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We present a tight-binding potential for transition metals, carbon, and transition-metal carbides, which has
been optimized through a systematic fitting procedure. A minimal basis, including the s and p electrons of
carbon and the d electrons of the transition metal, is used to obtain a transferable tight-binding model of the
carbon-carbon, metal-metal, and metal-carbon interactions applicable to binary systems. The Ni-C system is
more specifically discussed. The successful validation of the potential for different atomic configurations
indicates a good transferability of the model and makes it a good choice for atomistic simulations sampling a
large configuration space. This approach appears to be very efficient to describe interactions in systems
containing carbon and transition-metal elements. By way of example, we present results concerning the epi-
taxial growth of graphene sheets on �111� Ni surfaces, as well as the catalytic nucleation of carbon nanotubes.
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I. INTRODUCTION

Carbon-metal interactions play a major role in many as-
pects of materials sciences, in particular when transition met-
als are involved. They lead to the formation of solid solu-
tions or of compounds in which carbon occupies interstitial
sites. Early transition metals �Ti, V, Cr, Zr, Nb, Mo, and Ta
for instance� have a tendency to form highly stable carbides
whereas such carbides are hardly stable �cementite Fe3C� or
metastable �Ni3C,Co3C� in the case of Fe, Co, and Ni.1 The
phase diagrams involving the latter elements present broad
domains of two-phase mixtures. The domains of stability of
solid solutions are narrow but of outmost importance �steels�.

These elements, as well as some other elements of the
ends of the transition series �Pd and Pt�, are also well known
for their catalytic properties involving the chemistry of mol-
ecules containing carbon. The oxidation of carbon monoxide
on transition-metal surfaces is, for example, one of the most
extensively studied heterogeneous catalytic reactions in rela-
tion with the air pollution problem. Surface reactions of
methane on nickel surfaces have also been investigated ex-
tensively since they are involved in industrial reactions, such
as steam reformation of methane and methanation of carbon
monoxide.2

Another more recent example of the catalytic importance
of these elements which has motivated this work is the cata-
lytic growth of carbon nanotubes �CNTs�. CNTs have re-
markable physical properties with the potential for signifi-
cant technological impact. In many applications, optimal
performance requires the control of their structural proper-
ties, e.g., size, length, and chirality, which remains a signifi-
cant difficulty for the widespread application of carbon nano-
tubes in high-technology devices. Unlike the case of
multiwall nanotubes �MWNTs�, the formation of single-wall

carbon nanotubes �SWNTs� requires the presence of
transition-metal element or alloy catalysts �Co, Ni, Fe, Y,
etc.�.3–5 SWNTs are synthesized via the interaction of metal-
catalyst nanoparticles with carbon or hydrocarbon vapor at
relatively high temperature. These catalysts are crucial for
the controlled synthesis of SWNT by different techniques
such as laser ablation,6 arc discharge method,3 or chemical
vapor deposition.7–9 However, the exact role played by the
metal atoms in the growth of SWNT is still under study.10

Many theoretical works have been devoted to the investi-
gation of the unique properties of transition-metal carbides in
connection with their electronic structure and bonding char-
acteristics. Most of these works are based on static ab initio
calculations.11 However, understanding the nucleation and
growth mechanisms involved in catalytic processes and vali-
dating them by computer simulations require us to model
fairly complex processes involving strong modifications of
the bonding between carbon and the transition-metal atoms.
For example, the catalytic growth of SWNT involves segre-
gation and diffusion processes of carbon atoms and the self-
organization of these atoms into graphene sheets and nano-
tube embryos close to the catalytic surface.

A challenge for such simulations is to have an energy
model able to describe the competition between very differ-
ent carbon environments. In the case of solid solutions or of
ordered compounds, metal-C bonds are predominant around
C atoms. When phase separation occurs, carbon atoms have
to segregate to form pure graphite or metastable, more or less
well crystallized, phases of carbon, in which case carbon
atoms form covalent sp2, sp3, or even sp bonds. These pro-
cesses can only be simulated using large enough systems
�hundreds or thousands of atoms� during fairly long times,
typically in the range of 10−9–10−6 s. Ab initio molecular-
dynamics calculations4,12 cannot therefore be used systemati-
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cally at such size and time scales. On the other hand, using
simple phenomenological potentials13 in different situations
is problematic—the transferability problem—since such po-
tentials can hardly account for the �quantum� nature of the
different types of covalent bonds.

The aim of this paper is to present and discuss the validity
of a simple intermediate model for carbon and transition-
metal interactions based on a tight-binding description of the
chemical bonds. Applications of this model to surface segre-
gation of carbon and to the catalytic nucleation of carbon
caps on small nickel clusters have already been presented
elsewhere.10,14–16 Although the model can be extended to all
transition elements, we concentrate here on fcc metals and
more particularly on nickel.

The paper is organized as follows. In Sec. II, we present
the tight-binding model and the recursion technique used to
calculate band energies. Empirical repulsive contributions
are then added to obtain total energies. Sections III and IV
describe the corresponding models for the carbon-carbon and
nickel-nickel interactions, respectively, whereas Sec. V is de-
voted to a discussion of the electronic structure of transition-
metal carbides and of nickel-carbon interactions. Different
validations and applications of the model are finally devel-
oped and discussed in Sec. VI.

II. METHODOLOGY

When using the tight-binding �or extended Hückel� ap-
proximation, the first step is to define a basis set of atomic
orbitals. To describe the valence states of carbon, the set
must of course include the 2s and 2p states. In the case of the
transition elements, d states must also be included, with the
problem being to decide whether s and p states of the metal-
lic element should be kept also. Since we are interested in
cohesive energies more than in a detailed description of the
electronic structure, we have chosen to use the simplest basis
where the contribution of these states is neglected. When
interested in more detailed electronic structure properties,
sp-d hybridization should however be taken into account
and this can be done, as shown, for example, by Barreteau
et al.17 Another more complete, but much heavier to
implement, tight-binding scheme was derived by Andriotis et
al. �see Ref. 18 and references therein�. Thus, we will work
with the following basis �i ,��, where i denotes the lattice
sites and � denotes the orbital index, ��=s , px , py , pz ,dxy ,
dyz ,dzx ,dx2−y2 ,d3z2−r2�.

As usual in the simplest tight-binding approximation, we
neglect the direct overlap integrals �i ,� � j ,��=�ij��� and the
three-central integrals. We are then left with the usual hop-
ping or �transfer� integrals � defined in terms of the inter-
atomic matrix elements of the Hamiltonian H,

�i�,j� = Hi�,j� = �i,��H�j,��, i � j , �1�

which are responsible for the broadening of the discrete
atomic levels into energy bands. They are functions of the
direction cosines l, m, and n of r�ij =r� j −r�i and of a limited
number of parameters, the Slater-Koster parameters,19 which
decrease rapidly with the interatomic distance rij. Since the
atomic potential is assumed to be spherically symmetric, the

�9�9� matrix of hopping integrals between sites i and j is
completely determined by ten Slater-Koster hopping param-
eters �ss�, sp�, pp�, pp�, dd�, dd�, dd�, sd�, pd�, and
pd��. The intra-atomic matrix elements of the Hamiltonian
H are given by

Hi�,i� = ��i� + 	i�,j�����, �2�

where �i� is the atomic level of the orbital �i ,��. The second
term in the right-hand side of Eq. �2� is the so-called crystal-
field integral which determines the displacement of the aver-
age energy level. This shift is neglected here. In the case of a
transition-metal carbide, three atomic levels have to be de-
termined, i.e., �s and �p for carbon and �d for the transition-
metal atom.

As usual in such a semiphenomenological tight-binding
scheme, we assume that the total energy �compared to the
energy of the free atoms� Etot can be written as the sum of a
band structure, attractive, contribution which describes the
formation of an energy band when atoms are put together
and of a phenomenological repulsive term which empirically
accounts for the ionic and electronic repulsions.20–22 It is
convenient to decompose these terms into local contributions
Eband

i , Erep
i , and Etot

i , so that

Etot = �
i atoms

Etot
i , Etot

i = Eband
i + Erep

i . �3�

The band energy Eband
i is given by

Eband
i = �

−


EF

�E − �i�ni�E�dE , �4�

where EF denotes the Fermi level, �i is the atomic energy
level introduced previously, and ni�E� is the local density of
states �LDOS�. To define and calculate this LDOS, we first
define the Green’s function �or resolvent� G�z� as follows:

G�z� = �z − H�−1. �5�

The total density of states per atom is given by n�E�
= �2 /N��n��E−En�, where En are the eigenvalues of the
Hamiltonian; the factor 2 takes into account the spin degen-
eracy and N is the number of atoms. n�E� is related to the
trace of the Green’s function through

n�E� = −
2

�N
lim

�→0+
Im Tr G�z� . �6�

Projecting G�z� on the orbital �i ,��, we obtain the local den-
sity of states ni��E� on site i and for orbital �,

ni,��E� = −
2

�
lim

�→0+
Im Gi�,i��z� , �7�

where Gi�,i��z� is the diagonal element of the Green’s func-
tion. The LDOS ni�E� is then given by

ni�E� = �
�

ni,��E� , �8�

so that, obviously, n�E�= �1 /N��ini�E�. Notice here that, us-
ing the properties of the resolvent, a decomposition of the
band energy into bond energies rather than into site energies
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can be derived, which can be convenient in some cases. This
was discussed in detail by Pettifor et al.; see Ref. 23 and
references therein.

