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We evaluate the tunneling conductance of clean ferromagnet/superconductor junctions via a fully self-
consistent numerical solution of the microscopic Bogoliubov-de Gennes equations. We present results for a
relevant range of values of the Fermi wave-vector mismatch �FWM�, the spin polarization, and the interfacial
scattering strength. For nonzero spin polarization, the conductance curves vary nonmonotonically with FWM.
The FWM dependence of our results is stronger than that previously found in non-self-consistent calculations
since, in the self-consistent case, the effective scattering potential near the interface depends on the FWM. The
dependence on interfacial scattering is monotonic. These results confirm that it is impossible to characterize
both the FWM and the interfacial scattering by a single effective parameter and that analysis of experimental
data via the use of such one-parameter models is unreliable.
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I. INTRODUCTION

Refinements in fabrication techniques that have occurred
over the past 12 years have made it possible to create devices
that exploit and display the interplay between ferromagnetic
and superconducting orderings in superconductor/
ferromagnet �SF� heterostructures. These developments have
raised the possibility of building devices that may be used to
manipulate and detect spin-polarized currents. Such devices,
besides being of obvious considerable scientific interest,
have technological applications for spintronics.1 It has been
suggested that the introduction of an F layer into solid-state
qubits may allow a stabilization of the state of the junction
without the need for an external field.2 Study of SF bilayer
devices may illuminate the behavior of other systems that
undergo spin/charge separation.3 Spin/charge separation oc-
curs when an electron is injected into a superconductor at the
gap edge. The charge is absorbed by the condensate and
quickly carried away by the supercurrent while its spin exci-
tation remains.4 The different spin orderings of the S and F
layers lead to spin-dependent transport effects, providing
ways to study phenomena such as spin polarization, spin-
diffusion lengths, and spin-relaxation times.5,6 Other poten-
tial applications and device geometries are discussed
elsewhere.1,7,8 Earlier work is extensively reviewed in Ref. 9.
The knowledge gained from SF spin probes can lead, if the
results are properly analyzed, to a better understanding of
spin transport properties in different materials and nanostruc-
tures.

Thanks to the improved technologies mentioned above,
transport in clean SF bilayers is a very active subject of
experimental research, but it remains a difficult topic theo-
retically. The problem of calculating the conductance of an
SF bilayer has been solved within the same model we con-
sider here9,10 but only in a non-self-consistent manner, that
is, by assuming the superconducting order parameter to be-
have as a sharp step function at the interface. This assump-
tion neglects the proximity effect, the “leaking” of supercon-
ductivity into the ferromagnet that occurs in real systems.
Thus, the proximity effect makes it impossible to identify a
precise location where the superconducting correlations end

and the ferromagnetic ones begin. Even with this simplifica-
tion, the non-self-consistent approach is still far from trivial,
as one must consider Andreev reflection,11 the spin asymme-
tries due to the exchange interaction, and the spin coupling at
the interface. Nevertheless, the stark fact remains that ne-
glecting self-consistency of the order parameter amounts to
no less than treating SF proximity effects inconsistently. We
remedy this situation in this paper, where we show how the
difficulties associated with the proximity effect can be over-
come and how a self-consistent calculation of the conduc-
tance can be achieved. In doing so, we fully account for the
influence of the proximity effect, leading to correct, accurate,
and more interesting results at the worthwhile cost of having
to solve a much more complicated problem. This procedure
results in the physical situation of a scattering potential that
is dependent on the wave functions of the scattered particles
and holes. There is no analytical approach that will give a
fully self-consistent pair amplitude for this problem: a nu-
merical approach must be taken. The spatial variations in the
pair amplitude complicate the details of Andreev reflection11

since the density of states �DOS� can no longer be described
as having a well-defined BCS gap,12 and one must consider
subgap states and even gapless superconductivity. Since
there is no exact analytical solution for the spatial variations
in the pair amplitude at an SF interface, there is no analytical
solution for the DOS either, nor a fortiori for the conduc-
tance. In short, this is a complicated four-component scatter-
ing problem without an analytical form for the scattering
potential. Despite these difficulties, the proximity effect must
not be neglected, as it has, as we shall see, a strong influence
on the results and on the way experimental data must be
analyzed.

Early experimental work13 was done on devices with an
insulating oxide layer between the S and F layers, thus in-
corporating a superconductor/insulator/ferromagnet �SIF�
tunnel junction. The stable oxide layer prevented the diffu-
sion of ferromagnetic impurities into the superconductor,
making it possible to work in the clean limit. One disadvan-
tage of SIF systems is that a tunnel barrier inhibits the prox-
imity effect. Another disadvantage of the SIF junction is the
reduced spin coherence lengths. While the electrons merely
tunnel through the insulator, the strong binding to the lattice
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leads to spin decoherence. These tunnel junctions provide
good information on the superconducting DOS, but it is du-
bious whether they provide a good picture of the state of the
ferromagnet near the interface, and they will certainly not
reveal the consequences of the proximity effect. Other
work14 in a spin transistor geometry demonstrated the possi-
bility of growing SF interfaces over a large area with no
insulating oxide layer. The purpose of that study was to ex-
plore transverse spin currents, not to examine bilayer con-
ductance at the SF interface. Also, it is not clear that there
was no diffusion of magnetic atoms at the interface. More
recent15,16 work has focused on bilayer conductance in planar
junctions with sharp interfaces and clean materials. Charac-
teristic peaks in the conductance were observed at bias volt-
ages corresponding to �0, the bulk superconducting gap en-
ergy, and an enhanced conductance at zero bias.

Point-contact bilayers offer a convenient method for
studying relatively abrupt interfaces.17–20 These devices are
made by growing an oxide layer, thick enough to suppress
tunneling, on top of a planar ferromagnet. A small hole is
made through the oxide, and a superconductor is grown on
top. This geometry prevents diffusion of ferromagnetic at-
oms during growth and allows for a uniform magnetic field.
In this way, it is possible to study experimentally17,18 the
conductance of clean SF bilayers in the ballistic limit. A
quicker method for making point contacts mechanically
places the tip of a sharpened superconducting wire on a bulk
F sample.6 While such a technique gives poor control over
the size and shape of the contact, it is technologically a very
desirable procedure as it leads to quickly obtained results,
and therefore it may be used to probe the spin states of many
different types of F materials. However, the analysis of the
data, and of conductance spectroscopy experimental results
generally, has been hampered by incomplete understanding
of how to relate data and theory. We will extensively address
this issue in this work. We will be able to show that there is
a clear influence of the proximity effect on transport at SF
interfaces, which will enhance our understanding of these
devices. This will also show that self-consistent studies are
necessary to actually understand these point-contact devices.

