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The spin dynamics in the geometrically frustrated pyrochlore antiferromagnet Gd2Sn2O7 is studied by means
of the electron spin resonance. In the ordered phase �TN=1 K�, we have detected three gapped resonance
modes. Their values agree well with the developed spin-wave theory which takes into account the Heisenberg
nearest-neighbor exchange, the single-ion anisotropy, and the long-range dipolar interactions. The theory also
predicts a fourth lowest-frequency gap, which lies beyond the experimental range of frequencies, but deter-
mines the exponential decrease in the specific heat at low temperature.
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I. INTRODUCTION

The geometrically frustrated Heisenberg antiferromagnet
on a pyrochlore lattice has an extensive degeneracy of the
ground state.1 As a result, weak additional interactions play a
prominent role leading to a multitude of magnetic phases and
phenomena. A typical example is provided by Gd2Sn2O7 and
Gd2Ti2O7, two pyrochlore antiferromagnets with close val-
ues of the nearest-neighbor exchange constants, which, nev-
ertheless, have different-ordered magnetic structures. While
the antiferromagnetic ordering in Gd2Ti2O7 is resolved on
the assumption of a complicated four-wave-vector order pa-
rameter with the basic q= �1 /2,1 /2,1 /2�,2 the second mate-
rial Gd2Sn2O7 has a much simpler four-sublattice spin struc-
ture with q=0.3

An exponential decrease in the low temperature specific
heat of Gd2Sn2O7 was recently found by the calorimetric
measurements.4 This result unambiguously points at a
gapped excitation spectrum in the ordered magnetic phase. It
is somewhat unexpected in view of the results of analogous
measurements for Gd2Ti2O7,5 which yield a power-law be-
havior C�T2 down to temperatures on the order of 100 mK.
The presence of nonfrozen magnetic degrees of freedom at
very low temperature was also related to the persistent spin
dynamics observed via the muon spin relaxation ��SR� in
Gd2Ti2O7 �Refs. 5 and 6� and via Mössbauer7 and �SR
measurements8,9 in Gd2Sn2O7. The observed difference in
the low-temperature dependence of the specific heat in the
two pyrochlore antiferromagnets must be further corrobo-
rated by a direct investigation of the excitation spectrum.
Since inelastic neutron-scattering measurements are hindered
in Gd compounds, the most convenient experimental tech-
nique left is the electron spin resonance �ESR�. An absorp-

tion of photons with a typical wavelength on the order of
��1 cm provides a high-resolution probe of low-energy ex-
citations. For the most probable single photon-magnon pro-
cess only magnons with small wave vectors k�1 /�→0 can
be excited.

Our previous measurements of the ESR spectra in
Gd2Sn2O7 were performed at temperatures between 10 K
�the Curie-Weiss constant is ��CW��9 K� and the ordering
transition at TN=1 K.10 This temperature range is character-
ized by strong spin correlations in the absence of an order
parameter, which is commonly called a cooperative para-
magnet. An unusual transformation of an exchanged nar-
rowed paramagnetic line into a single gapped resonance
mode with linear field dependence was observed in this re-
gime.

The present work investigates further transformations of
the resonance spectrum at temperatures below the magnetic
ordering transition. Three gapped modes are observed, two
of which are degenerate in zero magnetic field. The gap val-
ues are reproduced by the spin-wave calculations using the
known values of the exchange constant, the dipolar, and the
single-ion anisotropy energies. The fourth gap predicted by
the theory remains unobserved in our experimental range but
agrees well with the specific-heat data.

II. SAMPLES

Powder samples of Gd2Sn2O7 were prepared by the
method described in a previous publication.11 For sample
characterization we have measured the specific heat in a
3He-4He dilution fridge in the temperature range of 0.1–2 K.
The data are obtained using a quasiadiabatic technique with
continuous heating of the sample.12 In order to improve the
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thermal contact between the insulating powder sample and
the sample holder, 1.5 mg of the powder was mixed with 1
mg of Apiezon N grease, wrapped into a silver foil, and
pressed. The quality of the thermal contact has been verified
by comparing the data obtained in experiments with different
heating rates. The range of fully reliable results corresponds
to temperatures above 0.15 K.