We now use the recursion method24 to calculate the local
density of states ni��E� and more precisely the continued
fraction expansion of Gi�,i��z�,

Gi�,i��z� =
1

z − a1
i� −

�b1
i��2

�z − aM
i� − �bM

i��2�M�z�

, �9�

where the coefficients �a ,b�, which are related to the mo-
ments of the density of states, are obtained from the recur-
sion procedure and where �M�z� is the tail of the continued
fraction. As compared to the standard diagonalization tech-
nique, we make here two additional approximations: only the
first moments are calculated exactly for the considered
atomic structures, which means that only a few coefficients
�a ,b� are calculated exactly.25 Many constant coefficients up
to the Mth level are then inserted, after which the continued
fraction is cut, �M�z�=0. Gi�,i��z� can then be written as the
ratio of two polynomials and finally the local density of
states ni�E� is obtained as a set of M delta functions at posi-
tions �Ei

j , j=1,M� and weights �Ai
j , j=1,M� by diagonalizing

a tridiagonal matrix of size M. This approach, of order N, is
particularly useful for the study of large and fully relaxed
systems. It corresponds to embedding site i and its local
atomic environment within an effective medium. In principle
the Fermi level is fixed by a global neutrality condition Ne

=�−

EFn�E�dE, so that, in general, the local charges Ne

i

=�−

EFni�E�dE differ from Ne. In metallic systems the usual

rule is to impose a local charge neutrality condition, which
can be done by introducing local variations in the atomic
energy levels. This insures to some extent the validity of
decomposition �3� of the total energy.21,26 More precisely the
variational properties of the ground-state energy insures that,
even if charge transfers occur, the ground-state energy can be
calculated to lowest order as if charge transfers are ne-
glected. Instead of varying the energy levels, a more approxi-
mate but much easier procedure is to introduce fictitious lo-
cal Fermi levels, so that finally the local energy can be
written as

Etot
i = �

j=1

jmax

Aj
iEj

i , �10�

where the highest occupied energy level jmax depends on
each site i and is simply determined through the local neu-
trality condition � j=1

jmaxAj
i =Ne.

III. CARBON

Because of the technological importance of carbon, a
large number of “potentials” has been proposed in the litera-
ture to model its cohesive properties. We adopt here the usual
term potential to describe a model allowing us to calculate
the total energy of a system for any positions of the atoms
considered as classical variables. A first class of potentials
was derived by Stillinger and Weber27 and by Tersoff;28 they

are based on a pairwise additive description of the total en-
ergy supplemented by angular terms to take into account the
directional spn covalent bonding of carbon. Such terms are
actually necessary to ensure the stability of noncompact
atomic structures, i.e., structures with low coordination num-
bers.

Among the more recent developments, we can mention
the formulation in terms of bond order23 the inclusion of
dependences on the environment29 as well as potentials al-
lowing us to treat both carbon and hydrocarbon phases.30,31

For a recent discussion, see, e.g., Ref. 32. The accuracy of
such potentials depends critically on the validity of the data-
base to which the parameters are fitted. Improving the accu-
racy usually implies increasing the number of parameters,
which can blur the physical transparency of the model and
leaves the question of the transferability unresolved. The
main reason for their success is their low computational cost
that makes large-scale computations of thousands of atoms
affordable.

A second popular class of potentials has been derived in
the framework of a tight-binding approximation, which is
indeed well known to provide very good descriptions of the
electronic structure and of the energies of carbon covalent
bonds. Following a parametrization of the tight-binding
Hamiltonian by Goodwin et al.33 for silicon, Xu et al.34 pro-
posed an interaction model for carbon that has been widely
used. Improvements over this relatively simple model in-
clude three-center integrals and environment-dependent pa-
rameters for the hopping integrals and the repulsive term.35

Although in principle more transferable than empirical mod-
els, the tight-binding models also depend on adjustable pa-
rameters to build the Hamiltonian matrix of the interactions
and to describe the empirical repulsive term that is always
present. These parameters are usually fitted to ab initio or
experimental data, although Porezag et al.36 used a density-
functional-based scheme to determine the parameters of a
nonorthogonal tight-binding model.

In our model, we start from the potential of Xu et al.34 to
describe the band-structure term, but instead of performing a
diagonalization of the Hamiltonian matrix, we consider local
densities of states ni�E�. Both s and p electrons are taken into
account, with the corresponding s, px, py, and pz atomic or-
bitals. To calculate the cohesive energy of the system, we
assume the same atomic energy levels for C ��s=−2.99 eV
and �p=3.71 eV, but the model only depends in fact on the
difference �p−�s=6.70 eV� and the same dependence on
distance of the hopping integrals as that given by Xu et al.,34

���r� = ��
0�r0/r�n exp	n
− �r/rc�nc + �r0/rc�nc�� . �11�

The values of ��
0 corresponding to the different interactions

at the diamond interatomic distance r0=1.536 Å are given
by �ss�

0 =−5.00 eV, �sp�
0 =4.70 eV, �pp�

0 =5.50 eV, and
�pp�

0 =−1.55 eV.
The coefficients of Eq. �11� are n=2.00, nc=6.50, and rc

=2.18 Å. As explained in Sec. II, only a few continued frac-
tion coefficients are calculated. We keep only four coeffi-
cients �a1, b1, a2, and b2� which corresponds to a fourth
moment approximation; i.e., the first four moments of the
local density of states ni,��E� are calculated exactly on each
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site of the considered atomic structure. This is the minimal
approximation that takes into account the directional charac-
ter of the carbon s-p bonds. The local density of states ni�E�
on site i then only depends on the first and second neighbors
of i, a neighbor being defined here as an atom closer to i than
a given cutoff distance. The cutoff distance for carbon is
fixed at 2.70 Å. To restore rotational invariance, a problem
that plagues the use of the recursion method in the case of
p-bonded systems,37 we proceed as follows: unlike the coef-
ficients, the moments of the LDOS are linear functionals of
these LDOSs; they can therefore be averaged over the p
orbital index; then other coefficients corresponding to the p
LDOS can be calculated. As explained in Sec. II, the related
continued fraction is then expanded up to the Mth level using
constant coefficients equal to a2 and b2. A typical value for
M is M =40. High enough values are necessary to obtain
quasicontinuous densities of states.

For the repulsive part of the energy we use also the form
proposed by Xu et al.34 but the parameters had to be modi-
fied for the following reason. Although fairly accurate, the
energies calculated within our fourth moment approximation
are not exactly equal to those determined after a full diago-
nalization procedure. Since it is important to have a model
that reproduces accurately the competition between the dif-
ferent crystalline forms of carbon, and more importantly, the
competition between graphite and diamond, other fits should
be performed. The repulsive energy has the form

Erep
i = F�

j�i

��rij�� , �12�

where F�x� is a polynomial function

F�x� = C1x + C2x2 + C3x3 + C4x4 + C5x5 �13�

and ��rij� is a repulsive pairwise potential

��r� = �0�d0/r�mexp	m
− �r/dc�mc + �d0/dc�mc�� . �14�

The parameters were fitted using the Levenberg-Marquardt
method38 to match the total-energy curves of selected struc-
tures obtained using ab initio full potential linearized muffin-
tin orbital �FPLMTO� calculations �WIEN97 code39�. These
structures include a C3 linear molecule, an infinite linear
chain, a graphene sheet, diamond, simple cubic, and face-
centered-cubic lattices. Figure 1 presents the total-energy
curves as a function of the nearest-neighbor distance for the
various structures used for the fit. Both local-density ap-
proximation �LDA� and generalized gradient approximation
�GGA� calculations were performed and the ab initio results
were shifted to the experimental energy for diamond at its
equilibrium distance �Etot=−7.34 eV /atom at d=1.53 Å�.
The parameters were fitted to the GGA values with more
weight on the linear chain, graphene, and diamond struc-
tures. The total-energy curves match very well the ab initio
results for carbon in its sp, sp2, and sp3 bonding states. The
molecules and the simple-cubic and fcc phases are too stable
as compared to the ab initio results but still far from being
stable. This is the most important point: in all applications of
our model, we explore atomic configurations not very far
away from thermodynamic equilibrium, which justifies the
preferential weight put on the usual spn covalent structures.