In the case of strong interfacial scattering, Andreev reflec-
tion and the proximity effect are suppressed. In the limit of a
very large interfacial barrier, the conductance reflects essen-
tially the superconducting DOS. If we work with small or
medium interfacial barriers, as is the case here, Andreev re-
flection and the proximity effect become very important,
leading to a much more interesting but much more difficult
problem. In the small barrier limit Andreev reflection can
lead to an enhancement of subgap conductance9 since a
single electron from F must excite a pair of electrons in S.
This agrees with experimental observations of zero-bias
conductance.15–18 The proximity effect changes the local
DOS �Ref. 21� in the vicinity of the junction, introducing
subgap states and even gapless superconductivity.

Semiclassical methods, such as the Eilenberger or Usadel
equations,7,22–24 can give a reasonable approximation to the
conductance curves25 in dirty systems. However, such mod-
els are not appropriate for clean systems and can lead to
spurious predictions.15,25 A common phenomenological ap-
proach is to define a current polarization parameter18 based

on the difference in spin-up and spin-down DOSs in F. The
portion of the transmission coefficient due to the Andreev
reflected hole �AR hole� is calculated for an SN interface.
Since the AR hole must be in the opposite spin band of the
incident electron, the AR hole coefficient is modified by a
simple function of the polarization parameter. This is a rea-
sonable phenomenological approach, but it lacks any micro-
scopic justification and is usually of limited success.19

There have been many attempts to derive a fully micro-
scopic model to describe the conductance in SF
systems.3,9,10,18,26–32 With the exception of some early work33

on a tight-binding model, these studies have used an abrupt
approximation for the pair amplitude at the interface, thereby
focusing on elastic scattering and Andreev reflection but ne-
glecting the proximity effect. These studies do predict some
correct qualitative features of the junctions. A self-consistent
two-dimensional �2D� tight-binding study34 has been per-
formed but only to study transport parallel to the interface.
The author of Ref. 27 remarks, and we agree, that only a
proper consideration of the proximity effect through self-
consistent methods will give the correct quantitative features
as well.

In this work we show how to numerically calculate con-
ductances of SF bilayers using a fully self-consistent solution
to the Bogoliubov-de Gennes �BdG� equations with a net
current. We require such a solution to the BdG equations to
properly treat clean inhomogeneous systems in three
dimensions.9 We will analyze the resulting eigenfunctions,
with proper boundary conditions, and generate transmission
probabilities for particles scattered from F to S via the
Blonder-Tinkham-Klapwijk �BTK� method.35 These trans-
mission probabilities can then be used to calculate I-V
curves, from which we will calculate the conductances. We
find good qualitative agreement with experimental results,
including an enhanced conductance at zero bias. We show
that the Fermi wave-vector mismatch at the interface, the
exchange field in the ferromagnet, and the interface barrier
scattering all have a significant and independent effect on the
shape of the conductance curves. This paper represents the
early fruits of a completely different technique, which we
expect will eventually be used to study more complicated
geometries and conditions. Our solutions will allow for a
very careful consideration of the influence of the proximity
effect on the conductance, even for very thick F layers.

In Sec. II, we describe in some detail our numerical meth-
ods and the procedures that we follow to extract the conduc-
tance as a function of applied voltage. The results are pre-
sented and discussed in detail in Sec. III. Section IV
recapitulates our conclusions and points to future directions.

II. METHODS

The systems we study here are planar junctions made of
SF bilayers with atomically smooth interfaces. We assume
that the layers are semi-infinite in the directions parallel to
the interface �the x-y directions�. We will take the bands to
be parabolic. The superconductor is assumed to be an s-wave
material. We use a numerical diagonalization of the micro-
scopic Bogoliubov-de Gennes36 equations for this inhomoge-
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neous system. Given a pair potential �order parameter� ��z�,
to be determined self-consistently, the spin-up quasiparticle
�un

↑�z�� and spin-down quasi-hole �vn
↓�z�� amplitudes obey the

BdG equations as follows:

�H − h�z� ��z�
��z� − �H + h�z�� ��un

↑�z�

vn
↓�z�

� = �n�un
↑�z�

vn
↓�z�

� . �2.1�

Here H= pz
2 /2m−EF�z�+��+U�z� is a single-particle Hamil-

tonian, where pz
2 /2m is the contribution to the kinetic energy

from motion in the z direction and ��=k�
2 /2m that corre-

sponds to the x-y variables. The continuous variable �� is
decoupled from the z direction but of course it affects the
eigenvalues �n, which are measured from the chemical po-
tential. We describe the magnetism by an exchange field h�z�
which takes the value h0 in the F material and vanishes in S.
As pointed out in Ref. 9, one should not assume that the
Fermi wave-vectors kFM and kFS in the F and S materials are
the same. We therefore introduce the dimensionless Fermi
wave-vector mismatch parameter ���kFM /kFS�2�EFM /EFS.
Within the superconducting layer, EF�z� is equal to EFS, the
bandwidth in the S layer �Fermi energy as measured from the
bottom of the band�, while in the ferromagnet we have
EF�z�=EFM, so that in the F regions the up and down band
widths are EF↑=EFM+h0 and EF↓=EFM−h0, respectively.

We also introduce the dimensionless magnetic strength
variable I by h0�EFMI. The I=1 limit corresponds to the
“half-metallic” case. Interfacial scattering is described by the
potential U�z� which we take to be of the form U�z�=H��z
−z0�, where z0 is the location of the interface. The dimen-
sionless parameter HB�mH /kFM �everywhere in this paper
�=1� conveniently characterizes the strength of the interfa-
cial scattering. The amplitudes un

↓�z� and vn
↑�z� can be written

down from symmetry relations.36 We will consider physi-
cally relevant values of �, I, and HB. We measure all lengths
in terms of the inverse of kFS, the Fermi wave vector in the S
material. The dimensionless F width in the z dimension is
DF=kFSdF, that of S is DS=kFSdS, and that of the entire
sample is D. The dimensionless spatial coordinates are de-
noted by Z=kFSz. The pair potential ��Z� must be found
through the self-consistent condition,

��Z� =
g�Z�

2 �
n

��un
↑�Z�vn

↓�Z� + un
↓�Z�vn

↑�Z��tanh� �n

2T
� .

�2.2�

We will show that we can treat this problem as a plane-
wave scattering problem, with a scattering potential that ex-
ists over a finite region of space. The scattering potential is,
of course, obtained through self-consistent methods. We will
then look at the transmitted and reflected waves sufficiently
far away from the interaction region so that they, too, are
plane waves.37 In this case, the spatial extent of the scattering
potential is governed by the proximity effect. Therefore, we
must take the sample size large enough that the pair ampli-
tude is zero over a large fraction of F, and it is approximately
equal to its bulk value �0 over a large fraction of S. We call
these regions in which the pair amplitude is approximately
constant the asymptotic regions. We must also take the total

sample size to be very large, so that the minimum wave-
vector in the problem, kmin= 2�

D , allows us to approximate a
continuum of incident plane waves. In principle, we should
take the sample size to be infinite, but we must choose a
finite value for computational considerations. We have taken
a total sample size of 60 times the superconducting coher-
ence length �0, which turned out to be sufficient to avoid
finite-size effects.