Our experimental results for the specific heat are pre-
sented in Fig. 1. Two subsequent temperature scans shown
by open and closed circles �slower and faster scans, respec-
tively� are in satisfactory agreement with each other. A sharp
peak is observed at the ordering transition with TN=1.01 K.
The previously published data11 obtained with the same mea-
surement technique are shown by squares and lie 5%–10%
lower in the whole range of temperatures. This systematic
discrepancy is probably associated with a different quality of
thermal contacts in both experiments. The measurements
from Ref. 4 �triangles� demonstrate a perfect agreement with
our data above 0.4 K, where both curves can be empirically
fitted by a C�T2 dependence. Both sets of data also agree
but less perfectly below 0.4 K and show a drastic decrease in
cooling. According to our measurements, the most significant
reduction in the specific heat �by a factor of 20� occurs in the
temperature interval of 0.3–0.15 K. Decreasing temperature
further down to 0.1 K leads to an additional specific-heat
reduction by a factor of 5 to the level, which does not exceed
the experimental accuracy. The specific heat decreases faster
than any reasonable power law Tn, which suggests an expo-
nential temperature dependence in agreement with the theo-
retical prediction of Ref. 13 and with the previous experi-
mental study.4

III. MAGNETIC RESONANCE

Magnetic-resonance measurements have been carried out
in a transmission-type spectrometer with a cylinder cavity

designed for frequencies above 25 GHz, which was equipped
with a 3He cryostat with a minimum working temperature of
0.4 K. The magnetic field up to 100 kOe is generated by a
cryomagnet. The absorption spectra are recorded on forward
and backward field sweeps.

To start with, we have traced the evolution of the reso-
nance absorption lines on cooling the sample from the
strongly correlated disordered state through the ordering
transition at TN=1.0 K down to the lowest experimental
temperature �0.45 K� at which the system is fully ordered
�the magnetic transition is first order11�. Two sets of measure-
ments with different polarizations of the microwave field
with respect to the external magnetic field were performed.
The left panel of Fig. 2 shows the resonance spectra of a
sample glued onto the bottom of the cavity where the micro-
wave field has only a component perpendicular to the exter-
nal field hmw�H. The single resonance line observed at all
frequencies for T�TN changes its shape and shifts to larger
fields when going through the transition. This shift results
from an unusual linear field dependence of the resonance gap
in the cooperative paramagnetic state, as discussed in Ref.
10.

The absorption spectra are significantly modified when
the sample is placed into a microwave field with a compo-
nent along the external field. Additional lines develop in the
spectrum below 1 K, one of them having a much larger in-
tensity than the others. The properties of all these resonance
modes were studied in detail at the lowest experimental tem-
perature 0.45 K.

The upper panel of Fig. 3 shows the resonance spectra for
a sample with hmw�H. These data have been briefly dis-
cussed before.14 The single resonance lines observed at vari-
ous frequencies belong to two different branches, one of
which is decreasing �line A� and the other one is increasing
�line B� in field. The extrapolation of these lines to zero field
gives the same gap value of 33.5�0.5 GHz �1.61�0.02 K�
for both branches, which points to an exact degeneracy of the
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FIG. 1. �Color online� Thermal variation in the specific heat
divided by temperature in Gd2Sn2O7 measured with different heat-
ing rates �� and � are faster and slower scans, respectively�; � and
� are previous data from Refs. 4 and 11; the dashed line is a linear
approximation to the high-temperature part of the data, the fit by a
solid line is described in the text, and the arrow marks the low-
temperature limit of data reliability.
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FIG. 2. Evolution of the magnetic-resonance absorption spectra
in a powder sample of Gd2Sn2O7 on cooling from above the order-
ing transition to T=0.45 K recorded in a perpendicular polarization
of the microwave field with respect to the external field hmw�H
�left panel� and in a tilted polarization �right panel�; the recorded
lines are shifted upwards for clarity.
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corresponding magnetic excitations. No other resonance ab-
sorption was detected within the experimental accuracy of
0.5%.