Finally, the coefficients in Eq. �13� are given by C1
=6.2148, C2=−0.487 97, C3=0.507 16�10−1, C4
=−0.289 06�10−2, and C5=0.690 83�10−4. The coeffi-
cients in Eq. �14� are �0=1.3572, d0=1.5096, m=−3.4528,
dc=2.0798, and mc=7.0584. Furthermore, to avoid any dis-
continuity in the energy calculations, Fermi-type cutoff func-
tions are used. In Eq. �11�, ���r� are replaced by ���r� / 	1
+exp
�r−�1� /�1�� with �1=2.53 Å and �1=0.016 Å, while
in Eq. �14�, ��r� is changed into ��r� / 	1+exp
�r−�2� /�2��
with �2=2.59 Å and �2=0.0033 Å.

A reliable model to study the synthesis of carbon nano-
structures should not only yield the correct relative energies
for carbon in its sp, sp2, and sp3 states but also correct en-
ergy barriers between these states. Kertesz and Hoffman40

and Fahy et al.41 calculated the energy barrier corresponding
to the transition from rhombohedral graphene to diamond.
Following the same path in the R �bond length between lay-
ers�,  �buckling angle�, and B �bond length within layers�
space, we find the same value �E=0.33 eV /atom as in Ref.
41 for slightly different values of the parameters �see Fig. 2�.
To explore the sensitivity of the energy barrier to the poten-
tial, in particular to the coefficients of the repulsive energy,
we have performed other fits using either a sixth moment
approximation or a full diagonalization of the tight-binding
Hamiltonian, where only these coefficients are modified. The
results are similar with energy barriers equal to 0.30 and 0.20
eV, respectively. Optimized fits would certainly improve the
latter value. The important point here is to be sure to obtain
barriers of positive energy.

Finally, we study typical defects that are likely to occur in
sp2 carbon nanostructures, such as adatoms and Stone-Wales
defects. Since a carbon adatom is a common defect in gra-
phitic lattices, it is important to study its behavior within our
model. Using a simulated annealing procedure, we find that
the equilibrium position of the adatom corresponds to a
bridgelike structure where the adatom lies above a C-C bond.
This geometry and the energy gain �equal to −0.93 eV� are
similar to those obtained within previous LDA calculations
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FIG. 1. �Color online� Total energy as a function of the inter-
atomic distance for C3, linear chain, graphene, diamond, simple
cubic, and face-centered-cubic structures. Thin dotted line: LDA
approximation; full line: GGA approximation; thick dashed line:
fourth moment approximation.
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on a similar surface.42–44 This result is a priori far from
obvious since it could have been imagined that a “hole” po-
sition where the atom lies above the center of an hexagon is
more favorable. This is therefore a very nice validation of the
potential. The distance of the adatom perpendicular to the
graphene plane is equal to 1.25 Å with C-C bond length
equal to 1.42 Å and bond angle close to 98°.

The Stone-Wales defect is a 90° rotation of two carbon
atoms in the hexagonal network with respect to the midpoint
of the bond. This leads to the formation of two pentagons
and two heptagons, replacing four hexagons.45 This transfor-
mation, studied extensively theoretically using first-
principles calculations, has been shown to give rise to ex-
tremely high-energy barriers of 6–10 eV with an energy of
formation around 4–5 eV.46 Our tight-binding model yields
reasonable values with an energy barrier equal to 7.2 eV and
an energy of formation equal to 6.0 eV. Notice that the pres-
ence of adatoms considerably lowers the energy barrier.47

IV. TRANSITION METAL

The electronic structure of transition metals is character-
ized by the presence of tightly bound d electrons which form

a narrow band that overlaps and hybridizes with a broader
nearly-free-electron sp band, and most physical properties of
these metals have a systematic variation across the transition-
metal series, as a function of the number of valence d elec-
trons. This is well described within the tight-binding
approximation21,22,48 where sp-d hybridizations are neglected
and in which the mean position of the d band in the solid is
assumed to be given by the atomic level �d. In particular, the
bell-shape behavior of the cohesive energy and of the elastic
moduli is correctly predicted by these models and is the re-
sult of a progressive filling of the d states.20 In our d band
model, the Slater-Koster parameters for the hopping integrals
dd�, dd�, and dd� are assumed to be in the ratio −2:1 :0
and to decay exponentially with respect to the bond length r
as

dd��r� = dd�0 exp
− q�r/r0 − 1�� �15�

with �=� ,� ,�. The second term in Eq. �3�, Erep
i , is a repul-

sive contribution chosen to have a pairwise Born-Mayer
form here,

Erep
i = A �

j atoms
exp− p� rij

r0
− 1�� . �16�

The �dd�0, q, A, and p� parameters used in this study are
fitted to experimental values of the lattice parameter, of the
cohesive energy, and of the elastic moduli �bulk modulus and
the two shear moduli� for the fcc elements at the end of the
3d transition-metal series, cobalt, and nickel. Both elements
have quite similar cohesive properties, as shown in Table I.
In practice the procedure is to force almost perfect agreement
with the experimental data for the lattice parameter, cohesive
energy, and bulk modulus and to find a good compromise for
the shear moduli. There are however well-known problems
with the treatment of the late transition elements using a pure
d tight-binding approximation. The main difficulty is that the
calculated shear moduli for the fcc structure C=C44 and C�
= �C11−C12� /2 are negative for a d band filling Nd larger than
9, which is the usual value chosen for Ni, Pd, and Pt.52 The
fcc lattice is then completely unstable, and actually the bcc
structure is found to be more stable for nearly filled d bands
when performing total-energy calculations.53–55 Similarly the
cohesive energies are much too low.

TABLE I. Comparison of our tight-binding d model with experimental data. The experimental values for
fcc Ni and hcp Co are taken from Ref. 49, those for fcc Co from Ref. 50, and the surface energies from Ref.
51.

Structure
Lattice parameter

�Å�
Cohesive energy

�eV/atom�
B

�GPa�
C�

�GPa�
C44

�GPa�
Surface energy

�mJ /m2�

Ni fcc a /�2=2.489 −4.44 187.6 55.2 131.7 1840 �solid�
2385 �liquid�

Co hcp a=2.50 −4.39 193 1884 �liquid�
c=4.07

Co fcc 182 32.5 92

This work fcc a /�2=2.489 −4.44 182.1 68.8 96.9 1660 �100�
1560 �111�

FIG. 2. Total-energy difference for the diamond to
rhombohedral-graphite transition along the path in the R , ,B space
defined in Ref. 41. Circles: fourth moment approximation; dia-
monds: Fahy et al. �Ref. 41�.
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All these disadvantages are known to be due to neglecting
hybridization of the d states with the nearly-free-electron
states built from the s and p atomic states. Unfortunately
adding s and p states to the atomic basis multiplies the num-
ber of parameters to be fitted, so that the model becomes
fairly complicate, if not unstable. We have checked that the
fourth moment approximation that we use here as in the case
of carbon �Sec. III� reproduced fairly well the results ob-
tained from a full diagonalization of the tight-binding Hamil-
tonian for d band fillings close to 8. For this band filling
which turns out to be in between the values recommended by
Andersen56 for Co and Ni, the fit to the experimental values
is fairly good �see Table I� and stable. We have therefore
chosen this value, which will be used for nickel in the fol-
lowing. It could be applied to cobalt as well. Our model is
too simple to discriminate between these two elements.

Let us recall here that paradoxically a second moment
approximation would provide positive shear moduli, which
explains why it is used with success in some cases. But this
is clearly an artifact. Since we want to have a consistent and
simple scheme to describe correctly the sp states of carbon
and the d states of the transition elements, the fourth moment
approximation is a good compromise. A fifth or sixth mo-
ment approximation would be better still52,57 but fairly ex-
pensive to implement.

Within the fourth moment approximation described previ-
ously, the parameters are dd�0=0.54 eV, r0=2.53 Å, q
=2.14, A=0.0795 eV, and p=12.1. Here, again the hopping
integrals dd� and the repulsive interactions are forced to
vanish smoothly using a Fermi-type function 1 / 
1+exp�r
−�3� /�3�, where �3=2.95 Å and �3=0.08 Å. There are of
course more sophisticated methods to optimize the depen-
dence on distance of the hopping integrals. Actually it is not
possible in all cases to obtain reasonable fits using a single
smooth law for this dependence. For example, first- and
second-neighbor integrals on a bcc lattice do not obey simi-
lar laws. This can be accounted for by defining “screened”
integrals depending on the local environment.58 In the case
of the fcc structures considered here, this is not necessary.