The procedure for calculating conductances begins by us-
ing the BdG equations �2.1� and the self-consistency condi-
tion �2.2� to find a self-consistent order parameter for the
system. We use a procedure similar to that in previous
work.8,12,38,39 We start with a fully three-dimensional wave
function 	�r�=eik�·r(u�Z� ,v�Z�)T. The factor of eik�·r con-
tributes only ��=k�

2 /2m, reducing this to a quasi-one-
dimensional �1D� problem in the Z direction. We then ex-
pand the u�Z� and v�Z� eigenfunctions in a basis of both
sines and cosines as follows:


q��Z� = 	

2

D
cos�kqZ�


 2

D
sin�kqZ� � �2.3�

where the � signs in the left subindex refer to the sine or the
cosine function, respectively. This choice of basis is equiva-
lent to using complex exponentials, but we gain some com-
putational advantage in the very time consuming step of cal-
culating a self-consistent pair amplitude by working with
real rather than complex numbers for the time being. The
wave vectors kq are defined in units of kFS as

kq =
2�q

D
�2.4�

with q being a positive integer. While the basis in principle
requires all q�0, in practice it is sufficient to chose a cutoff
large enough, so that the largest wave vector in the problem
corresponds to an energy that is a few D above the Fermi
level. This choice of basis, which implies periodic boundary
conditions as needed in this problem, allows for a wave func-
tion that is nonzero and has a nonzero first derivative at the
boundaries, two necessary conditions for a nonzero current
to be present. In this basis, the upper left quadrant of the
matrix in the left side of Eq. �2.1� is

Hq+p+
+ =

2

D
�kq

2 + �� + 1��pq +
2

D
�1 − � − I�

�� sin��kp − kq�DF�
kp − kq

−
sin��kp + kq�DF�

kp + kq


+
4
�HB

D
�cos�kqDF�cos�kpDF� + 1� , �2.5�

and the lower right quadrant is
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Hq+p+
− =

− 2

D
�kq

2 + �� + 1��pq −
2

D
�1 − � + I�

�� sin��kp − kq�DF�
kp − kq

−
sin��kp + kq�DF�

kp + kq


−
4
�HB

D
�cos�kqDF�cos�kpDF� + 1� �2.6�

for the cosine terms. For the sine terms,

Hq−p−
+ =

2

D
�kq

2 + �� + 1��pq +
2

D
�1 − � − I�

�� sin��kp − kq�DF�
kp − kq

−
sin��kp + kq�DF�

kp + kq


−
4
�HB

D
�sin�kqDF�sin�kpDF�� , �2.7�

and

Hq−p−
− =

− 2

D
�kq

2 + �� + 1��pq −
2

D
�1 − � + I�

�� sin��kp − kq�DF�
kp − kq

−
sin��kp + kq�DF�

kp + kq


+
4
�HB

D
�sin�kqDF�sin�kpDF�� . �2.8�

For the cross terms involving a sine and a cosine we have

Hq+p−
+ =

2

D
� cos��kp − kq�D� − cos��kp − kq�DF�

kp − kq

−
cos��kp + kq�D� − cos��kp + kq�DF�

kp + kq
 −

2

D
�� − I�

�� cos��kp − kq�DF� − 1

kp − kq
−

cos��kp + kq�DF� − 1

kp + kq


−
4
�HB

D
�sin�kqDF�cos�kpDF�� . �2.9�

and

Hq+p−
− = −

2

D
� cos��kp − kq�D� − cos��kp − kq�DF�

kp − kq

−
cos��kp + kq�D� − cos��kp + kq�DF�

kp + kq
� −

2

D
�� + I�

�� cos��kp − kq�DF� − 1

kp − kq
−

cos��kp + kq�DF� − 1

kp + kq


+
4
�HB

D
�sin�kqDF�cos�kpDF�� . �2.10�

In the above expressions, the matrix elements are given in
units of EFS, i.e., in dimensionless form.

The self-consistency condition �Eq. �2.2�� requires us to
calculate the �
p�Z����Z��
q�Z�� matrix elements numeri-
cally. The iterative procedure is then to cycle through Eqs.

�2.1� and �2.2� until convergence is obtained, as has been
explained elsewhere.8,12,38,39 The very large sizes required for
this problem, however, make the computations technically
more demanding. It is necessary to massively vectorize all
programs in order to obtain results in a reasonable amount of
physical time. We have verified that the results for ��z� and
other equilibrium quantities coincide with previous ones ob-
tained with real functions and nontransport boundary condi-
tions.

Once we have obtained a fully self-consistent spectrum of
eigenfunctions and eigenvalues, we must extract a conduc-
tance from them. To successfully apply a plane-wave scatter-
ing approach, we require a sample large enough, so that we
can assume that the scattering potential is confined to a finite
region about the interface and that there are “asymptotic”
regions in S and F, far away from the scattering region,
where the scattering potential is not felt and the behavior is
bulklike. The non-self-consistent work9 assumes the scatter-
ing region to be infinitely small. The general outlines for the
self-consistent and non-self-consistent treatments are similar.
We will describe here first the salient features of the non-
self-consistent treatment and then discuss the changes neces-
sary to study the self-consistent case.

Consider a single electron of spin � in F with momentum
k�, which is at an angle �� with the Z axis �see Fig. 1�. This
electron may be partially reflected from the interface as an
electron with spin � and a momentum of the same magni-
tude, but with the kz component in the opposite direction
�ordinary reflection�. Andreev reflection allows a single
charge from F to create a Cooper pair excitation in S without
violating charge conservation. In this process, when a single
electron in spin band � is incident on the interface, a hole is
retroreflected into opposite spin band, which we denote by �̄,
with momentum k�̄, and a Cooper pair excitation is created
in S. We write this as

SF

ELQ

θσ’

HLQ

θσ’

incident electron

θσ

retro-reflected hole

θσ-

reflected electron

θσ

FIG. 1. �Color online� Scattering at an SF interface. An electron
is incident from the ferromagnet at an angle �� with spin � and
momentum k�. Ordinary scattering leads to a partially reflected
electron with the same spin and wave vector. For subgap scattering,
excitations in the superconductor are Cooper pairs, consisting of an
electronlike quasiparticle �ELQ� and a holelike quasiparticle �HLQ�
carrying a net spin of zero and charge 2e. To conserve charge, a
hole is retroreflected �Andreev reflection� at an angle ��̄ into the
opposite spin band denoted by �̄.
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���Z� = eik�Z�1