The absorption spectra obtained for a tilted direction of
hmw are presented on the lower panel of Fig. 3. The intense
sharp resonance line shown in Fig. 2, which arises in the
ordered phase, appears to be a third branch with a gap of
85�5 GHz �4.1�0.2 K, line C�. This mode decreases with
increasing magnetic field and softens in the vicinity of the
continuous second-order transition. Extrapolating its field de-
pendence to zero frequency, one can determine the value of
the critical field Hs=53.0�0.5 kOe. This transition is asso-
ciated with the lowering of the symmetry of the magnetic
structure but not exactly coincides with the saturation field.
Due to anisotropy effect, the collinear phase should be
reached at a larger field. According to experimental estima-
tions of Ref. 10 the full saturation of the magnetic moment
occurs at a field of about 58 kOe. A careful study of the
spectrum above the critical field again reveals the existence
of three weak components �line D and double split line E�
increasing in field, with line E doublet exhibiting an exact
linear field dependence.

Our ESR measurements directly detect three resonance
modes in zero magnetic field. Two of them �lines A and B�
are exactly degenerate with a gap of �2,3=1.61 K and the
third mode has a larger gap of �4=4.1 K. In addition, the
previous specific-heat measurements and theoretical calcula-
tions suggest the presence of a fourth lowest branch at en-

ergy �1�1.2 K.4,13 The corresponding frequency �1
�25 GHz lies near the lower boundary of our experimen-
tally accessible range. Hence, it is natural that this mode
remains unobserved in the ESR experiment provided that it
decreases with increasing magnetic field. A crude estimate
from the low-T fit of our specific-heat data C�T�
�T−1/2e−�/T �the corresponding fit is shown by the solid line
in Fig. 1� also gives �1�1.0 K. One should note here that
more elaborate fits at temperatures below 0.15 K �including,
e.g., nuclear contributions� would rely on an overestimation
of the experimental accuracy due to the degradation of the
thermal contact in insulating powder samples in this tem-
perature range. Very recently, inelastic neutron
measurements15 on a powder sample of Gd2Sn2O7 reveal a
few gapped excitation modes in the range of 0.1–0.5 meV in
full agreement with our results.

The previous spin-wave calculations13 reflect the general
features of the measured spectrum, with a 10%–20% accu-
racy for the observed gaps. The principal qualitative differ-
ence with our work is that our ESR measurements find two
exactly degenerate magnon branches at k=0 in zero mag-
netic field, whereas Ref. 13 predicts a finite splitting between
them: �2=1.76 K and �3=1.93 K. In Sec. IV we present
the detailed theoretical calculations of the ESR spectra in
Gd2Sn2O7, which not only yield the correct degeneracy of
k=0 magnons but also show an overall improved agreement
with the experimental data.

IV. SPIN-WAVE THEORY

The unit cell of the pyrochlore lattice contains four mag-
netic atoms. Their positions and the specific choice of the
local axes adopted below are
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In the following we will take into account all major mag-
netic interactions starting with the strongest nearest-neighbor
exchange:

Ĥ = J 

�ni,mj�

Sni · Smj , �2�

where n and m denote unit cells and i and j=1–4 indicate
position inside cell. The equilibrium magnetic structure de-
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FIG. 3. �Color online� The magnetic-resonance absorption spec-
tra in a powder sample of Gd2Sn2O7 recorded at T=0.45 K for
various frequencies with hmw�H �upper panel� and in a tilted di-
rection of hmw �lower panel�; dashed lines are guide for the eyes in
tracing the field evolution of different resonance lines labeled by
letters A–E; the inset in the lower panel expands the in-frame part
of the absorption record at �=62.0 GHz including spectral lines D
and E. The second-order transition at Hs=53 kOe is marked by a
vertical line.
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termined for Gd2Sn2O7 in neutron-diffraction experiments3

is a four-sublattice chiral spin cross with Si  ẑi, which is also
known as the Palmer-Chalker state.16 This state is one out of
the many degenerate spin structures obeying the classical
constraint: 
iSi=0 for every tetrahedron, which must be ful-
filled by the ground state in the absence of single-ion aniso-
tropy and dipolar interactions.

