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The recently discovered FeAs-based materials exhibit a �� ,0� spin density wave �SDW� in the undoped
state, which gives way to superconductivity upon doping. Here we show that due to an interesting topological
feature of the band structure, the SDW state cannot acquire a full gap. This is demonstrated within the SDW
mean-field theory of both a simplified two-band model and a more realistic five-band model. The positions of
the nodes are different in the two models and can be used to detect the validity of each model.
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I. INTRODUCTION

Since the discovery of superconductivity in La1−xFxFeAs
at Tc=26 K,1 there has been mounting excitement associated
both with the rapidly increasing Tc when La is substituted by
other lanthanoids,2 as well as the similarity with the cuprate
superconductors. As with the cuprates, the FeAs materials
are quasi-two-dimensional square-lattice-based transition-
metal compounds, which are magnetically ordered at stoichi-
ometry. On doping, in both cases, the magnetism is replaced
by superconductivity.

However, there are several significant differences. Most
importantly, the FeAs stoichiometric compounds are not
insulating.1,3 Also, the magnetic order here is along the �� ,0�
direction and has a small moment.4 In contrast to the cu-
prates, where only the dx2−y2 orbital of the five Cu d orbitals
is important, the multiorbital nature of the FeAs materials
has been emphasized in several recent calculations.5–7 In this
paper we point out a topological aspect of the band structure
closely connected with the multiorbital nature of the material
that has important ramifications for the phases in this system.
In particular we show that a symmetry-enforced band degen-
eracy at high-symmetry points in the Brillouin zone leads to
a band structure with nontrivial topology. This can be quan-
tified in terms of a “vorticity” quantum number. An example
of vorticity �1 is the Dirac node. Here the vorticity takes on
values �2. While such degenerate points occur in the band
structure of other multiorbital systems, here they actually
occur close to the Fermi level. In this paper we discuss both
a simplified two-band model and a realistic five-band model
where this is explicitly realized.

An important consequence of this nontrivial band topol-
ogy is that it leads to an unusual spin density wave �SDW�
state that is necessarily gapless. Specifically, the SDW wave
vector connects hole pockets with vorticity= �2 with elec-
tron pockets with zero vorticity. This mismatch forces nodes
in the SDW gap function even in the presence of perfect
nesting. Away from nesting the nodes are offset from the
Fermi energy, resulting in Fermi pockets. We term such mag-
netic order “nodal SDW.” We emphasize that the topological
feature required for the nodal SDW state exists both in other
simplified models in the literature8,9 as well as first-principles
band structures.5

In the following we first derive and study a simplified
two-orbital tight-binding model motivated by the quantum

chemistry. Other studies7,8,10 have also focused on two-
orbital models. However it has been argued5,9 that one needs
at least three orbitals to accurately reproduce the local-
density approximation �LDA� band structure and Fermi sur-
faces, e.g., location of the hole pockets in the Brillouin zone.
We then directly study the more general and realistic five-
band model based on LDA calculation.5 We consider the
stoichiometric compound �zero doping� and study the mean-
field SDW phase. This mean-field analysis confirms the ex-
istence of nodes in the SDW gap function in both models.
We also established the topological stability of the nodes.
The location of the nodes in momentum space and the asso-
ciated Fermi-surface topologies, however, are different in the
two models. This can be used to detect the validity of two-
band or five-band model. A recent numerical
renormalization-group study by us found precisely this nodal
structure in the two-band model. The general requirements
for the existence of these nodes are also discussed.

II. NODAL SDW IN THE TWO-BAND MODEL

A. Two-band microscopic model and band structure

The Fe atoms form a square lattice whose principal axes
are denoted as x and y and the crystal structure axes are
labeled as X and Y �Fig. 1�b��. Let us first assume that
Fe 3dxz and 3dyz are the relevant orbitals to describe the low-
energy physics of this material. Because of the tetragonal
symmetry they are locally degenerate, and we use their linear
combinations 3dXZ and 3dYZ as our basis since they have
clear symmetry when hybridized with the nearest As 4p or-
bitals. Other d orbitals will be ignored here but included in
Sec. III.

In a simple chemistry picture �Fig. 1�a�� all symmetry
allowed Fe 3d-As 4p hybridizations are assumed to domi-
nate over direct Fe 3d hybridization. This naturally leads to
large nearest-neighbor �NN� orbital-changing hopping t1 �see
Fig. 1�b�; note that t1 has opposite signs between vertical and
horizontal bonds� and next-NN orbital-preserving hoppings
t2 and t2�. If we further assume that the hybridizations be-
tween 3dXZ,YZ and 4pZ �shown in Fig. 1�a�� dominate, we
expect t2� t1� �t2��, while the direct hopping t1� is expected to
be much smaller than these three.11 Given the empirically
observed SDW order, we take t2− t2�� �t1�, which leads to
nested electron and hole pockets at �� ,0�.
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To simplify the notation we will use d1 and d2 for electron
operators associated with the XZ and YZ orbitals. The tight-
binding Hamiltonian has only one Fe atom per unit cell, and
we choose the Brillouin zone accordingly. Many other stud-
ies work with a two Fe-atom unit cell. A comparison requires
an appropriate folding of the Brillouin zone of the present
study. Its Fourier transform is �independent of spin�

H0 = �
k�

�d1,k�
† d2,k�

† �K�k���d1,k�

d2,k�
	 , �1�

where the sum is over kx� �−� ,�� and ky � �−� ,�� and the
2�2 matrix K�k�� is

K�kx,ky� = 2t1�cos kx − cos ky��1 − 2�t2 − t2��sin kx sin ky�3

+ �2�t2 + t2��cos kx cos ky + 2t1��cos kx + cos ky�� · 1

�2�

and �1,2,3 are Pauli matrices. As argued previously we expect
t2� t1� t2� , t1��0. The two energy eigenvalues of Eq. �2� are

E��k�� = 2�t2 + t2��cos kx cos ky + 2t1��cos kx + cos ky�

� 2
t1
2�cos kx − cos ky�2 + �t2 − t2��

2sin2 kx sin2ky .

�3�

In Fig. 2�a� we plot the band structure �3�. At half filling
the Fermi level will cut out two holelike Fermi surfaces
around �0,0� and �� ,�� and two electronlike Fermi surfaces
around �� ,0� and �0,�� �see Fig. 2�b��. Note the band touch-
ings at �0,0� and �� ,��. This endows the hole Fermi surfaces
with vorticity �2, where the spinor describing the admixture
of 3dXZ and 3dYZ orbitals rotates twice on encircling these
Fermi surfaces. The simultaneous presence of inversion and
time-reversal symmetries in this band structure allows us to
choose, at each k point, real spinor wave functions which are
hence confined to a plane. Vorticity in this spinor field is
therefore topologically protected—the singularity at the vor-

tex center forces the orbital degeneracy at �0,0� and �� ,��.
In contrast, the electron Fermi surfaces are topologically
trivial, with no winding as shown in Fig. 2�b�. This topologi-
cal characterization of the Fermi pockets is also present in
more realistic LDA calculations,5–7 although it has not been
previously commented upon.

At half filling, the total electron pocket area equals the
total hole pocket area. If the pockets are very small, i.e., t2
� t1, Taylor expansion of Eq. �3� gives four nearly circular
Fermi pockets with same area. Therefore the electron and
hole pockets are nested at momentum �� ,0� / �0,��.

It is interesting to consider for a moment the case t1�=0.
Then, the model decouples into two independent t1− t2− t2�
checkerboard models. Each give rise to one hole and one-
electron pocket separated by �� ,�� from the other electron-
hole pocket pair. Unexpectedly, the electron and hole pockets
are precisely nested with momentum �� ,0� / �0,��, as long as
t1�=0, even when the pockets are large and noncircular. One

can check that at the half-filling Fermi energy EF=
2t1

2

t2+t2�
, the

Fermi-surface wave vectors k�F of the two bands, E−�k�F�
=EF and E+(k�F+ �� ,0�)=EF, satisfy exactly the same condi-
tion

��t2 + t2��
2cos2 kx

F − t1
2���t2 + t2��

2cos2 ky
F − t1

2�

= �t2 + t2��
2�t2 − t2��

2sin2 kx
F sin2 ky

F. �4�

When t1��0 the two hole pockets have different sizes. The
electron pocket around �� ,0� ��0,��� is elongated along the
ky �kx� direction and the perfect nesting is lost.

B. Mean-field study of the SDW order in the two-band model

Now we include on-site interactions in an extended two-
band Hubbard model with H=H0+HI where, as in Ref. 9,

(a) (b)

FIG. 1. �Color online� �a� The 3dXZ and 3dYZ orbitals of the Fe atoms and the 4pZ orbital of the As atom. The blue �red� arrows represent
one second-order process contributing to t2�t1�. �b� The tight-binding hoppings between the d orbitals.
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HI =
U

2 �
i

�ni1
2 + ni2

2 � + �U − 2J��
i

ni1ni2

+ J �
i

	,
=↑,↓

di1,	
† di2,


† di1,
di2,	

+ J�
i

�di1,↑
† di1,↓

† di2,↓di2,↑ + H.c.� , �5�

where the first and second terms are the intraorbital and in-
terorbital Coulomb repulsions. The third term is the Hund’s
coupling and the fourth term is the interorbital pair hopping.
First-principles calculations5 suggest that the FeAs material
is in the intermediate coupling regime and we choose t=1,
t1�=0.2, t2=1.7, and t2�=0.3 for our hopping Hamiltonian H0,
where we estimate t1�0.3 eV to get the right bandwidth.
Also, we use U=4 �1.2 eV� and J=0.4, which is a factor of
3 smaller than in Ref. 5 to get reasonable SDW transition
temperatures and moments compatible with experiments.