0
� + a�eik�̄Z�0

1
� + b�e−ik�Z�1

0
� ,

�2.11�

where k� and k�̄ indicate the Z components of k� and k�̄,
respectively. As noted above Eq. �2.3�, k� is conserved. We
normalize to the incident-particle flux and associate the ordi-
nary reflected electron with the b� amplitude and the An-
dreev reflected hole with the a� amplitude. The transmitted
wave function in S is

����z� = c�eik��z�u�

v�̄
� + d�e−ik��z�v�̄

u�

� , �2.12�

where c� corresponds to an electronlike quasiparticle �ELQ�
moving to the right and d� corresponds to a holelike quasi-
particle �HLQ� moving to the left. The u� and v�̄ amplitudes
must obey the normalization condition u�

2 +v�̄
2 =1. Similar

equations can be written down for states with incident holes.
We can use the a� and b� amplitudes to write down a for-
mula for the conductance in the T→0 limit,9

G��,�� � G↑��,�� + G↓��,�� =
e2

h
�
�

P��1 +
k�̄

k�

�a�̄�2 − �b��2� ,

�2.13�

where P�= �1+��I� /2 accounts for the probability for the
incident electron to have spin �,26 with ��=1 for the spin-up
band and ��=−1 for the spin-down band. The ratio

k�̄

k�
ac-

counts for the different spin band wave vectors. The conduc-
tance is a function of the incident angle of the electron from
F, ����. While we do not explicitly write it down, a�, b�,
k�̄, and k� are functions of � and � as well. The angularly
averaged conductance is given by9

G���� � �G�� =

�
0

��

G���,��cos���d�

�
0

��

cos���d�

, �2.14�

where �� is the angle of total reflection �critical angle� for
incident particles of spin �.

This model has the usual features of plane-wave scatter-
ing. The conservation of k� across the interface leads to a
modified9 version of Snell’s law,

k� sin��� = k�̄ sin���̄� �2.15�

and

k� sin��� = k�� sin����� . �2.16�

The incident and Andreev reflected angles are, respectively,
given by sin���=k� /k� and sin���̄�=k� /k�̄. The transmitted
angle ��� is found through sin�����=k� /k�� . This leads to a
number of phenomena similar to those in electromagnetic
wave scattering. In particular, the critical angle for ordinary

reflection, which is given by ��=sin−1�
k��
k�

�=sin−1� 1

��1+��I� �,

depends on the spin band of the incident electron. There is

also an angle beyond which Andreev reflection is no longer

possible given by �A�=sin−1
1+��̄I

1+��I .
The foregoing discussion applies also to the non-self-

consistent approach except that Eqs. �2.11� and �2.12� are
now possible only in the asymptotic regions far from the
interface. The comments that follow are the steps necessary
to analyze the self-consistent results. Since there is no con-
dition in the BdG equations to impose a net current traveling
to the right, the self-consistent spectrum of eigenfunctions
would not be, in the asymptotic regions, in the convenient
form of Eqs. �2.11� and �2.12� even if we were to use a basis
of complex exponentials. Our choice of periodic boundary
conditions allows us to impose the condition of a net current
a posteriori. This is very similar to the treatment given to
one-dimensional scattering problems in elementary quantum
mechanics. Since a one-dimensional problem with periodic
boundary conditions will produce twofold-degenerate
solutions,40 this quasi-one-dimensional problem also has
twofold-degenerate solutions. We can find a linear combina-
tion of each pair of degenerate solutions that corresponds to
a particle injected into the S layer from the F layer. If we
look in the F layer sufficiently far away from the interface �in
the asymptotic region�, so that the pair amplitude has gone
completely to zero, we find that the numerically calculated
eigenfunctions can be fit to the form

���Z� = ��� sin�k�Z + ���
��̄ sin�k�̄Z + ��̄� � . �2.17�

Similarly, in the asymptotic region of S, we find

����Z� = ���� sin�k��Z + ����

��̄� sin�k��Z + ���� � . �2.18�

If we take a degenerate pair of solutions, ��A�Z� and
��B�Z�, they will have the same k� and k�̄ but different ��,
��̄, ��, and ��̄, so that they are orthogonal. We can then find
a unique linear combination of a pair of degenerate states,
���Z�=A��A�Z�+B��B�Z�, that is in the form of Eqs. �2.11�
and �2.12� in the asymptotic region. The appropriate complex
A and B coefficients are

A =
��̄Bei��̄A

��A��̄Bei���A+��̄A� − ��B��̄Aei���B+��̄B� �2.19�

and

B =
− A��̄A

��̄Bei���̄B−��̄A� , �2.20�

where we have subscripted the parameters to indicate the
eigenfunction to which they belong. A small amount of el-
ementary algebra yields expressions for the a� and b� coef-
ficients, which we can then substitute into Eq. �2.13� to find
the conductance.

To find quantities such as k�, k�̄, ��, ��̄, ��, and ��̄, we
analyze each eigenfunction in the asymptotic region of F.
The wave numbers k� and k�̄ are quantized in units of kmin
=2� /D by the discretization of the system. To find their
values in each case, we find the zeros of the eigenfunction to
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get the characteristic wave number of the eigenfunction and
assign it to the nearest multiple of kmin. It is then a trivial step
to obtain values for �� and ��̄. Finally, we calculate the am-
plitudes �� and ��̄ by integrating the square of the eigen-
function over an integer number of periods. We test the qual-
ity of our fit by integrating the fit equation with the
numerical eigenfunction over an integer number of periods.
Each value of a� and b� depends on both the total-energy
value of the state, �, and the perpendicular wave vector k�.
To obtain a smooth curve for the conductance, we must have
several hundred values of �. Depending on the critical
angles, there will be tens to hundreds of k� corresponding to
a single value of �. The above procedure must therefore be
repeated thousands of times to generate a single conductance
curve. Since the a� and b� coefficients, and therefore the
conductance, are functions of these numerically obtained
quantities, they are subjected to numerical fluctuations aris-
ing from the discretization of the k’s and numerical errors.