Let us first calculate the excitation spectrum for the chiral
spin-cross state neglecting all magnetic anisotropies. The lo-
cal coordinate system is used for the spin operators Si
=Si

xx̂i+Si
yŷi+Si

zẑi, where the three axes are defined above
�Eq. �1��. Since we are dealing with the k=0 magnetic struc-
ture, the local axes do not carry the cell index n. The
Holstein-Primakoff transformation is used for the bosonic
representation of spin operators. Since gadolinium spins S
=7 /2 are large, we neglect interactions between magnons
and always keep up with the quadratic terms in the bosonic
Hamiltonian. With the chosen accuracy it is sufficient to
write

Si
z = S − ai

†ai, Si
x =�S

2
�ai

† + ai� ,

Si
y =�S

2
i�ai

† − ai� . �3�

The obtained quadratic form is diagonalized by performing
consecutively Fourier and Bogoliubov transformations. The
excitation spectrum consists of four branches,


1,2�k� 	 0, 
3,4�k� = 2JS�1 − cos
kx

2
cos

ky

2
. �4�

Two of them have zero energy everywhere in the Brillouin
zone, which reflects the infinite degeneracy of the nearest-
neighbor exchange Hamiltonian on a pyrochlore lattice. In-
terestingly, the two other branches have purely two-
dimensional �2D� dispersions in the harmonic
approximation. Various perturbations to the nearest-neighbor
Heisenberg Hamiltonian �Eq. �2�� should produce a finite
dispersion of the two lowest branches, but the quasi-2D be-
havior of 
3,4�k� for the two higher-energy modes should
survive in a certain range of parameters.

As the next step we add the single-ion anisotropy to Eq.
�2� in the form of the lowest-order crystal-field harmonics

Ĥa = Da

i

�Si · ni�2, �5�

with ni being the four local anisotropy axes parallel to the
principal cubic diagonals. Keeping again only quadratic
terms in the bosonic representation one obtains

�Si · ni�2 = S�ai
†ai +

1

2
� +

S

6
�ai

2�1 � 2�2i� + ai
†2�1 � 2�2i�� ,

�6�

where the upper �lower� sign corresponds to i=1,4 �2,3�.
Since we are interested in the ESR spectrum given by k

=0 magnons, we simplify the following calculations by con-
sidering only uniform modes, avoiding hence a step with the

Fourier transformation. The exchange Hamiltonian projected
onto the four-site magnetic unit cell is written as

Ĥ1
�2�/JSN = 2�a1

†a1 + a2
†a2 + a3

†a3 + a4
†a4� + a1

†�a2 + a3�

+ a2
†�a1 + a4� + a3

†�a1 + a4� + a4
†�a2 + a3�

− a1�a2 + a3 + 2a4� − a2�2a3 + a4� − a3a4 + H.c.,

�7�

where N is the number of unit cells in the lattice. The single-
ion anisotropy is represented as

Ĥa
�2�/DaSN = a1

†a1 + a2
†a2 + a3

†a3 + a4
†a4

+
1

6
�1 − 2�2i��a1

2 + a4
2 + a2

†2 + a3
†2� + H.c.

�8�

Diagonalization of quadratic forms, with the help of a gen-
eralized Bogoliubov transformation, has been described
many times in the literature17 and will not be repeated here.
In the present case the diagonalization can be performed ana-
lytically, yielding four magnon gap energies

�1 = 0, �2,3 = 2S�2DaJ/3, �4 = 2�2. �9�

The lowest magnon branch remains gapless in spite of the
single-ion term. This is in agreement with the analysis of
Ref. 18, which finds an infinite �but not extensive� degen-
eracy for the easy-plane pyrochlore antiferromagnet.