V. METAL-CARBON INTERACTIONS

To describe the carbon-metal interactions, it is very con-
venient to start from a study of the electronic structure of
simple and typical metal carbides. The transition-metal com-
pounds of type MX �M =3d transition metal and X=C and N�
have attracted much attention due to their remarkable me-
chanical and physical properties, e.g., high hardness, high
melting points, and wear and corrosion resistance.59 Most of
the transition-metal monocarbides crystallize in the NaCl
structure, where carbon atoms occupy the octahedral intersti-
tial sites of the fcc metallic sublattice. This concerns princi-
pally the elements of groups IV �Ti, Zr, and Hf� and V �V,
Nb, and Ta�. Increasing the number of d electrons stabilizes
an hexagonal structure where the octahedral sites are re-
placed by trigonal prismatic sites �case of MoC and WC, for
example�. Many other interstitial transition carbides form at
different stoichiometries.1 Another large family of carbides
and nitrides can be viewed as resulting from the ordering of

vacancies on the carbon �nitrogen� sublattice.60 These order-
ing mechanisms have been well explained from the calcula-
tion of effective pair interactions within a tight-binding
model.21,61

The relation between the cohesive properties of transition-
metal compounds and their electronic structure is a matter of
considerable theoretical and practical interests.11 In particu-
lar, band-structure calculations have been performed very
early for the MX NaCl-like compounds62,63 and their main
physical conclusions have been confirmed by self-consistent
LDA calculations.64,65 Extensive compilations of thermody-
namic data and of electronic structure calculations of cohe-
sive properties are available.66,67

All these works show that the cohesive properties of the
MX carbides can be understood in a model similar to the
Friedel model for transition elements, where the cohesive
energy varies with the filling of a valence band built here
from hybridized pd states. In a first approximation a rigid-
band model is valid, with the density of states of carbides
being characterized by the presence of a fairly broad band of
strongly hybridized states between the p states of carbon and
the metallic d states.

More precisely the electronic structure of a typical NaCl
carbide is characterized by three families of states �see Fig.
3�. The calculations presented in this figure have been per-
formed using the ABINIT code.68 At low energy �typically 10
eV below the Fermi level� there is a narrow band derived
from the 2s states of carbon. At higher energy appears the

FIG. 3. Top: band structure and density of states of the TiC
carbide; the Fermi level �dashed line� is just in the middle of the
pseudogap within the hybridized pd band. Bottom: partial s, p, and
d densities of states. The calculations are made with the ABINIT code
�Ref. 68�.
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hybridized pd band with a pseudogap within it, separating
bonding states from antibonding states. Notice that the cubic
symmetry allows us to distinguish between eg and t2g states,
and that the pd hybridization is found to be more efficient for
eg states. Finally at much higher energy, about 9 eV above
the pseudogap, there is a nearly-free-electron band built prin-
cipally from the s and p states of the metallic element. The
electronic structure of NaCl nitrides is quite similar, with a
deeper pseudogap. Finally in the case of oxides, a genuine
gap appears and these oxides are insulators whereas the car-
bides and nitrides are metallic. All these features are fairly
well understood and are typical of interstitial compounds
where the interstitial elements �carbon, nitrogen, and oxy-
gen� do not interact directly.11 The shortest interatomic dis-
tance is the carbon �nitrogen, oxygen�-metal distance, hence
the strong pd hybridization.

On the other hand the interstitial-interstitial distance is
much larger in a fcc lattice than in the corresponding mol-
ecules C2, N2, and O2, and the s and p states of the interstitial
atom do not hybridize. Actually the 2s low-energy band
practically does not play any role in bonding. From this dis-
cussion it is clear that a tight-binding fit of the energy bands
of NaCl carbides should be feasible, and this has been
achieved indeed in a pioneering work by Schwarz62 on NbC
whose electronic structure is quite similar to that of TiC. This
type of fit combined with the recursion method has been
used with success afterward69 and will serve here as a refer-
ence. We can even simplify this description by neglecting
crystalline field integrals, as well as the sd� integrals cou-
pling the carbon s states and the transition d states, because
of their weak interactions mentioned above. Finally in this
simplest scheme, the electronic structure of all transition
NaCl carbides can be characterized by three parameters, the
two hopping integrals pd� and pd� and the position of the d
states �d, compared to that of the carbon s and p states, �s
and �p. The hopping integrals are also assumed to decay
exponentially with distance,

pd��r� = pd�0 exp− q� r

r0
− 1��, � = �,� . �17�

Using the values pd�=−2.319 eV, pd�=1.306 eV, and r
=r0=1.88 Å, we have checked that this model is sufficient
to reproduce the main characteristics of the density of states
of NbC corresponding to the valence pd band �see Fig. 4�.
The fact that the lowest 2s band is not very well treated is
not important here as discussed above. The parameter q will
be also determined later on.

Let us now discuss a few problems related to the elec-
tronic populations and charge transfers. When looking at the
band structure of a typical NaCl carbide �see Fig. 3� we see
that the lowest s band contains one state per unit cell �or per
formula MC�, and therefore two states, spin included, per
formula. The set of sp bands above contains eight bands,
hence sixteen states per formula. Within our model these
states are built from the six p states of carbon and the ten d
states of the metallic element. This means that the states built
from the sp states of this element contribute to the states at
higher energy above the main pd hybridized band. The
nearly-free-electron band does not overlap the d states,

whereas we know that such an overlap occurs in elemental
transition elements. Actually the interactions between the s
states of carbon and the sp states of the metallic element
repel the latter states above the main hybridized band. There
is a charge transfer from sp states toward d states when
going from the pure element to the carbide. Since we do not
include the metallic sp states in our basis, we have just to
change the d population. As an example, consider the TiC
compound. The valence charge of Ti is equal to 4. In the case
of the carbide we have therefore to fill the hybridized pd
band with 4+2 �carbon p electrons� electrons. For pure tita-
nium it is generally considered that the d band filling is about
3, which corresponds to an effective d3s atomic configuration
instead of d4 for the carbide. Since the band energy varies
quite a lot with the effective number of d electrons, this
effect cannot be neglected. Viewed from the side of the me-
tallic atom, all happens as if the presence of carbon atoms on
the octahedron sites of its first neighbor shell has induced a
transfer of one electron from the �metallic� sp states to the d
states. To build a potential for any atomic configuration we
adopt an interpolation procedure where the number of elec-
trons transferred is a smooth function of the number of car-
bon atoms �between zero and six� on the first coordination
shell. Beyond six carbon atoms this number is held constant.

Although NaCl carbides do not exist in the case of Fe, Co,
and Ni, we can rely on the first-principles calculations which
indicate that the shape of the hybridized band does not
change too much when varying the element of the transition
series �see Fig. 5�. We will therefore keep the �relative� val-
ues of the hopping integrals derived for NbC �see below�.
The position of the atomic d level on the other hand obvi-
ously varies with the nature of the element considered. �d
decreases when increasing the number of electrons along a
transition series �about 1 eV per element�; but since this level
is an effective quantity, which is adjustable to some extent, it
is useful to see how it is related to the charge transfers be-
tween carbon and the metallic element.

Within the tight-binding method one uses the so-called
Mulliken charges which are based on the decomposition of
the electronic density on the atomic orbitals. Here, they are
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FIG. 4. �Color online� Comparison between the densities of
states of NbC corresponding to the full fit by Schwarz �Ref. 62�
�dashed line� and that obtained within our simplified scheme. The
agreement is good as far as the relevant valence bands are
concerned.
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obtained by integrating the local densities of states up to the
genuine global Fermi level. It is well-known that this decom-
position can be very different from the spatial decomposition
frequently used within solid-state band calculations. Both
methods can yield very different results. Mulliken charge
transfers are generally larger than the geometric charge trans-
fers. This is specially true in the case of carbides where the
size of the atoms and of the atomic orbitals are very
different.62 In the case of early transition carbides, the Mul-
liken charge transfer toward carbon is found to be on the
order of unity. Although not a well-defined quantity from a
fundamental point of view, such a charge transfer has to be
taken into account in this case, at least at a Hartree-type
level, when calculating cohesive energies.

As mentioned in Sec. II our simple scheme to calculate
total energies is based indeed on a local charge neutrality
hypothesis. Fortunately in the case of Fe, Co, and Ni, the d
energy level is shifted toward lower values and then the
charge transfer decreases. The electronegativity of the tran-
sition element decreases and becomes of the order of mag-
nitude of the electronegativity of carbon. For these late ele-
ments it is therefore reasonable to assume local neutrality
and to fix the relative position of the p and d atomic energy
levels accordingly. For NiC, this leads to �d=−0.5 eV.

