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When envisioned at the relevant length scale, plasticity of crystalline solids consists in the transport of
dislocations through the lattice. In this paper, transport of dislocations is evidenced by experimental data
gathered from high-resolution extensometry carried out on copper single crystals in tension. Spatiotemporal
kinematic fields display spatial correlation through characteristic lines intermittently covered by plastic activity.
Intermittency shows temporal correlation and power-law distribution of avalanche size. Interpretation of this
phenomenon is proposed within the framework of a field dislocation theory attacking the combined problem of
dislocation transport and long-range internal stress field development. Intermittency and transport properties
show remarkable independence from sample size, aspect ratio, loading rate, and strain-rate sensitivity of the
flow stress.
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I. INTRODUCTION

Transport is a convective process by which certain spe-
cies, or variations in certain quantities, propagate in a me-
dium. It is pervasive in many branches of physics. For ex-
ample, transport serves as a cornerstone in the theory of fluid
dynamics. Dislocations are linear defects connecting two
parts of a crystalline solid sheared with respect to each other
by a misfit referred to as the Burgers vector. They locally
disrupt the ordering of atoms in the crystal and create dis-
placement incompatibility, which results in lattice curvature
and long-range elastic internal stress fields. Their motion
through the lattice is responsible for the permanent plastic
deformation of the crystal. When envisioned on length scales
over which areal dislocation densities may be envisaged, dis-
location motion is amenable to transport of these densities.
The fundamental equation for dislocation transport has been
known for half a century,1,2 mostly as a curiosity, and it is
only recently that it has been effectively used for dislocation
dynamics predictions.3 As yet however, the relevant length
scale for the observation of dislocation transport remains elu-
sive, although observation of strain waves4 could perhaps
have given a clue. Here, we provide experimental evidence
for dislocation transport at the appropriate scale of observa-
tion, i.e., in the micrometer to millimeter range. The results
reveal an inherent connection between dislocation transport
and the intermittency of plastic activity. These observations
are substantiated through their interpretation within a field
dislocation theory.

The intermittency of dislocation activity has been ob-
served from time series for an even longer period of time.
For example, it was described in Zn single crystals as early
as 1932.5 However, the prevailing interpretation has been
that in average over sufficiently large space and time scales,
intermittent fluctuations add at random to a net smooth and
homogeneous overall response. A fundamentally different
picture emerged during the last few years when statistical
analysis of these fluctuations became available, that of a

scale-free phenomenon characterized by power-law distribu-
tions of avalanche size and correlations in space and time.
Experimental evidence came from acoustic emission in ice
single crystals,6,7 compression tests on fcc and bcc micropil-
lars showing staircase-like stress-strain curves with power-
law distribution of step size,8,9 and high-resolution exten-
sometry experiments in Cu single crystals showing scaling
behavior in the size of local strain-rate bursts.10 When ori-
ented for multislip in tension, Cu single crystals represent the
truly emblematic situation where material instability can be
ruled out and homogeneous straining in a traditional sense
expected. However, such crystals feature an inhomogeneous
dislocation microstructure, which may well be at the origin
of inhomogeneity through dislocation transport at a smaller
scale. Hence they represent the perfect case for evidencing
dislocation transport properties. In the present paper, this
task is undertaken by tracking waviness in extensometry
data. Based on optical methods, our experimental setup pro-
vides surface measurements, whereas crystal plasticity is a
bulk phenomenon. Stored dislocation densities are known to
be less close to the surface than in the bulk material, particu-
larly in polycrystals. Hence, the surface is likely to be less
hardened and more strained than the bulk. The differences in
terms of strain can be significant in polycrystals but remain
very small in single crystals, which ensure validity of the
method.

Because they lack the spatial coupling due to internal
stresses, conventional descriptions of plasticity cannot repro-
duce the scale-free behavior associated with intermittency of
dislocation activity. Further, in a context of homogeneous
hardening and in the absence of inertial forces, they fail to
retrieve propagating fronts. By considering internal stresses
due to dislocation-dislocation interactions, various modeling
approaches such as two-dimensional �2D� �Ref. 7� and three-
dimensional �3D� �Ref. 11� discrete dislocation dynamics
methods, phase field12 or statistical mechanics13 methods re-
produce scale-free behavior. Both phase field and statistical-
mechanics models use a quasistatic approach, either through
energy minimization12 or presenting dislocation activity as
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“crackling noise”13 �see Ref. 14 for an introduction�. Both
fail to retrieve wave fronts of plastic activity as revealed by
our experiments because they lack the hyperbolic character
associated with the transport equation. Discrete dislocation
dynamics simulations work at a smaller length scale: trans-
port of dislocation densities is present but fully resolved into
the motion of individual dislocations. Whether they can re-
produce waves of plastic activity depends on their ability to
cope with large enough systems in the future. In this paper,
interpretation for the observed behavior is proposed within
the framework of a field theory for dislocation dynamics
dealing with the combined problem of dislocation transport
and internal stress field development.15,16 In this theory,
propagating fronts arise from consideration of transport.3,17