The double degeneracy of the two intermediate magnon
modes �2,3 follows from the tetragonal symmetry of the chi-
ral spin-cross structure. Analysis of the eigenvectors of the
Bogoliubov transformation identifies corresponding oscilla-
tions with out-of-plane motion of only one pair of spins S1,
S4 or S2, S3 with opposite phases. The two modes transform
into each other according to the 2D irreducible representa-
tion of the tetragonal point group. Extra interactions �dipolar,
etc.� will not modify such a degeneracy as long as the chiral
spin-cross structure remains stable. The two other modes
�1,4 correspond to predominantly in-plane motion of all four
spins.

For a simple numerical estimate we use the following
parameters for Gd2Sn2O7: ��CW�=2JS�S+1��8.6 K �Ref.
11� with J=2 /63��CW�=0.27 K and Da�0.14 K.19 This
yields the following values �2,3=1.12 K and �4=2.24 K,
which are somewhat lower than the experimentally measured
frequencies �1.61 and 4.1 K, respectively�. Introduction of
further neighbor exchanges will not modify the above re-
sults: �i� the third-neighbor exchange J3 �the notation is taken
from Ref. 3� couples spins on the same sublattice and, con-
sequently, does not contribute to the k=0 modes; and �ii� the
antiferromagnetic second-neighbor exchange J2 yields the
same replacement J→J+2J2 in the expressions for �CW and
for the uniform modes and does not, therefore, change the
gaps.

The next important perturbation to the exchange energy
�Eq. �2�� is the dipole-dipole interaction13,20
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Ĥdip =
D

2S2 

ni,mj

Sni · Smj − 3�Sni · rnm
ij ��Smj · rnm

ij �
�Rnm

ij �3
, �10�

with D= �g�BS�2 /a3, Rnm
ij being the vector linking two spins,

measured in units of the lattice constant a, and rnm
ij

=Rnm
ij / �Rnm

ij �. The strength of the dipolar coupling between
two neighboring spins in Gd2Sn2O7 is estimated as

En.n.
d =

�g�BS�2

�a/2�2�3
= 16�2D = 0.605 K, �11�

where we have substituted a=10.455 Å for the lattice
constant.21 The parameter En.n.

d is three times smaller than the
single-ion energy DaS2�1.73 K, but the dipolar interactions
still play an important role due to their long-range nature.
From now on we define dimensionless parameters da
=Da /J=0.516 and d=D /JS2=0.008, normalizing all interac-
tions to the exchange constant J and the excitation energies
to JS.

Projecting Eq. �10� onto the four-sublattice magnetic
structure �Sni	Si� we obtain

Ĥdip =
1

2
N 


ij,�

Si
�Sj

Dij
�, �12�

where the dipolar matrix is given by

Dij
� = d


m

1

�Rnm
ij �3

��� − 3�rnm
ij ���rnm

ij �� . �13�

In a cubic crystal the diagonal matrix elements are Dii
�

��� and drop out from the equations on the equilibrium
spin configuration and on the energies of the k=0 modes.

The dipolar sums are straightforwardly evaluated using
Ewald’s summation technique:22

Dij
�/d = 16�


G
�
G�G

G2 e−G2/4Qc
2
eiG·��i−�i� + 


R
�erfc�QcRij�

	���

Rij
3 −

3Rij
�Rij



Rij
5 �

−
2Qc

��Rij
2

e−QcRij
2�2Qc

2Rij
�Rij

 − �� +
3Rij

�Rij


Rij
2 �� , �14�

where Qc�1 is an arbitrary cutoff, G is a reciprocal lattice
vector, erfc�x� is the complementary error function, and Rij
=R+�i−� j, R being an fcc lattice vector. Summations in Eq.
�14� are performed over all R and G excluding G=0.