For small t1�, where good nesting prevails and in the pres-
ence of repulsive onsite interactions, it is natural to consider
SDW order at wave vector �� ,0�. Then, HSDW
=Mab�i�−�ix�di,a↑

† di,b↑−di,a↓
† di,b↓�, where the spin direction is

assumed to be along the Sz axis. Because of the multiorbital
nature of the system, different flavors of SDW are allowed,
described by the Hermitian matrix Mab, which may be pa-
rametrized by four real numbers Mab= ��0�0+�1�1+�2�2
+�3�3�ab, where ��0�ab=�ab. We perform the finite-
temperature mean-field study by using a trial density matrix
of the mean-field Hamiltonian HMF=H0+HSDW. We con-
struct a trial free energy based on this mean-field density
matrix Ftrial��0 ,�1 ,�2 ,�3�=FMF+ �HI−HSDW
MF where FMF
is the free energy of the free fermion system described by
HMF. The Feynman inequality12 F
Ftrial, implies that we
need to minimize Ftrial over the mean-field parameters �i
keeping the electron density fixed.

Implementing this we find that the model H0+HI has a
unique SDW phase at low temperature characterized by �0
�0,�1�0. The symmetry of this phase is consistent with
the regular �� ,0� magnetic order depicted in Fig. 4. If we
denote the order-parameter operators m̂ab=di,a↑

† di,b↑
−di,a↓

† di,b↓, in Fig. 3�a� we plot these magnetizations as a
function of temperature and it is clear that �m̂11
= �m̂22


(a) (b)

FIG. 2. �Color online� For t1=1, t2=1.7, t2�=0.3, and t1�=0 we plot �a� the dispersion E��k�� as shown in Eq. �3� together with the
half-filling Fermi energy EF and �b� the perfectly nested Fermi surfaces as given by Eq. �4� and the direction of vector �cos �k� , sin �k��
defined by rewriting K�kx ,ky� in Eq. �2� as K�kx ,ky�=a�k��1+b�k���sin �k��1+cos �k��3�, where b�k���0.

FIG. 3. �Color online� For t1=1, t1�=0.2, t2=1.7, t2�=0.3, U=4,
and J=0.4 and half filling, we show �a� the magnetization �m̂11

= �m̂22
 and �m̂12
 of the SDW phase as a function of temperature.
The mean-field calculation is done on 20�20 lattice. �b� The zero-
temperature SDW band structure. We plot the dispersion of two
lowest-energy bands in the reduced Brillouin zone. �c� The Fermi
pockets. The four nodes are not at the same energy and therefore the
half-filled system has small Fermi pockets. The two nodes close to
ky =0 are hole doped �blue pockets� and the two nodes close to ky

=� are electron doped �red pockets�.
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� �m̂12
. The fact that the �2 and �3 orders are not mixed in
can be understood from symmetry. Under reflections Py
about the y axis crossing the plaquette center, �0 and �1
transform differently from �3. Under time reversal, �2 order
transforms differently from a SDW and in fact describes a
spin-orbital locked state.

The band structure resulting from this SDW is shown in
Fig. 3�d�, where electron and hole pockets in the same direc-
tion as the SDW axis are visible for each pair of Fermi sur-
faces. Even with perfect nesting, the Fermi surfaces are not
fully gapped; instead, there are Dirac nodes as in Fig. 3�b�. In
the absence of nesting these Dirac nodes are at slightly dif-
ferent energies and the half-filled system has small Fermi
pockets. As shown below, the presence of such pockets is
required under fairly general conditions. This is the main
point of the current study. The presence of such pockets is
detectable by angle-resolved photoemission spectroscopy
�ARPES�, and also due to the velocity anisotropy present for
the nodes via conductivity measurements. Based on Drude’s
formula we compute the dc conductivities in x and y direc-
tions for a mean-field SDW state with nodes along the x
direction and with a T=0 magnetic moment of 0.3�B per Fe
atom.4 We find �xx /�yy =6.2. Any state with broken rotation
symmetry would have conductivity anisotropy, but the large
value here stems from the nodal structure discussed.

For the other SDW-type orders, �2 or �3, the nodes are
along the direction orthogonal to the SDW axis. Note that
although the nodal structure of our SDW gap function re-
sembles that of a p-wave symmetry, the SDW order that we
found is completely on-site and inversion symmetric.