Two species of dislocation densities are considered depend-
ing on the scale of resolution. Resolved dislocation densities
of net sign, referred to as “polar” or “geometrically neces-
sary” dislocation densities, are regarded as a continuous
manifestation of lattice incompatibility. They induce lattice
curvature and long-range internal stress fields. Unresolved
dislocation densities, also known as “statistical” dislocation
densities, are the sole dislocation densities envisioned in con-
ventional plasticity. Like polar dislocations, statistical dislo-
cations have individual stress fields, but the latter statistically
arranged so as to render a net zero overall field. Both species
contribute to plasticity and their dynamics are coupled for
gradients in plastic distortion rate may generate polar dislo-
cations. In addition to evidencing transport and its intermit-
tency, specific goals to forthcoming simulations are to inves-
tigate sample size and shape effects, as well as effects of
loading rate and plastic slip behavior on their properties. The
paper is organized as follows: in Sec. II, we present the high-
resolution extensometry experiments and their main results.
The statistical analysis of these data is discussed in Sec. III.
Section IV outlines the field dislocation theory used for their
interpretation. Model simulations are shown and discussed in
Sec. V. A summary and concluding remarks follow.

II. HIGH-RESOLUTION EXTENSOMETRY

In our experiments, Cu single crystals were oriented for
multislip and strain hardening occurred immediately, without
detectable stage I. The samples were loaded with constant
crosshead velocity. They were clamped and no rotation of
cross sections was observed before the onset of necking. The
extensometry method is based on digital image correlation
technique in one-dimensional setting. One side of the sample
surface is painted in black, and strips of white paint normal
to the longitudinal axis are superimposed, resulting in a net-
work of black and white strips approximately 1 mm wide.
The strips are bonded with the material underneath, and their
displacement reflects perfectly the material displacement. A
high-resolution charge-coupled device �CCD� camera with
recording frequency 103 Hz and pixel size of 1.3 �m with
the lens in use was mounted to capture the longitudinal dis-
placement of points set at the intersection of the symmetry
axis �to avoid any cross-section rotation effect� with the tran-
sitions between black and white strips. Fifteen to twenty
such points were used, defining as many elementary exten-

someters with gauge length about 1 mm. From the onset of
necking onward, strain localization occurs in a section of the
sample, and the data are discarded as to the present purpose.

The displacements are derived to obtain the Lagrangian
axial velocities then combined to produce axial strain rates.
To avoid any bias due to possible differences in the sensitiv-
ity of the CCD camera to black-white vs white-black transi-
tions, the latter are computed from displacement values at
every two transitions. The driving strain rate �̇a is kept con-
stant throughout an experiment. Subtracting �̇a from the
strain-rate signal at a given material point leaves the varia-
tions shown in Fig. 1�b�. Hence, the figure characterizes de-
viations from stationarity at this point. A positive excess in
the figure results in less plastic activity at other locations
along the sample, hence, in inhomogeneity of plastic strain-
ing. Despite smoothness of the loading curve �see Fig. 1�a��,
the strain-rate variations �Fig. 1�b�� display jerks well above
experimental noise level. At the relatively low stress values
involved in this experiment, dislocation glide is controlled by
local obstacles. It consists in successive fast runs of disloca-
tion segments from one obstacle to the next one. The figure
suggests that such jerkiness shows up at a somewhat larger
scale. The probability density for the size of jerks shows
power-law scaling �Fig. 1�c��, with scaling exponent ��2
for both driving strain rates �̇a=5�10−4 s−1 and �̇a=5
�10−3 s−1. This exponent is consistent with the scaling law
reported for the associated acoustic emission.10 Such scaling
is evidence for self-organization of the observed fluctuations,
which is also suggested by Fig. 2. The figure features a
space-time diagram for local fluctuations about the driving
strain rate �̇a=5�10−4 s−1 during the elastoplastic transi-
tion. It shows spots of intense activity dotted along straight
lines, suggesting wave propagation with maximum ampli-
tude and average velocity amounting, respectively, to 2.5
�10−3 s−1, and 10−2 m s−1. At larger strains, this wavy pat-
tern is seen on shorter time and length scales due to decreas-
ing dislocation free path in relation with multiplication of
forest obstacles. Due to its jerky character, only statistical
averages of the dislocation velocity are available in the lit-
erature. Strongly stress dependent, it is reported in the range
of 10−6–1 m s−1,18 while the group velocity of dislocation
ensembles is slower. The average wave velocity V measured
from the slopes of the characteristic lines in Fig. 2 �about
10−2 m s−1� is in that range. It is 5 orders of magnitude
smaller than the velocity of elastic waves, but much larger
than the material particles velocity, which suggests that the
observed waves do reflect the underlying motion of disloca-
tion ensembles. In this interpretation, the dotted pattern of
spots along the characteristic lines is manifestation of the
intermittency of dislocation motion. Analysis of intercorrela-
tion between axial strain rates in two neighboring locations
consistently shows strong anticorrelation over large periods
of time. In addition, intercorrelation of a particular axial
strain rate with all other strain rates shows alternatively
correlation/anticorrelation �Fig. 1�d��. This modulation is
persistent when the gauge length for strain-rate evaluation is
varied. In complement to Fig. 2, it is proof to the wavy
structure of plastic activity, when the latter is envisioned at
such length scales.
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III. STATISTICAL ANALYSIS