Notice here that the relative position of the carbon s and p
levels has been already fixed when defining the carbon po-
tential. Its value, �p−�s=6.70 eV, is smaller than the value
deduced by Schwarz62 in its interpolation procedure, �p−�s
=8.0 eV, so that using our value the 2s band is too high in
energy. When interested in cohesive energies, this is not a
problem since, as mentioned previously, these s states do not
contribute to the chemical bond.

We have now to determine the repulsive contribution to
the total energy. As in the case of elemental metals, we as-
sume a similar pairwise Born-Mayer 
see Eq. �16��. The

�A , p ,q� parameters are fitted to the cohesive properties of
the hypothetical NaCl structure: equilibrium lattice param-
eter, bulk modulus, and enthalpy of formation �H of the
carbide. The latter point is crucial here since we want to
build a potential for Ni-C with good thermodynamic proper-
ties. The phase diagram shows clearly a tendency of phase
separation, which indicates a positive enthalpy of formation
�Fig. 6�. The fact that the ordered phase Ni3C is
metastable—it can be produced by mechanical alloying;71

see also the observations by Banhart et al.72—indicates on
the other hand that it cannot be strongly positive. No reliable
experimental value is available and we have therefore calcu-
lated �H from first-principles calculations �ABINIT code�.
The enthalpy of formation per atom �H is defined as

�H = �ENiC
NaCl − EC − ENi�/2, �18�

where ENiC
NaCl, EC, and ENi represent the total energies of the

rocksalt NiC compound �per formula�, of the graphene sheet,
and of bulk fcc Ni �per atom�, respectively. As expected, the
enthalpy of formation of the carbide is found to be positive
��H=0.93 eV /atom�. This is in good agreement with the
values obtained from extrapolation of thermodynamic
data.1,66 The parameters used in our tight-binding model are
A=0.73 eV and p=12.5 for the repulsive part. The hopping
integrals have been calculated from Eq. �15� with q=3.2 and
r0=1.88 Å, which means that, compared to NbC, the ratio
between pd� and pd� has been kept constant for simplicity,
but that their values have been renormalized to account for
the variation in the equilibrium volume.

The adjustments were performed in order to reproduce
correctly the physical properties of the carbide, as shown in
Table II. Finally the cutoff for the Ni-C interactions has been
set at 3.20 Å.

TABLE II. Physical properties of NiC compound with the NaCl
structure. Comparison of our tight-binding model with ab initio
data.

Lattice parameter
�Å�

�H
�eV/atom�

B
�GPa�

Ab initio 4.01 0.93 304

Present work 4.17 0.93 350
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FIG. 5. �Color online� Densities of states of the NaCl carbides
TMC, where TM is a transition element of the 3d series. The origin
of energies is taken at the Fermi level; calculations are performed
with the ABINIT code �Ref. 70�.
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Let us summarize our discussion concerning the deriva-
tion of a carbon-metal potential. The binding contribution is
mainly due to the pd hybridization between the p states of
carbon and the d states of the metallic element. The values of
the corresponding integrals have been obtained through an
interpolation procedure, i.e., a tight-binding fit to the calcu-
lated first-principles band structure of the equiatomic NaCl-
like carbide. In the case of nickel, the relative position of the
p and d atomic energy levels has been chosen, so that local
charge neutrality is satisfied. The other parameters—
repulsive term, the dependence on distance of the attractive
and repulsive parts—have been fixed through a fit to cohe-
sive properties of the carbide, to its enthalpy of formation in
particular.

At this point some comments are relevant. In the case of
carbides �or nitrides�, it is useful to distinguish between co-
hesive energies and enthalpies of formation. The cohesive
energy is in general defined as the total energy of the com-
pound compared to atomic energies �energies of the constitu-
ents in their gaseous state�. The enthalpy of formation com-
pares the total energy to those of the constituents in their
equilibrium crystalline states �graphene and fcc nickel in the
case of NiC�. Consider the example, detailed by Cottrell,1 of
TiC, which has the largest cohesive energy in the 3d transi-
tion series of about 14.15 eV per formula. The cohesive en-
ergies of Ti and C are equal to 4.85 and to 7.4 eV per atom,
respectively, so that the enthalpy of formation per formula
�or per carbon atom� is equal to −1.90 eV. The enthalpy of
formation is a small percentage of the cohesive energy of the
constituents. In other terms, all bonds, metal-metal, carbon-
carbon, and carbon-metal bonds, are strong and the stability
of the carbides is a relatively delicate balance between them.
Starting from pure Ti in the fcc phase �which has a cohesive
energy very close to that of the stable hcp phase� the intro-
duction of carbon atoms in the octahedral interstitial sites
distorts slightly the host lattice, hence some loss of d bond-
ing energy, but the main balance is between the energy gain
due to the first neighbor pd hybridization and the energy loss
due to the breaking of C-C bonds. A quite similar argument
applies also to NiC whose enthalpy of formation per for-
mula, about +1.8 eV, should be compared to the cohesive
energies of nickel and carbon, 4.5 and 7.4 eV, respectively.
Even if the compound NiC does not exist, the Ni-C bond is
very strong and local ordered configurations can be meta-
stable. This property is probably at the root of the interesting
catalytic properties of Fe, Co, and Ni.

VI. VALIDATION OF THE MODEL

The difficulty in the derivation of a complete potential for
carbides was clearly the nickel-carbon part. Once all param-
eters have been fitted, the model can be applied to any
atomic configuration of carbon and nickel atoms provided
that the parameters do not depend too much on the concen-
tration of carbon atoms. In order to test this assumption and
to test the transferability of our potential, we have studied
many different situations. In Sec. VI A the solubility of car-
bon in nickel is considered in the bulk as well as at, or close
to, the surface. Interactions of Ni atoms with a graphene

sheet are discussed in Sec. VI B. The clock reconstruction
observed when carbon and other light elements are deposited
on a �100� Ni surface is then analyzed in Sec. VI C. Section
VI D presents a discussion of the �epitaxial� formation of
graphene on Ni�111� or Co�111� surface. Finally recent ap-
plications of our energetic model to the study of the catalytic
growth of carbon nanotubes are summarized in Sec. VI E.

A. Carbon solubility in nickel

A quantity of great interest is the heat of solution �Hsol of
a C interstitial atom in crystalline Ni. Experimental and ab
initio data exist for the Ni-C solid solution in the paramag-
netic state,73 which allows us to make a critical assessment
of our tight-binding model. The heat of solution of C in Ni
with respect to graphene is calculated according to the for-
mula

�Hsol = ENi+C − �ENi + EC� , �19�

where ENi+C is the total energy of the interstitial Ni+C sys-
tem, ENi is the energy of the Ni system without C, and EC is
the energy per C atom in graphene. In the fcc Ni lattice, two
high-symmetry interstitial sites are available for C occupa-
tion: the octahedral and the tetrahedral sites. The most likely
location for C in the fcc lattice is believed to be at octahedral
interstitial sites, which is confirmed by first-principles
calculations.73,74

In the present work, only this configuration has been in-
vestigated, with the bulk fcc Ni being simulated by a finite
box of dimensions up to 6�6�6 in units of fcc unit cells,
with periodic boundary conditions along the three axis. This
was necessary to obtain converged results �see Fig. 7�. Actu-
ally the octahedral site of fcc Ni is a little bit too small to
accommodate a carbon atom which therefore pushes its first
neighbor Ni atoms. This induces long-range elastic interac-
tions between the images of the carbon atom due to the pe-
riodic boundary conditions. Using a simulated annealing pro-
cedure, we find that the six Ni atoms, surrounding the
interstitial C atom, are displaced by about 0.15 Å in such a
way that the Ni-C bonds have a length of about 1.90 Å
which is close to the equilibrium distance in the rocksalt
structure equal to 2 Å. Finally we obtain a heat of solution
within our tight-binding framework equal to 0.45 eV, in good
agreement with the 0.43 eV value found experimentally and
higher than the 0.2 eV found in previous density-functional
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FIG. 7. Variation in the calculated energy of dissolution as a
function of the size of the supercell.

TIGHT-BINDING POTENTIAL FOR ATOMISTIC… PHYSICAL REVIEW B 79, 014109 �2009�

014109-9



theory �DFT� works.73 This better agreement of the tight-
binding semiempirical scheme is certainly fortuitous, but the
“first-principles” calculations have also some weaknesses.
First the result depend significantly on the approximation
used, GGA versus LDA, form of the exchange-correlation
functional, nature of the pseudopotential, etc. Another prob-
lem is related to the size of the supercell used. In units of the
fcc unit cell the latter authors used a 2�2�2 box which is
probably too small according to our calculations. Other pos-
sible reasons for the theoretical underestimate of �Hsol are
discussed in detail by Siegel and Hamilton.73 Recent calcu-
lations by Zhu et al.74 with box sizes up to 3�3�3 show
similar results. In any case the positive sign of �Hsol is con-
sistent with the positive value of the enthalpy of formation
discussed in Sec. V. Both quantities should indeed be com-
parable since carbon atoms in the NaCl structure do not in-
teract directly. The difference comes again from the induced
elastic interactions.