To reduce the influence of numerical fluctuations on the
conductance, we use a procedure which has both numerical
advantages and which better reflects the physics of the prob-
lem. At any temperature, the current is the integral over en-
ergies of the conductance,41

I�V� =� G����f�� − eV� − f����d� �2.21�

where G���=G↑���+G↓��� is the conductance, f is the Fermi
function, and V is the bias voltage. At low T, f��� can be
approximated by a step function, and it is immediately obvi-
ous that the elementary relationship between current and
conductance

G�V� =
�I�V�
�V

�2.22�

is not just a definition but a mathematical identity.
It is convenient to numerically evaluate G�V� as follows:

after the set of a’s and b’s have been obtained for all relevant
energies and angles, we apply Eqs. �2.13�, �2.14�, and �2.21�
to compute I�V�. The integral in the first term of Eq. �2.21�
�the second term is independent of V� is evaluated numeri-
cally by summing all computed values of G��� from an en-
ergy that is a few D below the Fermi energy up to the bias
voltage V. The exact value of the lower limit on the integral
is not important because it will change the resulting value by
a constant which will disappear when Eq. �2.22� is applied. A
nonzero lower limit is advantageous because the resulting
value will depend on a larger number of states, thus reducing
the effects of numerical fluctuations. With this procedure, the
value of the integral depends on the conductance for all volt-
ages below V. This has the effect of reducing the influence of
numerical fluctuations, resulting in very smooth data, as il-
lustrated by the example given in Fig. 2. The bias voltage is
given throughout this work in units of �0 /e, so that a dimen-
sionless bias voltage of V=1 corresponds to the gap edge,
and the normalized current follows from this and the dimen-
sionless definition of G discussed below. This resulting
smooth data is then fit to an appropriate simple function. The
fit for the V�1 and V�1 regions are done separately with

the condition that the first derivative of the current be con-
tinuous at V=1. The resulting fit is then numerically differ-
entiated to obtain the result for G�V�. We follow this proce-
dure for both the forward-scattering and the angularly
averaged cases.

III. RESULTS AND ANALYSIS

In this section, we present our numerical results for the
conductance of the SF bilayers described above at zero tem-
perature. The materials that form the junction can be charac-
terized by four dimensionless parameters: the exchange field
parameter I, the Fermi wave-vector mismatch �, the barrier
strength HB, and the dimensionless superconducting coher-
ence length �0�kFS�0. We will vary the I and � parameters
over their physically relevant ranges, which we take to be
0.1���2 and 0� I�1 in our units. For the coherence
length we choose �0=50 and consider both the case of neg-
ligible barrier HB=0 and that of an intermediate barrier HB
=1. For stronger interfacial scattering one of course quickly
recovers the well-known and less interesting standard tunnel-
ing results. Geometrically, we will use values of the dimen-
sionless thicknesses DF=DS=1500. By calculating conduc-
tance curves at a few values of � and I for smaller and larger
lengths, we have found that the lengths used here are suffi-
cient to avoid finite-size effects. Using a smaller sample size
increased numerical fluctuations although it did not change
overall trends and averages in the data. We therefore chose
the largest sample size that allowed us to calculate high qual-
ity numerical results in a reasonable amount of computer
time.

Following common convention, dimensionless conduc-
tances G�V� are normalized to e2 /h. Thus, for a sample with
�=1, I=0, HB=0, and �0=0 �a homogeneous nonmagnetic
conductor in the normal state�, we would obtain G�V��1.
The bias voltage is in units of �0 /e; thus, V=1 corresponds
to the gap edge. We will present results for a range of values
of �, both smaller and larger than unity, and consider values
of the exchange field I=0.2, I=0.5, and I=
3 /2�0.866. Re-
sults for G�V� will be given for two cases: forward scattering
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FIG. 2. �Color online� Example of the fitting procedure for the
normalized current, as described in the text in connection with Eq.
�2.21�. The example shown here corresponds to the case �=1 and
I=0.866, which will be discussed below �Figs. 4 and 5�. The crosses
are the numerical results obtained as explained in the text and the
curves are the fits. The units are explained in the text.
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and angularly averaged scattering. For the forward-scattering
case, we integrate Eq. �2.14� up to a small angle of � /30 for
spin-up and spin-down incident particles, while the angularly
averaged results are integrated up to the maximum possible
angle. Forward-scattering results are most applicable to some
point-contact devices.

We consider first, in Fig. 3, the behavior of G�V� at a
fixed intermediate value of I �I=0.2� for several values of �
in the range of most experimental relevance, ��1. This and
subsequent figures are for HB=0, the experimentally more
important case of a barrier free junction, which we will study
in more detail. Later we will turn to the case where the
tunneling limit is approached by setting HB=1. The forward-
scattering results are shown in the top panel of Fig. 3. Of the
cases shown in this panel, those in the top curve ��=1� serve
as a good test of our technique since even with a relatively
small exchange field we find results qualitatively similar to
the well-established ones obtained by BTK �Ref. 35� at I
=0. In the BTK approximation, the conductance at zero bias
voltage for samples with I=0 and �=1 should be equal to 2
due to Andreev reflection, and we see that the top curve in
our plot approaches this limit. There, the conductance at V
=0 is slightly smaller than 2, which is easily explained by a
slightly suppressed Andreev reflection due to the different
DOSs in the spin-up and spin-down bands at our nonzero I.
Furthermore, the conductance asymptotically approaches the
normal-state value �unity in these units� at larger bias volt-
ages. We can therefore say that our results approach BTK for
�=1 and small I.

The conductance is larger than unity throughout the sub-
gap range for all curves in Fig. 3 except at the smallest �. In
every case, however, we see that the zero bias conductance is
enhanced with respect to the large bias value G�V�3�. The
value of G�0� monotonically decreases with �, which is rea-
sonable because a smaller � will lead to stronger ordinary
scattering at the interface and inhibited Andreev reflection. If
the Andreev reflection and ordinary scattering responded to
� in the same way, then the ratio of the zero bias conduc-
tance to the conductance at larger bias, say V=3, would be
constant. Instead, we see that the subgap enhancement is
considerably reduced for smaller �, which implies that An-
dreev reflection is much more sensitive to � than ordinary
reflection. The ordering of the conductance curves for V
�1 is nonmonotonic. The order from greatest to least G is
�=0.71,1.0,0.50,0.25,0.11. This is sensible because the
Fermi wave vector for the majority band in the F layer of the
�=0.71 curve is equal to 0.85 in units of the Fermi wave
vector in S, while that for the �=1.0 curve is 1.2. Therefore,
the �=0.71 F layer is slightly better matched to the S than
the �=1.0 layer.

The angularly averaged conductance �bottom panel of
Fig. 3� is qualitatively similar to that found in the forward-
scattering case. The values of the conductances are smaller
than in the forward-scattering case because a smaller fraction
of the incident current �to which everything is normalized�
will pass across the junction. The zero bias enhancement
�with respect to the large bias limit� is appreciably less pro-
nounced at smaller �. At �=0.11, the value of G�0� is not
much larger than G�3�. As in the forward-scattering case, the
values of G�1� depend strongly on �. The �=1 curve in the
bottom panel of Fig. 3 shows a very weak conductance peak
at a subgap bias. This is a characteristic feature9 of systems
for which the junction characteristics are dominated by the
exchange field. For �=0.71, which introduces a small
amount of additional ordinary scattering, the conductance
peak has completely disappeared. We shall see below that
this peak is enhanced with larger I.