Scaling regimes with exponent ��2 in event size distri-
bution have been reported using several techniques in vari-
ous metallic and ice single crystals.6,7,10 Smaller exponents,
albeit consistent with this value as shown below, were found
in the distribution of integrated event size measures8 and
retrieved using several modeling approaches.7,11–13 Hence,
conjecturing universality in the sense of uniqueness of the
scaling exponent for the distribution of event size is an ap-
pealing idea. However, universality claims need to account
for several compounding factors, such as overlapping of ava-
lanches due to finite driving rates �see, for example, Ref. 19�
or variants in the involved statistics. We deal with the former
in Sec. V and with the latter in the following by presenting
our statistical approach as well as an overview of other meth-
ods. Usually the analyzed data y�t�, with maximum ampli-
tude Y, is either the amplitude of bursts in material velocity
v�t� or in plastic strain rate �̇�t� �as in the present experi-
ments�, or integral measures S over a time interval � :S

=�t0
t0+�y�t�dt, such as displacement u�t�, strain ��t�, or stress

��t�. The statistics of dislocation avalanches are then charac-
terized by probability densities p�Y� or p�S�. Other measures

FIG. 2. �Color online� Longitudinal fluctuations about the im-
posed strain rate in a space-time diagram during the elastoplastic
transition. Dotted characteristic lines run from the left and right of
the gauge length, reflecting intermittency and transport. The im-
posed strain rate is �̇a=5�10−4 s−1. Fluctuations can be as high as
2.5�10−3 s−1.
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FIG. 1. �Color online� �a� Cu single crystal oriented for multislip under uniaxial tension �gauge length: 30 mm, width: 5.5 mm, thickness:
5.5 mm, Schmid’s factor: 0.3, temperature: 20 °C, driving strain rate: �̇a=5�10−4 s−1�, macroscopic force vs time �main graph� and
displacement vs time in six locations distant by 1 mm �inset�. �b� Variations in axial strain rate about the driving strain rate �̇a, as obtained
from the lowest displacement curves in the stack in �a�. Note that the size of the fluctuations can be larger than �̇a. �c� Probability density
�normalized to bin size� for event size in time series shown in �b�. The dashed line indicates the power-law trend with slope �=2. �d�
Intercorrelation between strain rates derived from displacement signals at adjacent locations �xi ,xi+1� and �xi+1 ,xi+2 ; i=1,13� �blue dots�;
intercorrelation between strain rates derived from displacement signals at distant locations �x1 ,x2� and �xj ,xj+1 ; j=2,14� �red open circles�.
Same data except sample thickness: 2.3 mm and driving strain rate: 5�10−3 s−1.
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have been used, such as the cumulative probability of events,
p�Y �L�, in case the statistics are too poor, or the probability
density p�E� for energy release E by acoustic emission due to
dislocation avalanches.7 The latter is estimated either by in-
tegrating �̇2 or by using the squared maximum peak strain-
rate amplitude Y2. Of course, the integrated measures depend
on the burst shape, which may be loosely defined in the
presence of noise, and several options can be considered.
Clearly the difference in nature of all these quantities may
imply differences in their respective distributions.

Due to noise �experimental or numerical�, identification of
slip events in time series may be ambiguous and, as a result,
various definitions of event size have been employed. The
most common approach, used in particular in acoustic emis-
sion measurements, consists of setting a threshold and defin-
ing an event as the continuing part of the signal whose mag-
nitude is greater than the threshold.10 Then the event size
may be defined either as the integral of the signal or as the
peak amplitude of the event over that time spell. Another
choice is to look for all local peaks, ignore those peaks
whose value is too close to the surrounding level according
to some chosen threshold, and then define events according
to the selected peaks, whose amplitude is labeled Y. It was
found in our data that both definitions of event size based on
peak amplitude result in power-law distributions of probabil-
ity density, p�Y��Y−�, with ��2, similar to those displayed
in Figs. 1 and 6. Power-law distributions were also obtained
when event size was defined from integrated signals p�S�
�S−�S but, instead of ��2, the exponents were found in the
range 1.2	�s	2, depending on experimental conditions.