It is useful at this point to recall that one has to be very
careful with the cutoffs of the potential �hopping integrals in
particular� when performing such structural relaxations.
These cutoffs are generally chosen to lie in between coordi-
nation shells of the crystalline structure of reference, but the
coordination numbers can change during the relaxation pro-
cess, which can induce unphysical discontinuities. Although
well known this type of artifact is not always easily detected.
In our case we a have a nice tool because of the possibility to
calculate local energies on different atoms. Although these
energies depend on the local environments, it is fairly easy to
detect unphysical variations and to modify the cutoffs. The
values given in this paper have been chosen so as to avoid
problems in all cases which have been investigated.

Another test of the model is to study how the heat of
solution is modified in the presence of a surface. We have
calculated this energy for different positions of the carbon
atom on a �111� surface or just below it. The most favorable
position is the subsurface position, in between the first �111�
planes, so that the carbon atom has a full octahedron
environment.75 The adsorption or adhesion energy is found
equal to −8.25 eV, which is in good agreement with first-
principles calculations.15 This quantity, which is frequently
used when considering catalysis processes, refers to the en-
ergy of atomic carbon. To convert it into an heat of solution,
we have to subtract the formation energy of graphene, equal
to −7.42 eV. The enthalpy of solution is therefore equal to
−0.83 eV, which means that the solution process is exother-
mic close to the surface, whereas it is endothermic in the
bulk. Although this effect is perhaps overemphasized within
our model, its physical origin is clear. The positive sign of
�Hsol in the bulk is principally due to a size effect, with the
surrounding nickel atoms being pushed by the carbon atom,
but this is counterbalanced by the elastic response of the
crystal. In the presence of a surface the relaxation process is
easier and the elastic energy cost is lower. This clearly shows
that this size effect favors the segregation of carbon toward
surfaces. More details are given in Ref. 15. Some results
obtained for the �100� surface16 are discussed below.

B. Interaction of Ni atoms with a graphene sheet

We have studied the interaction of Ni atoms with a
graphene sheet. Two possible stable positions are generally

considered where the Ni atom is either above a carbon atom
�top position� or above the center of an hexagonal carbon
ring �hole position�. For the late 3d transition elements, the
hole position is preferred.18,76 We have checked that within
our model. Using a simulated annealing Monte Carlo proce-
dure, the final position of a Ni atom is always the hole posi-
tion whatever the initial condition is. The binding energy is
found equal to 3.5 eV, which is in semiquantitative agree-
ment with the 2.5 eV value obtained by Duffy and
Blackman76 using the DMol code. The agreement is also good
for the values of the height of the adatom above the sheet:
1.57 Å in our calculation instead of 1.53 Å in Ref. 76.

We have also calculated the energy of substitution of a C
atom in a graphene sheet by a Ni atom. The ground-state
structure obtained again after a simulated annealing proce-
dure is shown in Fig. 8. The Ni atom is found displaced out
of the graphene sheet by 1.1 Å, which is close to the 1.0 Å
value given by Banhart et al.72 on the basis of electronic
microscopy observations as well as of first-principles calcu-
lations. The energy of substitution is found equal to 10.8 eV
to be compared to the 9.5 eV ab initio value. This strong
positive value shows that this substitutional defect can hardly
be stable. Banhart et al.72 argued that Ni atoms most prob-
ably fill existing vacancies created by the electron beam in
their transmission electron microscopy observations.

C. Clock reconstruction on Ni(100) surfaces

The interaction of carbon with transition-metal surfaces
has been widely studied. Carbon chemisorption on Ni sur-
faces in particular has been considered in detail, from an
experimental point of view, in a series of papers by Blakely
and co-workers,77 as well as from a theoretical point of
view.2,78 In the case of the �100� surface, which has a simple
square lattice structure, carbon at low coverage occupies the

FIG. 8. �Color online� Final position after relaxation of a sub-
stitutional Ni atom in a graphene sheet; top and side views.

AMARA et al. PHYSICAL REVIEW B 79, 014109 �2009�

014109-10



hollow semioctahedral sites, with an adsorption energy equal
to −8.21 eV within our model,16 in good agreement with
experimental and ab initio data. Here again the latter ones
depend significantly on the approximation used.79 At higher
coverage, carbon, as well as many other elements �N, O, and
S�, form a c�2�2� superstructure. This occurs for a surface
coverage beyond one third of a monolayer in the case of
carbon. Contrary to sulfur and oxygen, carbon and nitrogen
atoms induce a reconstruction of the outermost layer of
nickel atoms of p4g symmetry called a “clock” reconstruc-
tion where the topmost Ni atoms move around C atoms by
alternate clockwise and counterclockwise rotations �see Fig.
9, bottom�. The distortion preserves the shape of the carbon
squares, while the nickel atoms, which are not surrounding
the C atoms, become rhombi. This reconstruction is clearly
induced by the stresses exerted by the carbon atoms on their
surrounding nickel atoms �see below�. A lot of experimental
and theoretical studies have been devoted to this
reconstruction.80–83

To test our model, we have performed simulated anneal-
ing simulations on a slab of nickel �208 atoms� with �100�
surfaces and covered by C atoms. A 20-Å-thick vacuum re-
gion was introduced along the z axis and periodic boundary
conditions were applied in the two other directions. The slab
size is 12.47�12.47�8.79 Å3. Sixteen carbon atoms are
deposited above the surface made of 32 Ni atoms in a c�2
�2� geometry, corresponding to a coverage equal to 0.5 ML
�see Fig. 9, top�. In the present case, all the atoms in the
system are fully relaxed. During the simulation, we observe
that the C atoms move slightly outward at about 0.35 Å
above the fourfold hollow site, whereas the Ni atoms of the
first layer of Ni atoms self-organize to adopt the p4g sym-
metry �see Fig. 9, bottom�. Our results, summarized in Table
III, are in very good agreement with previous first-principles
calculations and experimental data.

In order to understand the driving force for the p4g sym-
metry reconstruction on fcc �100� surfaces, Klink et al.80

performed a systematic experimental study of the changes in
surface stress as a function of coverage of carbon using scan-
ning tunneling microscopy �STM�. The results can be briefly
summarized as follows. In the low coverage phase, 

�0.2 ML, the C atoms adsorb in fourfold hollow sites.
Then, the four Ni atoms surrounding each carbon atom are
displaced radially to allow the C atoms to remain embedded
within the Ni surface, so that they are fivefold coordinated
�one Ni atom below and four in-plane atoms�. Beyond 
=0.2 ML, the surrounding Ni atoms can no longer be
pushed away radially. Then, the collective p4g clock recon-
struction in which the squares of Ni atoms surrounding the C
atoms rotate insures that these C atoms keep their semiocta-
hedral environment, with the stress being transferred on the
empty Ni squares which transform into rhombi. To study this
process in more detail, we have performed total-energy cal-
culations for different values of �, the amplitude of the in-
plane displacement of the first-layer metal atoms upon recon-
struction. The initial system considered here is the same as
that described previously. Our results presented in Fig. 10 for
different adatom-surface distances show clearly two regimes.
For distances lower than 0.4 Å, the most stable configura-
tion is the reconstructed one. The amplitude of which de-
creases when the adatom moves upward. Above 0.4 Å, the
reconstruction is no longer stable. Thus, big atoms which
cannot approach the surface do not provoke the clock recon-
struction. For instance, a half monolayer coverage of Cl, S,
and O on Ni�100� results in structures with small or no re-
construction. The comparison of the behaviors of oxygen on
a Rh�100� and a Ni�100� surface is very interesting from this
point of view. Rhodium �3.80 Å� has a lattice parameter
larger than nickel �3.52 Å� and offers more room for an
oxygen atom, and actually the reconstruction is observed in
Rh and not in Ni.86 Finally, as mentioned in Sec. IV, our
model does not discriminate between Ni and Co, so that a
similar behavior is expected for the interaction of carbon
with a fcc Co�100� surface, with fcc Co being actually the
ground-state structure of small clusters. This is confirmed by
recent studies.87

D. Graphene on Ni(111)

Much less observations are available concerning recon-
structions of the Ni�111� surface, but STM studies by Klink

TABLE III. Energetic and structural characteristics of the clock
reconstruction obtained within our tight-binding model compared to
experimental and ab initio data. �: amplitude of the in-plane dis-
placement of the first-layer metal atoms characterizing the clock
reconstruction; d01: C-surface distance; d12: distance between the
first and the second Ni planes. The percentage between parentheses
indicate the amplitude of the expansion with respect to pure Ni. �E
is the energy difference between the symmetric c�2�2� structure
and the reconstructed one.