The results for a very strong exchange field �I=0.866� are
shown in Figs. 4 and 5. The first of these figures covers the
case where ��1. The strong exchange field makes many
features that are already present in Fig. 3 more dramatic.
When present, the peaks at subgap biases are proportionally
much higher. In the case of �=0.25, there is now a very
weak zero bias enhancement in the forward-scattering case
and no such enhancement in the angular averaging case. For
�=0.11, the suppression of the conductance for subgap bias
voltages is very strong. As in the I=0.2 case, the ordering of
the conductance curves for V�1 is nonmonotonic. The order
from greatest to least is �=0.50,0.71,1.0,0.25,0.11. As be-
fore, the ordering is dictated by the degree to which the
Fermi wave vector of the majority band in F matches the
Fermi wave vector in S. In all cases, the value is small be-
cause the minority band contributes a minuscule amount to
the conductivity.

The next figure �Fig. 5� is for I=0.866, as in Fig. 4, but
with ��1. Such large values of � might be experimentally
the case only if the superconducting material were some ox-
ide material with s-wave pairing, but it is nevertheless of
theoretical interest. For the two values of ��1 considered
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FIG. 3. �Color online� Results for the dimensionless conduc-
tance G�V� �see text� as a function of bias voltage V given in units
of �0 /e. The top panel shows the forward-scattering case for I
=0.2 and various ��1. The forward conductance is calculated by
averaging over an incident-particle flux with angles smaller than
� /30. The bottom panel shows the angularly averaged case at the
same values of I and �. The conductances are averaged over angles
up to the critical angle �� for spin-up and spin-down particles.

TUNNELING CONDUCTANCE IN… PHYSICAL REVIEW B 79, 014502 �2009�

014502-7



there we see how the previously observed trends in � con-
tinue when the mismatch is in the opposite direction. We see
that the subgap behavior is monotonic with a marked peak at
nonzero bias which is not obtained9 without self-consistency,
and that the conductance is nonmonotonic in � for V�1.

In Fig. 6, we consider the effect of changing I at constant
�. The mismatch is held to �=1 and the exchange field is
taken from a moderate I=0.2 to a strong I=0.866. We chose
to show the angularly averaged case because the subgap con-
ductance peak is more apparent than in the forward-
scattering case. The I=0.2 curve, which was discussed
above, appears nearly flat when in the company of curves
with larger I. For I=0.5, the conductance peak is a little more
pronounced. Overall, the conductance is smaller as I in-
creases because a larger exchange field leads to more poorly
matched Fermi wave vectors from F to S. The I=0.866 con-
ductance curve is the most dramatic. The value at zero bias is
proportionally much larger than G�1� than for I=0.5 or I
=0.2. The ratio of the zero bias conductance to the conduc-
tance at larger bias voltages is approximately two for all
values of I shown here. This contradicts the common asser-
tion that the reduction in the minority-band DOS invariably
leads to a smaller Andreev reflection.

In all figures shown thus far, the cusp in the conductance
for bias voltages corresponding to the gap edge is dependent
on both � and I. The non-self-consistent analysis9 leads to an
analytical prediction that the value of G�1� depends on I but
not on �, namely,

G�V = 1;I� =
4�1 − I2�1/2

1 + �1 − I2�1/2 . �3.1�

This result depends very strongly on the assumption that the
order parameter is independent of �, an assumption which is
not valid particularly near the interface,39 when the order
parameter is calculated self-consistently. By comparing the
results reported here to Eq. �3.1�, one can easily gauge the
importance of the effects of self-consistency. Figure 7 is a
direct comparison between the non-self-consistent formula9

for G�V=1; I� �Eq. �3.1�� and the self-consistent results. The
figure shows G�V=1; I� for I=0.2 �top panel� and I=0.866
�bottom panel�. The results for I=0.2 are plotted in the range
of � included in Fig. 3 and those for I=0.866 in the more
extended range included in Figs. 4 and 5. The non-self-
consistent results, which are, as explained above, indepen-
dent of �, are shown as the horizontal lines. The self-
consistent results are the data points. The error bars represent
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the numerical uncertainty which arises because G�V� has a
sharp cusp at V=1. This discontinuous first derivative at V
=1 makes this the most difficult value of the conductance to
obtain numerically, but it is experimentally useful. Even with
the numerical error, the difference between the two methods
is apparent. There is a clear increasing trend in the self-
consistent results as a function of �, a sharp contrast with the
�-independent value predicted by the non-self-consistent re-
sult. This trend is stronger at larger I. This large discrepancy
is due, as mentioned above, to the fact that the non-self-
consistent result relies on the assumption that � is indepen-
dent of �. Discrepancies of similar order are also seen at
other values of V. These quantitative differences are in addi-
tion to qualitative ones such as those discussed in connection
with Fig. 5. It should not come as a surprise that the self-
consistent results for G are so different from the non-self-
consistent ones since, near the interface, ��z� is very differ-
ent from the non-self-consistent �that is the bulk� value. It
seems, though, that the effect of this difference on the result
for G�V=1� is minimized when the mismatch is at a mini-
mum. This is, however, rarely the experimental situation: for
most materials of experimental interest there is considerable
mismatch.

In the non-self-consistent treatment, it was found that the
Fermi wave-vector mismatch � has an important effect on
the conductance curves.9 In this section, we have shown that
the effect of � is even greater when self-consistency is in-
cluded. It is a common experimental practice42,43 to charac-
terize conductance curves by using some set of parameters
�e.g., I, HB, and �0� which does not include �. One uses such
fits to experimental results for G�V� to extract I, the un-
known polarization of the F electrode. The size of the varia-
tion in G�V� with �, up to 35% from the smallest to the

largest values at V=1 as shown in Fig. 7, is such that even
�see, e.g., Fig. 6� a 10% variation in G�V=1� corresponds to
a large change in I. In light of the results in Ref. 9, confirmed
and reinforced here, neglecting � is a deplorable practice
and can easily lead to spurious results. A much sounder pro-
cedure would be to fit results for different samples using �,
HB, and I as fitting parameters, taking �0 as the value of the
bulk material and disentangling the effects of � and HB by
remembering that the latter, but not the former, will change
from junction to junction.