Assume accordingly that the probability density p�Y� in
the peak amplitude Y follows a power law p�Y��Y−�, and
let Z be a single-valued function of Y. We are interested in �i�
the cumulative probability of events whose size is larger than
L : p�Y �L� and �ii� the relationship between the respective
probability densities p�Y� and p�Z�. Z stands for either the
integral measure S or the acoustic emission energy E men-
tioned above. In the former case �i� the cumulative probabil-
ity of events also leads to scaling behavior, but since

p�Y � L� = �
L




p�Y�dY � �
L




Y−�dY � Y−��−1�, �1�

the scaling exponent is ��−1�. In the latter case �ii�,
p�Y�dY = p�Z�dZ= p�Z�dZ /dYdY and p�Z� can clearly be ex-
pressed as

p�Z� =
p�Y�Z��
dZ/dY

. �2�

Therefore, due to the denominator, p�Z� depends on the burst
shape. Several assumptions can be made to model avalanche
decay.

�a� For the sake of simplicity, a triangular burst shape with
linear decay is sometimes hypothesized. In this case, ��Y,
S=�Y �Y2, and Eq. �2� leads to p�S��S−�S with �S= ��
+1� /2. Although a different scaling exponent is found, the
scaling in S is of course compatible with the scaling in
Y : p�Y��Y−�.

�b� Alternatively, assume exponential avalanche decay:
y�t�=Y exp�−�t− t0� /��, as observed in acoustic emission
data.10 Integration over time from the initial instant t0 yields
S=�Y �Y. Hence, according to Eq. �2�, S obeys the same
power law, p�S��S−�. This result is also approximately valid
in the presence of noise. In this case, the burst duration can
be defined as the time �n beyond which the signal falls below
noise level, Yn, and it is given by relation �n=� ln�Y /Yn�.
Integration of the signal over this period of time yields S
=��Y −Yn�, and therefore dS /dY does not depend on Y. Of
course, Y =S /�+Yn. It involves a correction from the noise
level, which becomes small if S is large enough. Hence, the
power-law relation p�S��S−� is satisfied for large events,
although deviation due to noise at small events may lead to
underestimating �. Therefore, using this scaling relation to
characterize acoustic emission data in comparison with ve-
locity data10 is fully consistent. �c� A third simple option is
power-law avalanche decay: y�t�=Y�t / t0�−�. When the decay
is fast ���1�, integration leads to the same result as in case
�b� for exponential decay: the p�Y� and p�S� distributions are
obeying the same power-law. This conclusion is exact in the
absence of noise and approximate for noisy signals. Thus
both cases considered above �exponential and fast power-law
decay� lead to identity of the scaling exponents � and �s.
Different scaling behavior is now obtained in case of slow
power-law decay: �	1. Modeling the signal in this way
makes sense only in the presence of noise since the latter
removes divergence associated with integration. The ap-
proximate solution �Yn /Y must be small enough� then leads
to S�Y1/� and, according to Eq. �2�, p�S��S−�s with �s
=1+���−1�. The discrepancy in the scaling exponents can
be checked effectively as � can be obtained from the mea-
surement of the burst duration �n through the relations: �n
= t0��Y /Yn�1/�−1�	 t0�Y /Yn�1/�, although estimating �n may
prove a difficult task. Such differences were indeed found in
our data: the scaling exponent ��2 shown in Fig. 2�c� cor-
responds to �s�1.3 when an integrated measure of strain-
rate bursts is used. The exponent for burst decay is estimated
as ��0.25. Hence the relation �s=1+���−1� is approxi-
mately satisfied. The specific case �=1, which corresponds
to Omori-type decay,20 leads to 0/0 uncertainty. We note
however that �s tends to � when � tends to 1 from below,
while �s=� when ��1, as shown above.

Acoustic emission energy can be estimated as �i� E�Y2

�Ref. 7� or �ii� as E��y2�t�dt, where y�t� stands for the
strain-rate time series. In the former case �i�, it can be easily
shown from the above that p�E��E−�E with �E= ��+1� /2 if
p�Y��Y−�. In the latter case �ii�, the conclusion depends on
the burst decay assumption. If burst decay is modeled as
linear or exponential, the result �E= ��+1� /2 holds. If power
law is assumed instead, a discussion similar to the above one
shows that this result holds when the decay exponent � is
large enough ���1�, but it gives way to the relation �E=1
+���−1� when burst decay is slow ��	1�.

According to the above analysis, a robust scaling expo-
nent ��2 is found in the present experimental data for peak-
size distributions, whatever choice of peak-size definition is
made. Instead, the scaling exponent �S for integrated mea-
sures displayed scattering. Such scatter does not contradict
peak-size scaling as can be explained from various modeling
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assumptions for avalanche decay. However, peak-size analy-
sis seems to be more reliable than integral-size analysis. It
supports the notion of a universal power-law exponent, inde-
pendent of specific microscopic structure or mechanical be-
havior.