C. No-full-gap theorem in the two-band model

In the following we argue that the Dirac nodes are topo-
logically stable as long as the SDW order satisfies three con-
ditions �a brief account of this argument was presented in
Ref. 13�: �1� collinear order �denote the magnetization direc-
tion by n̂�, �2� inversion �about the Fe site I� symmetry, and
�3� effective time-reversal symmetry TR�=SR�n̂→−n̂�
�TR obtained by combining time reversal and spin reversal
�TR is time-reversal and SR�n̂→−n̂� is the 180° spin rota-
tion which flips the direction of magnetization�. These three
conditions are naturally satisfied by a �� ,0� collinear SDW,
which is consistent with experiments,4 and the mean-field
SDW that we find also satisfies these conditions.

Since we focus on the consequences of the nontrivial
band structure, we begin by turning on a very weak SDW

order M̂ =�k��	

z Mab�k��da	,k�

† db
,k�+��,0� �where we have rotated
the magnetization to the Sz direction�. We therefore need to
consider degenerate perturbation after folding the Brillouin
zone by �� ,0�. The band crossing between the two bands
defined in Eq. �3�, i.e., E−�k�� and E+(k� + �� ,0�) forms a loop
in momentum space. In the perfect nesting case these loops
are identical to the electron or hole Fermi surfaces. Let us
focus on the loop around �0,0� and denote the momenta on
this loop by k��; thus, E−�k���=E+(k��+ �� ,0�). Let us call the
hole pocket wave functions on this loop ��h�k���
= ��−�k���

and the electron pocket wave function
��e�k���
= ��+(k��+ �� ,0�)
. Now the degeneracy on this loop

is lifted when the matrix elements of the SDW order between

these two kinds of states, m�k���= ��h�k����M̂��e�k���
, are non-
zero.

Now, I symmetry requires Mab�−k��=Mab�k��. Also, given
the winding of the hole Fermi-surface wave function shown
in Fig. 2�b�, under inversion we have ��h�−k���
=−��h�k���

while ��e�−k���
= ��e�k���
. Putting this together we have
m�−k���=−m�k��. In addition, TR� symmetry requires Mab�k��
to be real hence so is m�k���. We thus conclude that m�k���
must have at least two sign changing points, K and −K, on
the band crossing loop. These are the two of the Dirac nodes
in the SDW. Similarly there are another two Dirac nodes on
the band crossing loop around �0,��.

Generically the nodes are not at the chemical potential
and lead to Fermi pockets. However, a Fermi pocket deriving
from a node is known, e.g., from the context of graphene, to
be different from a regular Fermi pocket. In particular, elec-
trons acquire a nontrivial Berry’s phase of � on circling such
a nodal pocket. We have thus argued for the stability of the
Dirac nodes in SDW based on the two-band model �2�. We
now show that a similar result holds for the more realistic
five-band model. Again the topology of the quadratic bands
that touch at the � point is responsible for this result.

III. NODAL SDW IN THE FIVE-BAND MODEL

While the two-band model serves as a useful guide to the
nontrivial physics in the SDW state, it differs from LDA
calculations of the electronic structure of these materials5 in
important ways. This is easiest to see in the unfolded
Brillouin-zone scheme, with a single Fe atom per unit cell
�here unit translations along the x and y axes are followed by
reflections in the xy plane9�. While the two-band model has a
hole pocket at �= �0,0� and another one at �� ,��, the LDA
calculation predicts two hole pockets around the � point. The
electron pockets, although centered on the same locations in
both cases, acquire a dxz+dxy character at �0,�� and a dyz
+dxy character at �� ,0� in the LDA calculations. Hence they
are also rather different from the two-band model that does
not include the dxy orbitals. A five-band hopping Hamiltonian
including all the iron d orbitals is required to capture the
Fermi-surface topology of the LDA calculation.

In this section we will show that even in the five-band
model, the SDW is necessarily gapless �nodal SDW�, despite
these important differences. An important role here is played
by the fact that the two hole pockets at the � point are de-
rived from dxz and dyz, which are precisely the orbitals that
enter the two-band model. In this case we will prove that
there must be at least two Dirac nodes close to Fermi level in
the SDW phase.

A. Mean-field study of SDW in the five-band model

We again apply the trial density-matrix method to study
the �� ,0� SDW instabilities of the five-band model. We take
the five-band hopping Hamiltonian H0 from Kuroki et al.5

�Eq. �1� and Table I�. We then turn on an on-site interaction
in the following form:9
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HI = U�
i,a

nia↑nia↓ + �U − 2J� �
i,a�b

nianib

+ J �
i,a�b

	,
=↑,↓

dia,	
† dib,


† dia,
dib,	

+ J �
i,a�b

�dia,↑
† dia,↓

† dib,↓dib,↑ + H.c.� , �6�

where a ,b=1,2 , . . . ,5 label the five orbitals
�d3Z2−R2 ,dXZ ,dYZ ,dX2−Y2 ,dXY�. We have parametrized the in-
terorbital Coulomb interaction by U−J. While this is strictly
expected to hold within the t2g and eg levels,14 to reduce the
number of interaction parameters, we assume it for the five-
band model as well.