�
�Å�

d01

�Å�
d12

�Å�
�E

�eV/atom�

Expt.a 0.55�0.20 0.1�0.1 1.83 �+11�2%�
Tight-binding 0.50 0.35 2.01 �+14.2%� 0.15

Ab initiob,c 0.46 0.17–0.20 1.88 �+10.3%� 0.20

aReference 84.
bReference 82.
cReference 85.

FIG. 9. �Color online� Clock reconstruction obtained within our
tight-binding model. Top: top and side views of the initial simula-
tion box. Bottom: same views after clock reconstruction.
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et al.88 indicate a possible clock reconstruction similar to the
one described previously. This would imply a removal of Ni
atoms, unless steps and edges help, which seems well to be
the case, as shown recently experimentally �STM observa-
tions� and theoretically �DFT calculations�.89 Reconstruction
on Co�111� is also discussed in Ref. 87. On the other hand
the formation of graphene sheets on Ni�111� has been the
subject of countless studies, principally because of the inter-
est of such surfaces, in catalysis processes.2,90 The recent
revival of interest for graphene has also prompted many
studies,91 with one challenge being to be able to grow in a
controlled manner graphene sheets on different substrates.
Apart from the original exfoliation method, epitaxial sheets
have been shown to grow via the evaporation of SiC
surfaces.92,93 But it has been soon rediscovered that Ni�111�,
Co�111�, or hcp Co�0001� �Ref. 94� surface offers almost
perfect templates for the growth of epitaxial graphene sheets.
Actually, the in-plane lattice constants of graphene match the
surface lattice constants of �111� Co and Ni almost perfectly,
with, for example, a lattice mismatch of only 1.3% for Ni.
Other substrates, Cu, Ir, Pd, Pt, Re, Ru, etc., have also been
studied.95 Different epitaxial positions are possible, but there
are still controversies—experimental as well as theoretical—
concerning their relative stabilities, the values of the energies
of interaction, and the interplane equilibrium distance. Val-
ues ranging from 2 to 3 Å for the latter one are, for example,
reported in the literature.15,96–98 This is perhaps not so sur-
prising; experimentally many factors, such as impurities and
steps, can play a role. Theoretically it is also known that the
�van der Waals� long-range interactions involving graphene
sheets within graphite are difficult to handle within standard
DFT codes. The dispersion in the calculated adhesion ener-
gies is smaller. This energy is generally found to be slightly
attractive �negative�, in the range of −0.05 to −0.1 eV per
carbon atom.15

Using our model, we have considered a graphene layer in
perfect epitaxy on a Ni slab in the so-called fcc geometry,
where half of the carbon atoms are above the Ni atoms
whereas the other half occupies the so-called fcc positions.
We have then relaxed the atomic positions using a Monte
Carlo simulated annealing procedure. The result is an adhe-
sion energy equal to −0.03 eV and an equilibrium interplane
distance equal to 2.19 Å in very good agreement with ab
initio calculations. Here again our potential behaves as it
should. Single carbon atoms interact strongly with Ni �strong
adhesion energy�, but once the sp2 covalent bonds have been
established, the resulting graphene sheet no longer interacts
with the Ni surface. This behavior, also consistent with the
tendency of the Ni-C to phase separation, would of course be
difficult to reproduce using phenomenological potentials.
Notice also that the weakness of the adhesion energy of
graphene shows that, as far as energetic properties are con-
cerned, the presence of available � orbitals of carbon do not
play a significant role. The possible energy gain due to pd
C-Ni bonds is counterbalanced by a loss of direct �-� bond-
ing, with the latter one being maximum for a band filling
corresponding to pure graphene. The hybridization of the �
states with the d3z2−r2 Ni states on the other hand does
exist18,78,99,100 and has been clearly observed close to the
Fermi level.101,102

A stronger test of our potential is to start from a configu-
ration such as a solid solution of carbon in nickel and to see
whether it can predict carbon segregation toward the surface.
We have developed a full thermodynamic model using
Monte Carlo simulations within the grand-canonical en-
semble, where the control parameter is the carbon chemical
potential. This is described in detail elsewhere15 and we just
recall some results here. When the chemical potential in-
creases, more and more carbon atoms are added to the sys-
tem, and basically, as shown in Fig. 11, four types of con-
figurations corresponding to different reaction steps are
identified: single C atoms adsorbed on the surface or incor-
porated in interstitial sites, chains creeping on the surface,
detached sp2 C layers, and finally a three-dimensional amor-
phous C phase.

E. Application: Nucleation of nanotube embryos

Since an important motivation to derive an energetic
model for metal-carbon systems was to understand the role
of catalysts in the growth of carbon nanotubes, let us finally
summarize the results which we have already been obtained
in this field. Starting from a small nickel cluster instead of
the �111� surface treated above, we have undertaken studies
of the nucleation of carbon caps. Here, again there is an
optimal chemical potential window to nucleate these gra-
phitic caps whose curvature matches the local curvature of
the catalyst particle �see Fig. 12�. The chemical potential has
to be large enough to ensure a sufficient concentration of
carbon atoms at the surface. It should also be small enough
to avoid the formation of a thick amorphous layer. The role
of the catalyst is to confine carbon atoms on or close to the
surface. This shows the importance of having strong interac-
tions between the metallic elements and isolated carbon at-

En
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)

0.80.60.40.20.0
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FIG. 10. Total energies as a function of the displacement � for
different values of distance between carbon atoms and the surface
plane.
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oms and explains why the late transition elements are good
catalysts. They do interact strongly with carbon atoms but
weakly with graphitic structures. These arguments agree with
other studies based on ab initio calculations12,103 and are de-
tailed elsewhere.10

The case treated above corresponds to a situation fre-
quently encountered in chemical vapor deposition processes
where the nanotubes grow in a tangential mode, with the
diameter of the tubes being related to the size of the catalyst
particle. In other cases, particularly in the high-temperature
synthesis, the nanotubes grow perpendicularly to the
surface.5 Arguments based on classical nucleation and
growth thermodynamic models have been put forward to un-
derstand how this can happen.104,105 Carbon atoms at the
surface of the metallic catalyst are assumed to condense in
the form of graphene flakes. The metallic substrate can then
help to saturate the dangling bonds and this favors the for-
mation of a cap, with the energy cost due to the curvature
induced by the presence of pentagons being more than com-
pensated by the reduction in the number of dangling
bonds.105 This model was partly confirmed by Fan et al.106

who performed ab initio energy calculations of different ar-

rangements of carbon atoms on a Ni�100� surface, but these
calculations are computationally very demanding and the
structures cannot be fully relaxed.

We have therefore used our model which permits such
atomic relaxations. Examples are shown in Fig. 13. The pos-
sibility to analyze local energy distributions has also allowed
us to determine which atoms �carbon or nickel�, and to what
extent, are stabilized when various carbon clusters are put in
contact with a metallic surface. Finally the adhesion process
of carbon sheets on Ni�100� is slightly more complex than
anticipated. The adhesion energy of flat sheets is mainly due
to the energy gain of the nickel atoms below these sheets.
When they curve to form caps, the energy gain becomes
concentrated on the carbon and nickel atoms close to their
edge. In this case one might argue that dangling bonds are

FIG. 11. �Color online� Equilibrium structures �side and top views� at 1000 K obtained from Monte Carlo simulations performed on a
�111� Ni slab for increasing values of the chemical potential �C: −6.00, −5.75, −5.25, and −4.50 eV /atom. In �a� carbon atoms occupy
interstitial octahedral sites, in �b� they form linear chains on the surface, then in �c� a graphene layer appears, and finally in �d� a thick
amorphous phase begins to grow.

FIG. 12. �Color online� Successive stages of the nucleation of a
C cap on a 55 atom cluster of nickel for a chemical potential equal
to −5.25 eV /atom.

FIG. 13. �Color online� Equilibrium configurations of carbon
clusters on a �100� Ni surface: �a� planar polyaromatic cluster and
�b� nanotube embryo. Notice the fairly large displacements of Ni
atoms below the clusters.
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saturated; but finally, this is a weak effect which does not
play very much in favor of curved caps. The energy of ad-
hesion of flat and curved sheets are similar and small com-
pared to dangling-bond energies, for small clusters at least.
This is fully discussed in Ref. 16.

VII. CONCLUSION

In this work we have presented a model based on the
tight-binding approximation which provides an efficient tool
to calculate the bonding energies in the Ni-C system, with
total energies being obtained by adding empirical repulsive
terms. The model is both simple and accurate.