Cubic symmetry of the pyrochlore lattice leaves only
three independent constants,

D12
xx = D34

xx = c1, D12
yy = D12

zz = D34
yy = D34

zz = c2,

D12
yz = D12

zy = − D34
yz = − D34

zy = c3,

D13
yy = D24

yy = c1, D13
xx = D13

zz = D24
xx = D24

zz = c2,

D13
xz = D13

zx = − D24
xz = − D24

zx = c3,

D14
zz = D23

zz = c1, D14
xx = D14

yy = D23
xx = D23

yy = c2,

D14
xy = D14

yx = − D23
xy = − D23

xy = c3. �15�

Evaluating numerically the corresponding expressions �Eq.
�14�� we find c1=17.92d=0.143, c2=−34.09d=−0.273, and
c3=−57.84d=−0.463.

The dipolar energy �Eq. �12�� can be used to compare the
relative stability of different q=0 magnetic structures. In par-
ticular, the dipolar contribution for the chiral spin-cross con-
figuration �Eq. �1��, or the Palmer-Chalker state, is E1

d /NS2

=−2c1+2c3. The alternative �nonchiral� spin-cross structure,
which is realized in Er2Ti2O7 �Ref. 23� and can be obtained
from the chiral spin cross with S2→−S2, S3→−S3, has a
higher dipolar energy E2

d /NS2=2c1−4c2+2c3.
To calculate the effect of the dipolar interaction on the

magnon spectra we transform again to the local spin frame in
Eq. �12� and bosonize spin operators using Eq. �3�. The di-
polar matrix elements in the rotating coordinate system Dij

�

are expressed via the laboratory frame matrix Dij
� by

Dij
� = êi�

� ê j
� Dij

��, �16�

where êi� are the local basis vectors �see Eq. �1��.
The obtained quadratic form of bosonic operators is

Ĥdip
�2� = 


�ij�
− Dij

zz�ai
†ai + aj

†aj� +
1

2
�Dij

xx + Dij
yy��ai

†aj + aj
†ai�

−
i

2
�Dij

xy + Dij
yx��ai

†aj − aj
†ai� +

1

2
�Dij

xx − Dij
yy�

	�aiaj + ai
†aj

†� −
i

2
�Dij

xy + Dij
yx��aiaj − ai

†aj
†� . �17�

The summation is performed over all sublattice pairs. Skip-
ping the straightforward algebra behind the substitution �Eq.
�16�� and the subsequent Bogoliubov transformation, we
present the final results for the magnon energies. The two
degenerate modes have the energy


2,3
2 =

1

3
��2da − 3c3��4 + c1 + c2� − 4c3da� , �18�

while the energies of the two other modes are given by �posi-
tive� roots of

3
4 − 2
2�6�c1 − c2��4 + c1 + c2� + �2da − 3c3�

	�8 + 5c1 − c2 − 4c3��

+ 8�c1 − c2��2da − 3c3 + 2�c1 − c2��

	��4 + c1 + c2��2da − 3c3� − 4c3da� = 0. �19�

The apparent discrepancy with the previous spin-wave
calculation13 for Gd2Sn2O7 on the splitting between 
2 and

3 can be traced back to an incorrect treatment of the single-
ion term in that work. Indeed, the other paper of the same
authors,20 which takes into account only dipolar interactions,
yielded a degenerate doublet for intermediate energy modes.

Restoring the scaling parameter JS and using the follow-
ing values for the microscopic parameters, J=0.27 K, da
=0.516, and d=0.008, we obtain for the gaps: �1=1.24 K,
�2,3=1.77 K, and �4=4.51 K, which are already quite close
to the experimentally measured values. An even better cor-
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respondence between the theoretical and the experimental
results for the three upper branches �shown by closed squares
on the H=0 axis of Fig. 4� is achieved for a slightly modified
set of microscopic constants: J=0.25 K, Da=0.13 K �da
=0.52�, and Ed=0.55 K �d=0.008�. The lowest gap in this
case is equal to �1=1.13 K, which is close to the estimate
obtained by fitting the specific-heat curve.

Comparing Eqs. �9�, �18�, and �19� and the corresponding
estimates, we conclude that the dipolar interactions are es-
sential in lifting the energy of the lowest branch �1. On the
other hand the gap of the two degenerate modes is predomi-
nantly determined by the single-ion anisotropy, while the
highest gap �4 has roughly equal contributions from the
single-ion term and from the dipolar interactions. Thus,
Gd2Sn2O7 is a moderately anisotropic antiferromagnet, for
which both the ground-state selection16 and the spin dynam-
ics are determined by a delicate balance of the nearest-
neighbor exchange, the dipolar interactions, and the single-
ion anisotropy.