The difference between self-consistent and non-self-
consistent results that we have found here has additional pro-
found implications for the experimental study of SF junc-
tions. As just mentioned, G�V� data from such junctions are
used experimentally to quickly characterize material param-
eters of the junction, most notably the strength I of the mag-
net, which is otherwise very difficult to access experimen-
tally. To do this the G�V� data must be fit to the appropriate
model. A serious difficulty in doing this is that the curves are
simple and the parameters available are many. In addition to
microscopic parameters, such as I, �0, or �, experimentalists
also have overall normalizations and even phenomenological
“broadening” parameters �see, e.g., � of Ref. 44� at their
disposal. Therefore it turns out to be quite possible, even
easy, to fit the same data to different models but with ensuing
widely different values of I. This is starkly shown, among
other places, in Fig. 6 of Ref. 20 where the same data are fit
to three different phenomenological models, resulting in
three inferred values of I, differing from each other by up to
50%. Therefore, even the most careful analysis of experi-
mental data will produce nonsense if an incorrect model is
used.

It is therefore fundamental to choose the correct model if
one is to have any hope of obtaining the correct material
parameters. In Fig. 8, we illustrate that very serious errors in
the determination of I will ensue from using the non-self-
consistent theory, rather than the correct self-consistent one,
to fit experimental data. We assume for these purposes a
value of �=0.11, which is appropriate for a narrow-band
magnet in contact with a good metallic superconductor. If the
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FIG. 7. �Color online� Plots of G�I ;V=1�, the value of the di-
mensionless conductance at V=1, in the forward-scattering case for
I=0.2 �top panel� and I=0.866 �bottom panel�. The horizontal lines
labeled by G�V , I� show the result from the non-self-consistent for-
mula �Eq. �3.1��. The points represent the numerical results from the
present self-consistent study at the values of I indicated in the leg-
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obtained without a fully self-consistent pair amplitude.
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barrier is clean, which can be determined from the values of
G�V� at small V �see below�, then the parameters to be de-
termined from the fit would be �0, which would follow from
the position of the finite bias cusp, and I, which would have
to be inferred from the values of G near V=1. In Fig. 8 we
plot �solid line� the non-self-consistent result �from inverting
Eq. �3.1�� giving the inferred value of I in terms of the ex-
perimentally measured value G�V=1�. The data points are
our self-consistent numerical results. We see then that the
results are very different. For example, an experimental
value of G�1�=1.78, which correctly corresponds to a weak
magnetic polarization I=0.2, would be misinterpreted as im-
plying I=0.60, a much stronger magnet and an error by a
factor of 3. One should physically expect such discrepancies
since the self-consistent pair potential near the boundary is
quite different from the step function of the non-self-
consistent theory.39 Hence, the use of a non-self-consistent
theory can easily lead to disastrous errors, and using the
self-consistent theory is mandatory if material parameters are
to be reliably deduced.

All of the previous results shown have been obtained in
the regime of most experimental interest where the interfa-
cial scattering parameter HB is negligible. In the next figure
�Fig. 9� we present results for HB=1, when the tunneling
regime �HB�1� is approached, as can be seen from the very
different shape of the curves. The two panels in the figure
display both the dependence of the results on I at constant �
�top panel� and the dependence on � at constant I �bottom
panel�. In general, these dependences are not strong. This is
because in the true tunneling regime G�V� simply reflects the
superconducting DOS and, as one approaches this regime,

this should of course result in a weaker � dependence. This
is well known to experimentalists: to obtain reliable mea-
surements of quantities such as the polarization parameter, it
is always preferable to work with samples that have small
interfacial scattering. In other words, a larger HB inhibits
Andreev reflection and the proximity effects.

Nevertheless, at HB=1 some definite trends can be ascer-
tained and definite statements can be made. In the top panel
of Fig. 9 one can see that the I dependence at constant � is
still relatively strong, particularly in the region V�1. It is
remarkable that the behavior with I is strongly nonmonotonic
at larger voltages and also, although much more weakly, at
V�1. This makes interpolation schemes very doubtful in
interpreting experimental data. In the bottom panel, corre-
sponding to a strong magnet, we see that the mismatch de-
pendence is weak in the region V�1 for ��1 but quite
noticeable for ��1. In the region V�1 the situation is ex-
actly the opposite: the curves corresponding to �=1 and �
=2 nearly coincide, while that for smaller � is clearly dif-
ferent. This nonmonotonic behavior contrasts again with that
found in non-self-consistent results �see, for example, panel
�b� of Fig. 2 in Ref. 9� which, for similar values of I, vary
monotonically45 with mismatch in the same way over the
whole range of V.

IV. CONCLUSIONS

We have introduced a method for calculating conduc-
tances in an FS bilayer within a fully self-consistent micro-
scopic model. Many of the features that we find are seen in
experimental work. There is a subgap enhancement of the
conductance, the conductance does approach the normal-
state value for larger bias voltages, and there is a cusp at bias
voltages of unity. Most important, we show that, as already
indicated by the non-self-consistent results, detailed experi-
mental analysis �in particular the extraction of the spin po-
larization� is impossible if one does not take into account
separately the effects of mismatch and those of barrier scat-
tering.

The features of the conductance curves are superficially
similar those obtained via non-self-consistent procedures;
there are however qualitative and strong quantitative differ-
ences. This is clearly illustrated by our study of the depen-
dence of G�V� on � and I. Most telling is the strong depen-
dence of G�V� on the Fermi wave-vector mismatch
parameter �. In the non-self-consistent approach, G�V
��0� is analytically found9 to be independent of �, while
here we find that this quantity shows a monotonically in-
creasing trend, varying by more than 35% over the range of
� we study. Unlike the non-self-consistent results, we find
that the subgap conductance is reduced for smaller � and
larger I. We find a subgap conductance peak for strong I and
� close to unity. All of this indicates that, while the non-self-
consistent approach is a good tool to help us understand
qualitatively some of the features of SF transport, a fully
self-consistent approach is needed to properly model experi-
mental data.

The importance of including self-consistency in analyzing
experimental results must be re-emphasized. We have seen
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how, as reported in the literature, it is easy to extract20 very
different values of the parameter I from good fits of the same
data to at least three different models. The problem is that
such a physically significant parameter is experimentally in-
accessible, and its value must be inferred from such fits. The
key issue in this paper is not to introduce an additional set of
parameters to which the data can also be fitted; to think this
would be to misunderstand its purpose. Our point is that the
correct self-consistent treatment of the proximity effect
makes a very important quantitative difference in the value
of the fitting parameters; that is, in the extracted values of the
material properties one is trying to infer from the measure-
ments. We have explored the influence of the proximity ef-
fect, which is not directly observable, on the conductance of
bilayer junctions. We have developed a method wherein the
conductance is calculated while correctly taking the proxim-
ity effect into account and compared it to a model which is
equivalent in all respects but neglects self-consistency. Based
on this comparison, it is clear that the proximity effect

should be taken into account self-consistently when analyz-
ing experimental data. Failure to do so makes experimental
results simply unreliable. It must also be included in devel-
oping future models.