IV. FIELD DISLOCATION MODEL

We now provide interpretation for the intermittency of
plasticity and substantiate the identification of surface waves
with dislocation transport phenomena by the description of
propagating fronts of plastic activity using a field dislocation
model. The model uses the continuum description of dislo-
cations based upon Nye’s dislocation density tensor �.21 Op-
erating on the normal n to a unit surface S, � provides the
net Burgers vector b=� ·n of all dislocations lines threading
S, i.e., the incompatibility in plastic displacement found
along the Burgers circuit C surrounding S. When surface S is
so small that it is threaded by a single dislocation with Bur-
gers vector b and line vector t, �=b � t and the involved
dislocation is labeled as a “polar dislocation.” When the size
of S, i.e., the resolution length scale, is increased to the point
where S is threaded by a large number of dislocations and b
may become zero if all individual Burgers vectors compen-
sate statistically. Then � is zero, the dislocations are unre-
solved and deemed “statistical.” In intermediate cases, the
net Burgers vector b is nonzero, but part of the dislocations
threading S may remain unresolved. The subscripts in the
density components �ij then indicate the net Burgers vector
and line vector directions of polar dislocations, whereas the
remaining statistical dislocations are not accounted for. Due
to lattice incompatibility, the plastic distortion tensor Up is
not a gradient. It has compatible and incompatible parts, UP




and UP
�, respectively, such that Up=Up


 +Up
�.3 The incompat-

ible part results from the distribution � and is solution to the
incompatibility equation,

curl Up
� = − � �3�

written here at small strains, like all following equations. The
elastic distortion tensor Ue has an incompatible part Ue

� op-
posed to Up

�

Ue
� + Up

� = 0, �4�

so that the compatibility of the displacement gradient U
=grad u is ensured. The latter is written as

grad u = Ue

 + Up


 , �5�

where Ue

 is the compatible part of the elastic distortion ten-

sor. Both Ue

 and Up


 are gradient tensors, which implies
curl Ue


 =curl Up

 =0. Hence Eq. �3� may be replaced with1

curl Up = − � �6�

or, as well, with

curl Ue = � . �7�

Specifically solving Eq. �3� for Up
�, without the gradient con-

tribution present in Eq. �6�, requires additionally

div Up
� = 0 �8�

with boundary condition Up
� ·n=0 �here n is the outward

normal to the sample external boundary�. These conditions
guarantee uniqueness of Up

�.3

When all dislocations are resolved, the plastic distortion

rate U̇p results from the motion of polar dislocations � with
velocity V �throughout the paper, a superposed dot indicates
a time derivative�. When averaging in space, statistical mo-
bile dislocations are likely to be present at medium reso-
lution scale. These dislocations contribute to the plastic dis-
tortion rate through the �unresolved� conventional plastic
velocity gradient Lp. Therefore the total plastic distortion
rate is, at this scale,3,15

U̇p = � � V + Lp �9�

with dislocation velocity V now averaged over S. The in-

compatible part of U̇p feeds the increment of polar disloca-
tions through the transport equation for dislocation densities2

�̇ = − curl U̇p. �10�

This equation provides for the evolution and transport of
polar dislocation densities. Through the curl of the total plas-

tic distortion rate tensor U̇p, it couples the polar and statisti-
cal dislocation densities for the nucleation of polar disloca-
tions. The stress tensor T is obtained from the tensor of
elastic constants Ce as

T = Ce:�Ue� = Ce:�Ue

 + Ue

�� = Ce:�grad u − Up

 − Up

�� ,

�11�

where �A� denotes the symmetric part of tensor A. It satisfies
the equilibrium equation

div T = 0. �12�

Complementing the above equations with a constitutive rela-
tion for the average dislocation velocity V as a function of
stress and dislocation orientation, and with phenomenologi-
cal evolution equations for the statistical densities involved
in the conventional velocity gradient Lp, one obtains a closed
theory in the sense that it contains enough statements to de-
rive uniquely the dynamics of stress and dislocation densities
in a bounded domain from boundary and initial conditions.
In particular, the direction d of velocity V is prescribed as15

V = V
d

d
, V � 0, d = b − �b ·

a

a� a

a
,

b = X�T� · ��, a = X�tr�T��� , �13�

to ensure positive dissipation. Here, T� is the stress tensor
deviator, tr�T� is the trace of tensor T, and X represents the
alternating Levi-Civita tensor. Boundary conditions comprise
the conventional stress and displacement conditions, as well
as the specification of inward fluxes of dislocations. A more
detailed account of this overarching framework can be found
in Refs. 15–17. When the scale of resolution is commensu-
rate to the �macroscopic� sample size, long-range interactions
due to lattice incompatibility may be overlooked. Then tak-
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ing �=0 defines a case that can be handled by conventional
plasticity. Conversely Lp=0 when all dislocations are re-
solved. For computational reasons, only small scale systems
can then be solved. Taking the time derivative of Eqs.
�3�–�5�, �11�, and �12�, and substituting into Eq. �11�, one
obtains a rate form of these equations

U̇p = � � V + Lp,

�̇ = − curl U̇p,

div Ṫ = div Ce:�grad u̇ − U̇p� = 0. �14�

As the incompatibility Eq. �3� is not explicitly solved in this
rate formulation, solutions are limited to initial conditions
not involving polar dislocations, but their numerical compu-
tation is easier and faster. Conventional plasticity is recov-

ered by taking V=0. Of course the continuity required for U̇p
in Eq. �14� is only approximately realized in a finite element
implementation.