We only consider the on-site SDW order because the in-
teractions are taken to be on site. Then, the �� ,0� SDW order
parameter with spins assumed to point along the z axis in-
duces the following mean-field term in the Hamiltonian:

HSDW = �
i

ei�ix �
a,b=1

5

Mab�di,a�
† ����

z di,b��� , �7�

which is parametrized by Mab a Hermitian matrix with 25
real parameters. The orbital structure can lead to many dif-
ferent SDW states which break symmetry in different ways.
Energetically, we find that the preferred state always has the
same symmetry as the regular �� ,0� SDW shown in Fig. 4.
That is, the state breaks time reversal �TR� and 180° spin
rotation about an axis perpendicular to the ordering direction
SR but preserves their combination �TR��. Also the state is
invariant under inversion I which is a 180° rotation in the
x-y plane, and reflection in the x and y axes, where the mirror
plane intersects the Fe sites �Px , Py�. At the end of this sec-
tion we comment on other possible states that break different
symmetries.

We now discuss details of the mean-field solution, as the
on-site interaction strength is varied. Since this is not accu-
rately known, we note the resulting ordered moment and
Fermi-surface topology in each case, which may be directly
compared with experiments. The Hund’s coupling J is as-
sumed to be about 20% of U.

�1� U=1.0 eV and J=0.2 eV. The temperature evolution
of the net SDW magnetization M = ��adia,↑

† dia,↑−dia,↓
† dia,↓


�assuming g=2 this is in unit of Bohr magneton� from mean-

field theory is shown in Fig. 5�a�. The mean-field transition
temperature obtained is Tc=0.026 eV while the zero-
temperature magnetic moment obtained is �0.23�B. The lat-
ter is consistent with neutron-scattering experiments on
LaOFeAs.4 In Fig. 5�c� we present the Fermi surfaces of the
zero-temperature half-filled SDW phase with these param-
eters. Note that the double degenerate point at �0,0� of the
five-band hopping Hamiltonian is split into two Dirac nodes,
C and C�, on the ky axis. The electron pocket at �0,�� still
intersects with Fermi level and contributes significantly to
the density of states. However, on increasing the interaction
strength this feature is suppressed. Stronger repulsive inter-
actions will tend to gap out more of the Fermi surface and
the electron pockets at �0,�� can be fully gapped out. We
note that the area occupied by electron pocket is 3.5% of the
magnetic Brillouin zone �defined by −� /2�kx�� /2 and
−��ky ���. The hole pockets, of course, occupy the same
area.

�2� U=1.2 eV and J=0.25 eV. In this case we obtain a
somewhat larger low-temperature moment of �1.04�B. In
Fig. 5�d� we plot the Fermi surfaces of the zero-temperature
SDW. As compared to the previous cases, we see that the
Fermi surfaces around �0,�� disappear and the Fermi level
adjusts itself to form one hole pocket around �0,0� and four
electron pockets. The hole pocket occupies 2.2% of the mag-
netic Brillouin zone while the area of the electron pockets on
the kx axis is 0.1% each, and of those on the ky axis is 1.0%
each.

The electron pockets on kx axis and on ky axis are funda-
mentally different in that the kx pockets arise from the Dirac
nodes A and A� below them and thus protected. On the other
hand the ky pockets can be easily gapped out by turning on
interactions because they are simple band bottoms �after
B�B�� and C�C�� annihilate each other, which already hap-
pens in the current case�.

�3� U=1.4 eV and J=0.3 eV. The zero-temperature mo-
ment is now large, �2.3�B. Now, the two electron pockets
along the ky axis are completely gapped out and we only
have a small hole pocket around �0,0� and two electron pock-
ets on the kx axis nearby �see Fig. 5�e��. The Fermi-surface
topology and large moment obtained in this case are the clos-
est to the LDA results.5 The hole pockets occupy 1.4% of the
magnetic Brillouin zone, while the electron pockets occupy
0.7% each.

Note that, for the larger interaction strengths, the area
occupied by the residual Fermi surface in the SDW state is
very small, typically a few percent. In general, interactions
that drive the SDW formation would tend to lower this area.
One may naturally expect that this would rapidly lead to a
fully gapped state on increasing U. However, as explained in
detail in Sec. III B, there is an intrinsic mechanism that
blocks such a fully gapped state. A combination of symmetry
and band topology necessarily leads to a gapless SDW state
over a wide range of coupling strengths. This provides a
“natural” protection of the small pockets that appear here and
in LDA calculations, which have now been observed in mag-
netic oscillation experiments.15

Other possible orders. Before we conclude the mean-field
study of SDW orders, we comment on other kinds of �0,��
orders that could be stabilized with onsite interactions. The