This paper represents merely the first step in studying SF
bilayers using a fully self-consistent pair amplitude. Future
work may involve the addition of normal-metal electrodes at
the boundaries of the sample, allowing us to explore the
effects of finite F and S widths. Detailed studies of the rela-
tionship between the local densities of states �DOSs� and the
conductance are also desirable. Finally, the effects of finite
temperature should be explored.

ACKNOWLEDGMENTS

We are very grateful to Klaus Halterman for many discus-
sions on the technical aspects of this numerical work and to
Igor Žutić for numerous conversations on this problem.

*Present address: Areté Associates, 1550 Crystal Dr. Ste. 703, Ar-
lington, Virginia 22202, USA; pbarsic@arete.com

†otvalls@umn.edu
‡Also at Minnesota Supercomputer Institute, University of Minne-

sota, Minneapolis, Minnesota 55455, USA.
1 I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323

�2004�.
2 G. Blatter, V. B. Geshkenbein, and L. B. Ioffe, Phys. Rev. B 63,

174511 �2001�.
3 S. Kashiwaya, Y. Tanaka, N. Yoshida, and M. R. Beasley, Phys.

Rev. B 60, 3572 �1999�.
4 B. Leridon, J. Lesueur, and M. Aprili, Phys. Rev. B 72,

180505�R� �2005�.
5 T. Yamashita, S. Takahashi, H. Imamura, and S. Maekawa, Phys.

Rev. B 65, 172509 �2002�.
6 R. J. Soulen, Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T.

Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak,
J. S. Moodera, A. Barry, and J. M. D. Coey, Science 282, 85
�1998�.

7 A. I. Buzdin, Rev. Mod. Phys. 77, 935 �2005�.
8 K. Halterman and O. T. Valls, Phys. Rev. B 72, 060514�R�

�2005�.
9 I. Žutić and O. T. Valls, Phys. Rev. B 61, 1555 �2000�.

10 I. Žutić and O. T. Valls, Phys. Rev. B 60, 6320 �1999�.
11 A. F. Andreev, Sov. Phys. JETP 19, 1228 �1964�.
12 K. Halterman and O. T. Valls, Phys. Rev. B 69, 014517 �2004�.
13 R. Meservey and P. Tedrow, Phys. Rep. 238, 173 �1994�.
14 M. Johnson, Appl. Phys. Lett. 65, 1460 �1994�.
15 S. Reymond, P. SanGiorgio, M. R. Beasley, J. Kim, T. Kim, and

K. Char, Phys. Rev. B 73, 054505 �2006�.
16 S. Hacohen-Gourgy, B. Almog, and G. Deutscher, Appl. Phys.

Lett. 92, 152502 �2008�.
17 P. Raychaudhuri, A. P. Mackenzie, J. W. Reiner, and M. R. Bea-

sley, Phys. Rev. B 67, 020411�R� �2003�.
18 S. K. Upadhyay, A. Palanisami, R. N. Louie, and R. A. Buhr-

man, Phys. Rev. Lett. 81, 3247 �1998�.

19 F. Pérez-Willard, J. C. Cuevas, C. Sürgers, P. Pfundstein, J.
Kopu, M. Eschrig, and H. v. Löhneysen, Phys. Rev. B 69,
140502�R� �2004�.

20 P. Chalsani, S. K. Upadhyay, O. Ozatay, and R. A. Buhrman,
Phys. Rev. B 75, 094417 �2007�.

21 K. Halterman and O. T. Valls, Physica C 397, 151 �2003�.
22 M. Krawiec, B. L. Györffy, and J. F. Annett, Phys. Rev. B 66,

172505 �2002�.
23 M. Leadbeater, C. J. Lambert, K. E. Nagaev, R. Raimondi, and

A. F. Volkov, Phys. Rev. B 59, 12264 �1999�.
24 R. Seviour, C. J. Lambert, and A. F. Volkov, Phys. Rev. B 59,

6031 �1999�.
25 G. P. Pepe, R. Latempa, L. Parlato, A. Ruotolo, G. Ausanio, G.

Peluso, A. Barone, A. A. Golubov, Ya. V. Fominov, and M. Yu.
Kupriyanov, Phys. Rev. B 73, 054506 �2006�.

26 M. J. M de Jong and C. W. J. Beenakker, Phys. Rev. Lett. 74,
1657 �1995�.

27 N. Stefanakis, Phys. Rev. B 64, 224502 �2001�.
28 R. Mélin, Europhys. Lett. 51, 202 �2000�.
29 G. Tkachov, E. McCann, and V. I. Fal’ko, Phys. Rev. B 65,

024519 �2001�.
30 J. Cayssol and G. Montambaux, Phys. Rev. B 71, 012507

�2005�.
31 M. Božović and Z. Radović, Phys. Rev. B 66, 134524 �2002�.
32 J. Linder and A. Sudbø, Phys. Rev. B 75, 134509 �2007�.
33 J. X. Zhu and C. S. Ting, Phys. Rev. B 61, 1456 �2000�.
34 K. Kuboki and H. Takahashi, Phys. Rev. B 70, 214524 �2004�.
35 G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B

25, 4515 �1982�.
36 P. G. de Gennes, Superconductivity of Metals and Alloys

�Addison-Wesley, Reading, MA, 1989�.
37 E. Merzbacher, Quantum Mechanics, 2nd ed. �John Wiley &

Sons, New York, 1970�.
38 P. H. Barsic, O. T. Valls, and K. Halterman, Phys. Rev. B 75,

104502 �2007�.
39 K. Halterman and O. T. Valls, Phys. Rev. B 65, 014509 �2001�.

TUNNELING CONDUCTANCE IN… PHYSICAL REVIEW B 79, 014502 �2009�

014502-11



40 J. W. Brown and R. V. Churchill, Fourier Series and Boundary
Value Problems, 6th ed. �McGraw-Hill, New York, 2001�.

41 S. Datta, Electronic Transport in Mesoscopic Systems �Cam-
bridge University Press, Great Britain, 1995�.

42 L. Wang, T. Y. Chen, and C. Leighton, Phys. Rev. B 69, 094412
�2004�.

43 L. Wang, T. Y. Chen, C. L. Chien, J. G. Checkelsky, J. C. Eckert,

E. D. Dahlberg, K. Umemoto, R. M. Wentzcovitch, and C.
Leighton, Phys. Rev. B 73, 144402 �2006�.

44 E. M. González, A. D. Folgueras, R. Escudero, J. Ferrer, F.
Guinea, and J. L. Vicent, New J. Phys. 9, 34 �2007�.

45 The mismatch parameter L0 used in Ref. 9 is related to � as
L0

2=1 /�.

PAUL H. BARSIC AND ORIOL T. VALLS PHYSICAL REVIEW B 79, 014502 �2009�

014502-12