V. DISCUSSION

In Sec. IV we have demonstrated a good agreement be-
tween the measured ESR spectrum and the spin-wave calcu-
lations performed in zero magnetic field. The two degenerate
resonance branches correspond to a peculiar type of spin
motion: oscillation of a spin plane with respect to two or-
thogonal in-plane axes. Such modes are excited by the per-
pendicular component of the microwave field hmw�H as is
indeed observed for lines A and B.

Generalization of weak magnetic fields is straightfor-
wardly done with the “hydrodynamic” approach,24 which is
valid once the exchange interactions are significantly stron-
ger than magnetic anisotropies and field. Simple calculations

analogous to those performed in Ref. 25 yield the following
cubic equation for eigenfrequencies:

��2 − �1
2���2 − �2

2�2 − �2�2��2H2 − �1
2H

2 − �2
2H�

2 � = 0,

�20�

where �1 and �2 are resonance frequencies in zero field, H

and H� are magnetic field components with respect to the
tetragonal axis, and �=g�B /2�� is the electronic gyromag-
netic ratio �g=2.0�. In gadolinium stannate the magnetic
anisotropies are comparable to the nearest-neighbor ex-
change interaction. Moreover, the exchange structure is soft,
i.e., infinitely degenerate, and the anisotropies play a deci-
sive role in stabilizing the observed magnetic structure. This
restricts applicability of the hydrodynamic theory, which is
used here only to indicate a plausible behavior.

The field evolution of the spectrum is summarized on the
frequency-field diagram presented in Fig. 4. The two degen-
erate modes appear to be split by the magnetic field into
decreasing �line A� and increasing �line B� branches. The
points in Fig. 4 mark the maximums of the ESR absorption
which, for a powder sample, correspond to one of the outer-
most field orientations with respect to the crystal axes. The
frequency-field dependence of these maximums for the two
degenerate modes is satisfactorily fitted by formula �20� for
H  �001� if one takes h�2=�2,3 �solid lines in Fig. 4�, while
the third calculated branch is field independent and set to
zero. When the orientation of the external field is changed
from H  �001�→H� �001�, both branches shift to higher
fields resulting in the overextended right wings of the ab-
sorption lines observed in the experiment. Hence, in spite of
the “softness” of the exchange structure in a Heisenberg py-
rochlore magnet, the spin plane oscillations are not strongly
affected by quasilocal modes.

Third spectral mode C is excited only by a parallel micro-
wave field component hmwH, which indicates that it is not a
uniform oscillation of the spin plane, but rather an antiphase
motion of spins of the cross �in-plane or out-of plane�. This
mode should soften at the saturation point Hs �as observed in
the experiment� and, on further increase in H, should develop
a gap, which probably corresponds to increasing line D of
the spectrum above Hs. The other two resonance branches
�doublet line E� observed at H�Hs have linear field depen-
dences distinctive for quasilocal soft modes in the spin-
polarized phase.26 They were also observed in Gd2Ti2O7, but
unlike that case, the corresponding absorption lines are sig-
nificantly broadened and less pronounced due to the distri-
bution by magnetic field orientations in a powder sample.
Nevertheless, one of them seems to have almost zero energy
at H=Hs, which corresponds to the softening of one of the
excitation branches at the antiferromagnetic wave vector q
=0 near the second-order transition. �The ordering wave vec-
tor in Gd2Ti2O7 is different from q=0, and therefore all ESR
modes remain finite at H=Hs.� The spin-wave calculation of
the high-field magnon spectrum and its comparison with the
observed results can provide useful information on the pa-
rameters of the spin-Hamiltonian for the two pyrochlore ma-
terials.