FIG. 4. The real-space pattern of the �� ,0� SDW on the Fe-
atom square lattice.
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25 parameter Mab matrix admits a plethora of different or-
ders, which may be separated into the following four classes,
according to the symmetries of the resulting SDW Hamil-
tonian HSDW: �i� TR� even, I even, and Px , Py even �six
parameters�. This is the SDW state that was considered
above. The no-full-gap theorem discussed below applies to
this case. �ii� TR� even, I even, and Px , Py odd �three pa-
rameters�. �iii� TR� even and I odd �six parameters�. �iv�
TR� odd �ten parameters�. This case is rather exotic because

TR is even but SR is odd. This is similar to the symmetry of
a spin-Hall insulator.16

To compare the relative stabilities of these different states,
we choose U=1 eV and J=0.2 eV and first perform an un-
biased minimization of all the 25 parameters. We find that
class �i� is always the low-free-energy solution and with the
highest Tc=0.026 eV. Even if we suppress order parameter
�i� by hand, we find that the system has no instability toward
�ii�, �iii�, and �iv� down to 0.0001 eV. �Computations were

(a) (b)

(c) (d) (e)

FIG. 5. �Color online� �a� Magnetization with U=1 eV and J=0.2 eV as a function of temperature �computation is performed on a
40�40 lattice with periodic boundary�. �b� T=0 dispersion in this SDW state showing the two low-energy bands along kx and ky axes around
�0,0�. There are four nodes close to Fermi energy: A and A� on the kx axis and B and B� on the ky axis. The double degenerate point at �0,0�
of the five-band hopping Hamiltonian is split into two Dirac nodes, C and C�, on the ky axis. We also plot the zero-temperature Fermi
surfaces �blue pockets are holelike and red pockets are electronlike� with �c� U=1 eV and J=0.2 eV, �d� U=1.2 eV and J=0.25 eV, and
�e� U=1.4 eV and J=0.3 eV.
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performed on a 40�40 lattice with periodic boundary.� We
conclude that SDW �i� is the low-free-energy phase in model
�6� and is consistent with the ordered pattern observed in
experiments. Hence, we do not pursue studying these other
kinds of SDW order.

B. No-full-gap theorem in the five-band model

In this section we explain why the nodal SDW found in
the mean-field study appears. We assume that the SDW has
the symmetries in �i� above, as found in mean-field theory.
Briefly, we use reflection symmetry along kx=0 and ky =0 to
label bands with a reflection eigenvalue. Bands connected to
the electron pocket and a hole pocket are forced to have
opposite eigenvalues and hence do not split in the SDW state
along these lines, leading to a gapless state. An important
role is played by the band touching at the k= �0,0� point, as
in the two-band model. While this reasoning holds for weak
SDWs, we extend it to include strong SDW instabilities,
where the location of the band intersections can migrate to
the � point, even in this case so we show that at least two
gapless Dirac nodes will remain.

Weak SDW limit. The reflections Px and Py through mirror
planes along xz and yz, which pass through the Fe atoms, act
on the orbital basis of �d3Z2−R2 ,dXZ ,dYZ ,dX2−Y2 ,dXY� as fol-
lows:

TPx
:�

1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 − 1 0

0 0 0 0 1
� , TPy

:�
1 0 0 0 0

0 0 − 1 0 0

0 − 1 0 0 0

0 0 0 − 1 0

0 0 0 0 1
� .

�8�

Spin is left invariant as we ignore spin-orbit interactions. We
first consider the Px reflection symmetry. Along kx axis the
Bloch Hamiltonian is Px symmetric and the wave function
should be eigenstates of Px with eigenvalues of �1. We thus
can simply present the eigenvalue of Px of each band as
shown in Fig. 6. If we focus on the three bands close to
Fermi level, we find that the electron pocket is Px odd, the
large hole pocket is Px even, and the small hole pocket is Px
odd. Since the relevant SDW orders are Px even, the SDW-
induced gap along kx axis between the electron pocket and
the large hole pocket must vanish; i.e., there is a band cross-
ing. These are labeled A and A� in the example of Fig. 5�b�.

We note that the bands corresponding to the large hole
pocket and the small hole pocket must have opposite Px ei-
genvalues and as a result the nodes must exist no matter
whether the electron pocket is Px even or odd. The simplest
way to understand this is to note that the double degenerate
wave functions at �0,0� are nothing but dxz and dyz. Hence,
these band touchings play a crucial role here, as in the two-
band model.

Similarly there must be nodes also along the ky direction
by studying the Py eigenvalues along the ky axis. We find that
the electron pocket is Py odd, while the large hole pocket is
Py even, and small hole pocket is Py odd. Therefore we
expect that the SDW gap vanishes along ky direction between
the electron pocket and the large hole pocket as well. These
are labeled B and B� in the example of Fig. 5�b�. Hence, in
the limit of a weak SDW, the Fermi energy will inevitably
cross at least one of the protected bands, and a full gap
cannot result. Note that the existence of pockets is indepen-
dent of how good the nesting is, in contrast to conventional
SDWs which are gapless only due to the absence of nesting.
A further distinction is that some of the gapless pockets in
our case result from Dirac nodes.

