for small temperatures. More precisely we ﬁnd that Eq.
(B12) is not solvable for D(O)A>Z, by using
(Dll(zB[A(s )])/U) lD (6/ 5gr )<(Hd1§)2>malc/(kBT)
~D(0)A/Z.

2. Terms containing at least one factor o ,g

Next, we consider contributions to second-order varia-
tional perturbation expansion ((H—Hyiy))*)iac EQ. (53) con-
taining at least one factor o,z As described in the textbook
Ref. 30 for the case of the anharmonic oscillator, these terms
can be best derived with the help of the square root trick. In
our system this trick consists in substituting A(s) in Afy,
of Eq. (17) by (1-k)A(s) denoted by Af,.(k). The ((H
—Hyia)*)iarc.» terms for k=0 containing at least one factor
0,p are then given by

—5Af1(0) o f‘v’dr(O)>

(B18)

<(H_ Htrial)2>lrial,c,2 - 2kBT< 2 k2

This leads to the contributions in Af,,., Eq. (B7) and the
saddle point Eq. (41) which are a factor (Ad/dA)g(A)/g(A)
or (Ad/dN)"*"g(A)/(Ad/IA)g(A) where m=1,2 smaller
than the leading contributions. By using Egs. (24) and (27)
we obtain only non-negligible contributions to f,,.» Eq. (B7)

or the saddle point Eq. (B9), i.e., P;# 1, for A<1/(Z\”)*? in
the fluid phase and A< 1/(Z§1))2 in the solid phase. We point

out that A, Eq. (47) in the fluid phase and Eq. (50) in the
solid phase in first-order variational perturbation theory is

much larger than these A values. Note that we obtain also
corrections P;# 1 in the regime As1/ Z(O) much larger than
Ao

Thus, we consider the regime A<1/(Z\”)*? in the fluid

phase, and A< 1 /(Zi'))2 in the solid phase. Here, we obtain
prefactors P; in Egs. (B7) and (B9) which differ in general
for both phases. We obtain
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