0
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0 20 40 60 80

SWT; J=0.25, Da=0.13, Ed =0.55 K

Precise hmw⊥H polarisation

Modes excited at hmw⊥H
Modes excited at hmw||H

Line E1-E2

Line D
Line CLine B

H (kOe)

ν
(G

H
z)

H||[001]

Hs =53 kOe
Line A

FIG. 4. �Color online� Frequency-field diagram of the resonance
spectrum observed on a powder sample of Gd2Sn2O7 at T
=0.45 K; � and � correspond to the modes excited at hmw�H
and hmw�H, respectively; � mark the gap values calculated by the
SWT; the solid lines represent the solution of Eq. �20� for a doublet
mode with H  �001�, the dashed lines are linear fits to the two com-
ponents of spectral line E with g=2, and the dash-dotted line cor-
responds to a g=2 paramagnet. The transition to a spin-polarized
phase at Hs=53.0 kOe is marked by a vertical line. The unreach-
able low-frequency range ��25 GHz is shaded in gray.
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The measured resonance modes and their perfect agree-
ment with the spin-wave calculations point at the conven-
tional magnetic ordering in Gd2Sn2O7 below 1 K. Note that
an explanation of the persistent spin dynamics observed by
the local probes7–9 remains an open issue: gapped magnons
with energies above 1 K cannot contribute to the muon spin
relaxation in the 50 mK range. Still, properties of the sister
material Gd2Ti2O7 are strikingly different from the more
conventional stannate. This concerns not only the difference
in the low-temperature asymptotes for the specific heat4,5 but
also their ESR spectra as illustrated in Fig. 5. A typical ab-
sorption curve for Gd2Sn2O7 consists of several spectral
lines with almost zero background. In contrast, the recorded
absorption curve for Gd2Ti2O7 demonstrates a broad, intense
nonresonant anomaly with a maximum in zero field. This
additional absorption develops simultaneously with the main
spectral lines below TN, rapidly decreases with increasing
magnetic field, and fully disappears stepwise at H=Hc1
�30 kOe marked by an arrow in Fig. 5. The above findings
provide evidence for additional “magnetic degrees of free-
dom” in the titanate, which exist down to low temperatures
and are suppressed by an external magnetic field.

Additional low-energy excitations in Gd2Ti2O7 may result
from the complexity of magnetic ordering in this material.
The neutron-diffraction experiments2 suggest a multi-k spin
structure in the titanate, which may also lead to multiple

magnetic domains related to different combinations of q
= �1 /2,1 /2,1 /2� and equivalent wave vectors. Excitations in
the domain walls and their pinning by crystal defects can
produce additional low-temperature spin dynamics. Such a
residual dynamics �i� should be absent in the q=0 ground
state of the stannate and �ii� should exhibit a significant
sample dependence as was indeed found from the compari-
son of �SR data obtained on single crystal5 and powder
samples.6 The low-field domain structure can be further
eliminated by a magnetic field, which, for example, selects at
H�Hc1 a unique ordering wave vector. An extra argument in
favor of such a scenario is that the ESR spectrum of the
titanate is significantly transformed at H=Hc1, becoming
similar to the spectrum of the stannate.25 Namely, line C of
the spectrum, which is traced in the stannate in the whole
field range 0�H�Hs, appears in the titanate only at H
�Hc1. High-field neutron-diffraction measurements in
Gd2Ti2O7 together with evolution of the low-T asymptote in
the specific heat under magnetic field should provide a valu-
able check for the above scenario.

In summary, the study of the magnetic-resonance proper-
ties of the pyrochlore gadolinium stannate reveals three
gapped resonance modes in the ordered phase, two of them
being exactly degenerate at zero external magnetic field. The
spin-wave theory �SWT�, which takes into account the
nearest-neighbor exchange, the single-ion anisotropy, and the
dipolar interactions, demonstrates very good agreement with
the experiment using known values of the microscopic mag-
netic parameters. The lowest gap value predicted by theory
lies beyond the experimental frequency range and cannot be
directly observed. Nevertheless, it roughly agrees with an
estimate made from the exponential decrease in the low-
temperature specific heat.
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