Strong SDW. The above four band crossings are obtained
assuming that the SDW is a weak perturbation. If SDW is
strong can these nodes annihilate and lead to a fully gapped
SDW? Note that, in the presence of TR� and I symmetry, a
band crossing can only be removed via annihilation with a
partner. Since the band crossings appear close to the � point,
it is particularly important to address whether they can anni-
hilate by coming together at that point. For completeness, it
is important to note that in addition to the four band cross-
ings discussed above, there are two additional ones that arise
when C4v is broken in the SDW state. The double vortex at
�0,0� is split into two Dirac nodes with the same chirality
when the SDW order is turned on. Therefore there are totally
six band crossings around �0,0� in the weak SDW limit �la-
beled as A,B,C and A� ,B� ,C� in the mean-field example of
Fig. 5�b��. In the Appendix we prove an important theorem
based on a topological argument ensuring that these six
nodes can never annihilate in pairs at �0,0�. We show that this
is ensured by the fact that the two wave functions at �0,0�,
which correspond to dXZ ,dYZ are both odd under inversion I.
The nodes can only annihilate in sets of four. We conclude
that there must be at least two Dirac nodes left. This result is
topologically stable. Indeed, on going to stronger interaction
strengths this is the state realized in our mean-field study,
e.g., in Fig. 5�f�. In that case the two left-over Dirac nodes
are along the kx axis.

Now we compare the nodal SDW in two-band model and
five-band model. One main difference is that the Fermi-
surface topologies and shapes are quite different. In particu-
lar in the five-band model there may not be a large aniso-
tropy of conductivity as in the two-band model because at
least there is a rather circular hole pocket around �0,0�. The
positions of Dirac nodes and Fermi-surface topologies,
which may be easily measured by single-crystal ARPES, can
serve as a way to directly detect the validity of two-band
model or five-band model.

FIG. 6. �Color online� We present the Px eigenvalues �blue for
+1 and red for −1� of the five bands along kx axis.
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IV. CONCLUSIONS

In this paper we studied the spin density wave �SDW�
ground state of the undoped FeAs compound. We find that
the combination of physical symmetry and the topology of
the band structure naturally stabilizes a gapless SDW ground
state with Dirac nodes. We first study the popular two-band
model due to its simplicity, where this mechanism is mani-
fested. We also study the more realistic five-band model,
where the same results obtained. These two rather different
models share a key topological feature of the band structure:
the double degeneracy at k� = �0,0� enforces a wave function
winding around this point in the Brillouin zone.

In both models we perform the mean-field study allowing
for all possible collinear magnetic orders at �� ,0� and find
the inversion and reflection parities of the lowest-energy
magnetic ordered phase. We then show that the SDW ground
state in both models has stable Dirac nodes protected by the
inversion symmetry and the topology of the band structure.
These Dirac nodes are close to Fermi level and thus may be
directly observable in ARPES experiments and might also
control the low-energy thermodynamic and transport proper-
ties of compound. They arise due to the vanishing of the
SDW matrix elements along a high-symmetry line in the
Brillouin zone, which leaves the Fermi surfaces ungapped in
this direction. We also proved a general result on the stability
of Dirac nodes against pairwise annihilation in an inversion
symmetric system �Appendix� which may be applied to more
general situations. While strong interactions tend to increase
the SDW gap and reduce the Fermi pocket area, the nodal
nature of the SDW does not allow a full gap to open over a
wide range of interaction strengths. Hence, one expects to be
left with small residual Fermi-surface pockets, which natu-
rally explains the small Fermi surface areas �0.52% and
1.38% of the Brillouin zone with two Fe atoms per unit cell�
observed in magnetic oscillation experiments.15

Although we find stable Dirac nodes in the SDW ground
state in both the two- and five-band models, the number and
the locations of the Fermi pockets are different. These differ-
ences can serve as ways to determine which is a better model
of the material. Effective low-energy theories of the FeAs
materials should ideally incorporate the nodal nature of the
SDW state, which may also have important consequences for
other phases in this system.

ACKNOWLEDGMENTS

We acknowledge useful discussions with Cenke Xu. A.V.
would like to thank Leon Balents for stimulating conversa-
tions, Steve Kivelson for pointing out Ref. 1 at an early
stage, and support from LBNL DOE Contract No. 504108
and NSF Contract No. DMR 0645691. D.H.L. was supported
by DOE under Contract No. DE-AC02-05CH11231.