It is perhaps insightful to evoke analogies between dislo-
cation dynamics and eddies dynamics in turbulent flow.22

This analogy extends to transport of polar/statistical disloca-
tion densities, as expressed through Eqs. �9� and �10�, and
large eddy simulations �LES� in the analysis of turbulence.23

Turbulent flow is characterized by eddies at all scales. Aver-
aging in space the Navier-Stokes equations provides equa-
tions for large resolved eddies, while unresolved ones are
dealt with using additional subgrid-scale variables. Closure
of the theory is obtained through subgrid phenomenological
models featuring scaling character.24 In dislocation dynam-
ics, averaging in space secures equations for polar disloca-
tions while providing the link with conventional plasticity:
closure for the unresolved variables Lp derives from well-
established models for the viscoplasticity of crystalline ma-
terials, i.e., relations for forest hardening and lattice rotation
having received decades of attention and experimental vali-
dation �see below Eqs. �15�–�19��. Also in contrast to turbu-
lence, scaling behavior is associated with grid scale level, not
subgrid scale, as we show below.

Two types of solutions are offered in what follows, in
order to provide various insights into the problem. First we
conduct a full 3D numerical solution of Eqs. �3� and �8�–�12�
in a single crystal by using a Galerkin-least-squares finite
element method appropriate for transport problems �see
Refs. 15 and 23 for details�. These simulations provide for
the characterization of intermittency and transport at the
specimen scale. At a somewhat smaller scale, we shall also
consider a 2D simplified situation with dislocations pertain-
ing to, and gliding in a single slip plane with no out-of-plane
motion and projection of the tensile stress into a resolved
shear stress. The latter simulations provide for representative
behavior of some portion of a slip plane in the single-crystal
experiment.

V. MODEL SIMULATIONS

The sample geometry and orientation studied by Nittono25

serve as a basis for the investigation in the 3D simulation of

the tensile test. The simulation procedure is detailed in Ref.
17 and will be briefly recounted here. A flat Cu whisker of
dimensions 200�30�2400 �m3 is clamped to the left end,
while the right end is submitted to constant velocity. The
applied strain rate is �̇a=10−3 s−1. The mesh contained
27 648 brick elements in a 24�6�192 arrangement with
linear interpolation for the transport equation and quadratic
interpolation for the equilibrium equation. The elastic re-
sponse is taken to be anisotropic with elastic constants C11,
C12, and C44. The plastic velocity gradient Lp follows from
the activity of the statistical mobile dislocations on the 12 fcc
slip systems

Lp = �
s

mbVsbs � ns, �15�

where m is the mobile statistical dislocation density, and bs
and ns are the slip system Burgers vector and glide plane
normal, respectively. Vs is the ensemble dislocation velocity,
which follows the power-law relationship

Vs = V0 sgn��s�� �s
�0 + �h

�n

, �s = bs � ns:T . �16�

Here �s is the resolved shear stress on a glide plane, with
reference velocity V0, athermal stress �0, and stress exponent
n=20 as material parameters. The threshold stress �h reflects
short-range obstacle overcoming. It relates to the statistical
forest density  f through the usual Taylor relation �h

=��b� f, where � is a nondimensional parameter. Large n
values reflect abruptness of dislocation unpinning. The ve-
locity V of polar dislocations is taken as the average of the
statistical slip velocity absolute values Vs over all slip sys-
tems. Hence, the same physics applies to both dislocation
species. We adopt evolution equations for m and  f as out-
lined in Ref. 26, with simplifications deemed appropriate for
the low strain level achieved in the present simulations,

̇m = �C1/b2 − C2m��̇ , �17�

̇ f = �C0b� + C2m��̇ , �18�

�̇ = U̇p , �19�

where C0, C1, and C2 are material parameters accounting for
the interaction between polar and forest dislocations, the mo-

bile dislocation generation and loss, respectively. �̇ is a sca-
lar measure of plastic slip rate accounting for the combined
action of statistical and polar dislocations. The material pa-
rameters used in the 3D simulation are listed in Table I. Note

TABLE I. Material parameters used in the 3D Cu whisker
simulation.

� b n V0 �0

0.35 2.5�10−10 m 20 3.5�10−8 m /s 3.7 MPa

C0 C1 C2 C11 C12 C44

25 2.43 10−5 3.03 170 GPa 123 GPa 75.2 GPa
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that there is no inhomogeneity introduced in either material
parameters or initial conditions.