We have taken advantage of the fact that the band ener-
gies are not very sensitive to details of the electronic struc-
ture to use a moment-recursion technique at the level of a
fourth moment approximation. The use of s , p ,d atomic or-
bitals and of the corresponding transfer integrals insures on
the other hand that the different types of metallic and cova-
lent chemical bonds are correctly described.

C-C interactions are defined from a slight modification of
the model introduced by Xu et al.34 Due to the use of a
complete �s , p� basis for the carbon states, all types of cova-
lent spn bonds can be modeled. The model is shown to re-
produce several properties such as the diamond to
rhombohedral-graphite transition or the energy of local de-
fects such as the Stones-Wales defect. Ni-Ni interactions are
obtained using a fairly standard tight-binding approximation
including d states only. We have shown however that one has
to be careful in choosing band fillings of the d band such that
the fcc structure is stable and that the elastic shear moduli are
positive. The crucial point in this work is the derivation of
Ni-C interactions. They have been constructed from a de-
tailed study of the electronic structure and bonding proper-
ties of transition-metal carbides.

The final full model can be applied to any atomic configu-
ration of carbon and nickel atoms, and we have considered
many different situations involving a large variety of Ni-C
interactions to test the model: heat of solution in the bulk, at
the surface, or close to it; adatoms: nickel on carbon and
carbon on nickel. The case of the spectacular clock recon-
struction at the Ni�100� surface induced by carbon atoms has

been studied in detail as well as the epitaxy between
graphene and Ni �or Co� surfaces. In all cases the model is
fairly accurate when compared to experiment or to ab initio
calculations: our model has a high degree of transferability.
Actually typical error bars are on the order of 0.1–1 eV com-
pared to total energies on the order of 5–10 eV. This is ob-
viously not negligible but it should be kept in mind that ab
initio methods are frequently not better from this point of
view. They show dispersions of the same order of magnitude,
principally in the case of point or localized defects where
atomic relaxations can be so important that it is difficult to
obtain converged results. On the other hand most phenom-
enological models can hardly be transferable and are not
very reliable when severable types of Ni-carbon bonds com-
pete.

A further advantage of our model is that it can be fairly
easily generalized to other metal-carbon systems since we
know semiquantitatively how the different parameters—
transfer integrals, atomic energy levels, etc.—vary with the
nature of the metallic element. A more difficult point is re-
lated to charge transfer. In the case of Ni we have argued that
we can avoid treating it explicitly by adjusting the position
of the atomic energy levels. This can no longer be done in
the case, for example, of the Ti-C system where charge trans-
fers toward carbon can be on the order of one electron. In
this case a Hartree-type treatment should at least be used
where the atomic energy levels depend on the atomic envi-
ronment. From a practical point of view, it will be possible to
define interpolation procedures similar to the one used in this
work to vary the effective number of d electrons. Another
challenge is to include magnetism since magnetic and struc-
tural effects can be strongly coupled as in the case of Fe
�Ref. 107� and of Fe-C.108 This is currently under progress.
More complex tight-binding models can be used as well to
handle these problems,18,36,109 but the price to pay is gener-
ally fairly high in terms of parameters to be fitted and of
computational cost.
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Ciobîcǎ, R. A. van Santen, and E. van Steen, J. Phys. Chem. C
112, 12899 �2008�.

88 C. Klink, I. Stensgaard, F. Besenbacher, and E. Lægsgaard, Surf.
Sci. 342, 250 �1995�.

89 R. T. Vang, K. Honkala, S. Dahl, E. K. Vestergaard, J. Schnadt,
E. Lægsgaard, B. S. Clausen, J. K. Nørskov, and F. Besen-
bacher, Surf. Sci. 600, 66 �2006�; M. P. Andersson and F. Abild-
Pedersen, ibid. 601, 649 �2007�.

90 G. Kalibaeva, R. Vuilleumier, S. Meloni, A. Alavi, G. Cicotti,
and R. Rosei, J. Phys. Chem. B 110, 3638 �2006�.

91 A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 �2007�.
92 A. Charrier, A. Coati, T. Argunova, F. Thibaudau, Y. Garreau, R.

Pinchaux, I. Forbeaux, J.-M. Debever, M. Sauvage-Simkin, and
J.-M. Themlin, J. Appl. Phys. 92, 2479 �2002�.

93 C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D.
Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N.
First, and W. A. de Heer, Science 312, 1191 �2006�.

94 J. Vaari, J. Lahtinen, and P. Hautojarvi, Catal. Lett. 44, 43
�1997�.

95 V. M. Karpan, G. Giovannetti, P. A. Khomyakov, M. Talanana,
A. A. Starikov, M. Zwierzycki, J. van den Brink, G. Brocks, and
P. J. Kelly, Phys. Rev. Lett. 99, 176602 �2007�; J. Coraux, A. T.
N’Diaye, C. Busse, and T. Michely, Nano Lett. 8, 565 �2008�;
A. T. N’Diaye, J. Coraux, T. N. Plasa, C. Busse, and T. Michely,
New J. Phys. 10, 043033 �2008�; P. W. Sutter, J.-I. Flege, and E.
A. Sutter, Nature Mater. 7, 406 �2008�; Q. Yu, J. Lian, S. Siri-
ponglert, H. Li, Y. P. Chen, and S.-S. Pei, Appl. Phys. Lett. 93,
113103 �2008�.

96 Y. Gamo, A. Nagashima, M. Wakabayashi, M. Terai, and C.
Oshima, Surf. Sci. 374, 61 �1997�; G. Bertoni, L. Calmels, A.
Altibelli, and V. Serin, Phys. Rev. B 71, 075402 �2005�.

97 F. Abild-Pedersen, J. K. Nørskov, J. R. Rostrup-Nielsen, J. Se-
hested, and S. Helveg, Phys. Rev. B 73, 115419 �2006�.

98 D. Usachov, A. M. Dobrotvorskii, A. Varykhalov, O. Rader, W.
Gudat, A. M. Shikin, and V. K. Adamchuk, Phys. Rev. B 78,
085403 �2008�; G. Giovannetti, P. A. Khomyakov, G. Brocks, V.
M. Karpan, J. van den Brink, and P. J. Kelly, Phys. Rev. Lett.
101, 026803 �2008�; M. Fuentes-Cabrera, M. I. Baskes, A. V.
Melechko, and M. L. Simpson, Phys. Rev. B 77, 035405 �2008�.

99 Y. Souzu and M. Tsukada, Surf. Sci. 326, 42 �1995�.
100 Yu. S. Dedkov, M. Fonin, U. Rüdiger, and C. Laubschat, Phys.

Rev. Lett. 100, 107602 �2008�.
101 A. Nagashima, N. Tejima, and C. Oshima, Phys. Rev. B 50,

17487 �1994�.
102 A. Grüneis and D. V. Vyalikh, Phys. Rev. B 77, 193401 �2008�.
103 F. Ding, P. Larsson, J. A. Larsson, R. Ahuja, H. Duan, A. Rosén,

and K. Bolton, Nano Lett. 8, 463 �2008�.
104 V. L. Kuznetsov, A. N. Usoltseva, A. L. Chuvilin, E. D.

Obraztsova, and J.-M. Bonard, Phys. Rev. B 64, 235401 �2001�.

AMARA et al. PHYSICAL REVIEW B 79, 014109 �2009�

014109-16



105 H. Kanzow and A. Ding, Phys. Rev. B 60, 11180 �1999�; H.
Kanzow, C. Lenski, and A. Ding, ibid. 63, 125402 �2001�; J.
Zhao, A. Martinez-Limia, and P. B. Balbuena, Nanotechnology
16, S575 �2005�.

106 X. Fan, R. Buczko, A. A. Puretzky, D. B. Geohegan, J. Y. Howe,
S. T. Pantelides, and S. J. Pennycook, Phys. Rev. Lett. 90,
145501 �2003�.

107 D. G. Pettifor, Acta Mater. 51, 5649 �2003�; G. Liu, D. Nguyen-

Manh, B.-G. Liu, and D. G. Pettifor, Phys. Rev. B 71, 174115
�2005�; D. Nguyen-Manh, A. P. Horsfield, and S. L. Dudarev,
ibid. 73, 020101�R� �2006�.

108 D. W. Boukhvalov, Yu. N. Gornostyrev, M. I. Katsnelson, and A.
I. Lichtenstein, Phys. Rev. Lett. 99, 247205 �2007�.

109 M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th.
Frauenheim, S. Suhai, and G. Seifert, Phys. Rev. B 58, 7260
�1998�.

TIGHT-BINDING POTENTIAL FOR ATOMISTIC… PHYSICAL REVIEW B 79, 014109 �2009�

014109-17