APPENDIX: ANNIHILATION CONDITION
FOR DIRAC NODES

We consider the general question of when a pair of Dirac
nodes can come together and annihilate to give rise to a
nonsingular band structure. We assume the existence of both

time reversal and inversion symmetries. We consider the
case where a pair of Dirac nodes comes together at a point
M in momentum space—which is constrained by the sym-
metries above to be invariant under inversion. When the
Dirac nodes are near this point, we can restrict attention to
just the two bands that make up these nodes. At the M point,
they can be labeled by their eigenvalues under inversion I1
= �1 and I2= �1. Below we show that only if I1I2=−1 can
the pair of nodes annihilate. Otherwise, they necessarily lead
to a band touching with quadratic dispersion at the M point
when they are brought together.

To derive this result, we use a Berry’s phase formula to fix
the inversion eigenvalue of the M point states before and
after node annihilation. This places the required constrain on
the inversion eigenvalues if the nodes are to annihilate. We
first define the inversion parity ��C� of a half loop C con-
necting two points P and P�, which are mapped to one an-
other by inversion. We start with the wave function of one of
the bands at P, ��P
, which can be taken to be real given that
we have both time reversal and inversion symmetries. This is
evolved adiabatically along the contour C to give the real
wave function ��P�
 at point P�. Clearly this is an eigenstate
of the Bloch Hamiltonian at this point in the Brillouin zone.
A separate way to obtain the eigenstate at P� is to apply the
inversion operation on the state at P, I��P
. Again, the in-
version operation can be constructed to yield a real wave
function. Hence, these two wave functions can at most differ
by a sign,

��P�
 = ��C�I��P
 , �A1�

which is the inversion parity ��C� of the curve C. Note that
since I2=1, ��C� is independent of the direction of C. Al-
though it depends on the band index, the band label is sup-
pressed for clarity.

Now consider two nodes N and N� being brought together
at M and choose two points P and P� along the perpendicu-
lar direction of this path. As shown in Fig. 7 we choose two
paths C1 and C2 connecting P and P�. Initially, C1+C2 en-
closes a single Dirac node at N, and as a result we must have
��C1���C2�=−1 because the wave function must wind by �
around a Dirac point. Now assume that the nodes annihilate
on being brought together. Now, C1+C2 encloses no singu-
larity, so the inversion parities ���C� after this operation sat-

N’N M

P

P’

C1 C2

(a)

M

P

P’

C1 C2

(b)

FIG. 7. �Color online� We show the paths C1 and C2 connecting
two points P and P� which are inversion images of each other �a�
before annihilation and �b� after annihilation. C2 crosses the inver-
sion symmetric point M, and before annihilation C1+C2 encloses
one single Dirac node N.
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isfy ���C1����C2�= +1. However, since the wave functions
along C1 evolve smoothly during the annihilation we have
���C1�=��C1�. Therefore we must have ���C2�=−��C2�.
Note that, by shrinking the curve C2, we can approach the
M point. Then, the inversion parity of the curve simply be-
comes the eigenvalue under inversion of the wave function at
the M point, �I1 , I2�. Therefore we conclude that in the node
annihilation process, the inversion eigenvalue of each of the
two states at the M point changes sign. This is only possible
if they have opposite signs to begin with, I1I2=−1. In that
case they can simply pass through each other, and the net
result will be a sign change in the inversion eigenvalue of the
higher- and lower-energy states. However, if they both have
the same sign, I1I2= +1, it is not possible to affect a sign
change. In this case, our assumption that the nodes annihilate
is invalid—in fact a pair of bands with quadratic dispersion
will touch at the M point.

If the two bands have opposite inversion eigenvalues,
then the inversion matrix in the two bands is �3, and the
inversion symmetric real Hamiltonian around M must be
able to expand as �a�kx��1+ ��+b�kx

2+c�ky
2+d�kx�ky��3 to

the quadratic order after choosing the kx axis to be along

direction connecting the two nodes. We immediately see that
depending on the sign of �, the Hamiltonian either has two-
or zero-band touching nodes. This indicates that if the two
bands have opposite inversion eigenvalues, the two nodes
can always annihilate at M.

Finally we note that the SDW state in the five-band model
meets the conditions required for the above analysis to hold.
Inversion I is a symmetry of the system, and the role of time
reversal is played by TR�=SR�n̂→−n̂� �TR �defined in
text� symmetric system, where n̂ is the direction of collinear
SDW. Let us choose the orbital basis da �a=1, . . . ,n� to be
eigenfunctions of inversion and label the eigenvalues to be

Ia. We then define the I �TR even basis d̃a in the following

fashion: if Ia=1 then d̃a=da, and if Ia=−1 then d̃a= ida. For a

collinear SDW with TR� symmetry the Hamiltonian in d̃a is
purely real, and so are the eigenfunctions in the momentum
space. In this basis, the arguments presented above can be
made, leading to the conclusion that a pair of Dirac nodes
cannot be annihilated at the � point. Hence, since we begin
with six nodes in all, there will always be a leftover pair that
is stable.
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