The response of the sample is as follows. Elastic loading
is followed by a yield drop associated with plastic activity
localized near the clamped end, then by a plateau. Thus,
inhomogeneity of plastic straining clearly stems from bound-
ary conditions. This prediction of a yield drop is in full
agreement with experimental data on Cu whiskers.25,27,28

Along the plateau, the plastic activity spreads over the
sample through the motion of a plastic front, before linear
homogeneous strain hardening takes place. Details on the
propagation of slip during the elastoplastic transition are pro-
vided in Ref. 17. In the following, we focus on the intermit-
tency of plastic activity during the eventual linear hardening
period, shown in Fig. 3�a�. Bursts in stress rate are seen all
along the curve. One particular sequence, highlighted in the
figure, corresponds to the plots of plastic strain rate shown in

Fig. 3�b�. In this figure, intermittent events are clear with a
general progression of plastic activity from left to right of the
sample section. Statistical analysis of the bursts occurring in
Fig. 3�a� shows power-law scaling with exponent �
=1.9�0.1 in stress rate burst size distribution and exponent
�s=1.2�0.1 in stress drop size distribution �see Fig. 4�,
without inconsistency as shown in Sec. III. However, the
small number of stress drops �89� makes it impossible to
check accurately for the compatibility of these two expo-
nents. The predicted exponent for stress rate burst size is
consistent with our experimental data. Note that the pre-
dicted scaling exponent for stress drop size distribution is
also consistent with the experimental value ��1.1 reported
in Ref. 29 for Cu-10%Al single crystals where, however, the
addition of solute elements induces the macroscopic plastic
instability referred to as the Portevin–Le Chatelier effect,
with much larger drop size.

In view of these results, 2D simulations �more tractable
than three dimensions� were carried out in order to check for
scaling behavior at a smaller scale and for possible invari-
ance of the scaling exponent. In these simulations, a L1
�L2 rectangle subjected to constant shear rate v1,3 at bound-
aries �a comma indicates derivation� is considered in the
�x1 ,x2� glide plane of a Cu single crystal. The simulation in a
100�100 �m2 square is referred to as the “reference simu-
lation” in what follows. Elasticity is taken to be isotropic
with shear modulus �. The average velocity V of disloca-
tions in the plane is described with the thermally activated
constitutive law

V = V0 exp
− �G0

kT
exp� V��s

kT�1 + �h/�0�� , �20�

where V0 is a reference velocity, ��G0 ,V� ,k ,T� is a refer-
ence enthalpy, the activation volume, the Boltzmann con-
stant, and the temperature. �s is again the involved shear
stress component and �h is the threshold stress for obstacle
overcoming. Here Eq. �20� is an alternative to Eq. �16� used

(b)

(a)

FIG. 3. �Color online� �a� Stress vs time response during stage II
linear hardening. The highlighted portion corresponds to the strain-
rate plots shown in �b�. �b� Successive frames of the strain-rate
spatiotemporal field along the sample showing intermittent plastic-
ity through dislocation transport.
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FIG. 4. Probability density of event size. The event size is de-
fined either as a stress drop �filled circles; the dotted trend line
shows a �s=1.2 slope� or the maximum amplitude of stress rate
bursts in the linear hardening region �open circles; the dashed trend
line shows a �=1.9 slope�.
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to describe weak rate sensitivity of the shear stress. In order
to mimic the high-resolution extensometry experiments de-
scribed above, the imposed strain rate is �̇a=5�10−4 s−1.
Since the recording frequency is 103 Hz, the computation
time step is set to 10−3 s. The mesh size in the finite element
simulation is then chosen to respect the Courant condition
for numerical stability.23 This choice results in a 30�30
mesh of quadrangular elements. In the initial configuration,
polar dislocations are absent and the statistical mobile den-
sity is chosen at random about an average value. Since the
boundary conditions are homogeneous in this 2D simulation
�in contrast to the above 3D simulation�, the incompatibility
arising from this distribution is initially the only source for
polar dislocations. The information on material parameters,
initial, and boundary conditions is summed up in Table II.

Figure 5 shows a space-time diagram for strain-rate fluc-
tuations. In qualitative agreement with Fig. 2, spots of in-
tense plastic activity dotted along straight lines are seen. This
pattern follows naturally from the development of polar dis-
location density by virtue of dislocation transport and inter-
nal stress. The velocity obtained from the slopes in Fig. 5 has
the order of magnitude observed in experiments �see Fig. 2�.
At larger strain, the 100�100 �m2 square shown in Fig.
6�a� displays a heterogeneous structure of loops in the glide
plane. The time series obtained for the net shear strain rate at
a material point in Fig. 6�a� is plotted in Fig. 6�b�. Similarity
with the strain-rate signal from extensometry experiments in
Fig. 1�b� can be noticed. Figure 6�c� shows the probability
density for event size computed from this curve. A scaling
distribution is seen, with exponent ��2 in agreement with
the experimental value. This result implies that the fluctua-
tions in Fig. 6�b� are not numerical noise, but reflect instead
correlations due to polar dislocation development, long-
range stress, and dislocation transport. Refining the mesh
size by a factor 2 has no effect on the event size distribution.
Similarly, dividing the time step by a factor 10 leads to
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FIG. 6. �Color online� �a� Polar dislocation density distribution
showing self-organized loops in a 100�100 �m2 square in the
glide plane at 0.5% plastic strain. The driving strain rate is 5
�10−4 s−1. Note that the maximum fluctuation size is larger than
the driving strain rate. �b� Time series �50 000 data points� for the
net shear strain rate �i.e., fluctuations about the applied strain rate�
at a given point in �a�. The closeup in the inset suggests self-similar
structure. �c� Probability density of event size at three distinct
points in �a�. The event size is defined as the maximum strain-rate
value during the event. The dotted line shows a �=2 slope.

TABLE II. Initial and boundary conditions, complementary ma-
terial parameters in 2D simulations.

�ij�0� m�0� � �h v1,3 kT /V�

0 108 m−2 40 GPa 50 MPa 5�10−4 s−1 2.27 MPa

FIG. 5. �Color online� Model predictions for axial �x1� strain-
rate fluctuations in a space-time diagram. The sample is a 13
�13 mm2 square in a glide plane subjected to equal shear rates
5�10−4 s−1 on both sides. The figure shows the evolution in time
of the strain-rate profile seen along the x2 direction.
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smaller events but their distribution remains unchanged.
We investigated the influence of driving rate, sample size

and shape, and mechanical behavior on the statistics of inter-
mittency. To check for driving rate effects, the applied strain
rate �̇a was reduced by a factor 10, which in turn reduces the
nucleation of polar dislocations in the same proportion. Yet,
the power law with exponent �=2 was found for the event
size probability density distribution, in agreement with the
trend observed in our experiments on Cu single crystals. Us-
ing a slender sample did not have effects either. Possible
sample size effects were investigated by uniformly increas-
ing the sample dimensions by a factor 10, while keeping
unchanged the applied strain rates. Of course, velocity gra-
dients were reduced by a factor 10 in this process, which
leads to lower polar dislocation density and smaller event
size. Nevertheless, the exponent �=2 of the scaling regime
was left unchanged. Hence, to the extent that velocity gradi-
ents remain large enough to induce polar dislocation devel-
opment, their variations seem to no avail regarding the sta-
tistics of intermittency. Possible influence of material
behavior was also investigated by simulating the plasticity of
ice single crystals. The geometry and loading conditions of
the reference simulation were kept unchanged, but material
behavior was switched from thermally activated to viscous
drag. Indeed, Cu and ice have very different crystalline struc-
tures and mechanical behavior. Ice is an hcp material with
strong anisotropy of slip, which occurs almost exclusively on
basal planes.30 In single crystals, the average dislocation ve-
locity is ruled by viscous power-law relationship �16� with
exponent n=2 in stress.31 In addition, the typical elastic
shear modulus is �=3 GPa, much less than the �
=40 GPa Cu value, which has implications on internal stress
fields. Parameters �V0 ,�0� are identified from experimental
data.30,31 The threshold stress �h is kept small and constant.
Note however that directional �kinematic� hardening arises
from dislocation structures building up in the straining
process.32 All physical parameters for ice single crystals are
summarized in Table III. Despite these differences, running
the simulation shown in Fig. 6 using ice single-crystal data,
still leads to a scaling regime with exponent �=2 in the event
size distribution.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper, transport of dislocation densities is demon-
strated using high-resolution extensometry data gathered in
the micrometer to millimeter range from experiments on Cu
single crystals. In particular, propagation along characteristic
lines is evidenced in spatiotemporal maps of plastic strain
rate, which allows direct measurement of the ensemble dis-
location velocity. Intermittency as well as spatiotemporal
self-organization of plastic activity is apparent in these maps.
Scaling behavior of activity bursts is shown to be robust
once the statistical analysis is carefully conducted. It leads to
an apparently universal scaling exponent value ��2 in the
event size distribution. Simulations derived from a field dis-
location dynamics model dealing with the combined problem
of dislocation transport and internal stress field development
retrieve intermittency of plastic activity, waviness of its spa-
tiotemporal self-organization, scaling behavior, and univer-
sality of the scaling exponent. These features are found at the
scale of the sample in the stress vs time response, and at the
slip plane level in the strain-rate spatiotemporal field. Inter-
mittency in our model arises from the abruptness of the un-
pinning transition on short-range obstacles as described
through a weakly rate-sensitive stress-velocity relationship.
The model implies that both long-range interactions and dis-
location transport play a role in the scaling behavior of in-
termittency. Therefore we present the conjecture that univer-
sality of the scaling exponent reflects both aspects. As
dislocation transport involves such mechanisms as double
cross slip of screw dislocations by-passing short-range ob-
stacles, this conjecture implies that short-range interactions
play a significant role in the intermittency of plastic activity.
Such a conclusion is fully consistent with observations
driven from dislocation dynamics simulations.33
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