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A large number of today’s ab initio calculations, in particular in solid-state physics, are based on density-
functional theory using first-principles pseudopotentials. This approach, initially developed for the ground
state, is nowadays widely used as a starting point for the calculation of excited-state properties, as, for instance,
those involved in optical spectroscopy. In this paper we investigate the validity and the accuracy of the
pseudopotential approximation, analyzing how different choices within the latter can influence the calculated
electronic response of silicon and silicon carbide. We consider norm-conserving first-principles pseudopoten-
tials, both in the fully nonlocal �Kleinman-Bylander� and the semilocal forms, with different choices for the
reference �local� component. The effects of the inclusion of outer-core states in the valence shell are analyzed
in order to obtain a detailed comparison with all-electron calculations. We present accurate results for different
pseudopotential descriptions of Kohn-Sham and quasiparticle band structures and of many spectroscopic quan-
tities in the linear and the nonlinear response regimes for different momentum transfers Q. Moreover, the
effects of the pseudopotential nonlocality have been analyzed for electron-energy-loss spectra in the limit of
vanishing momentum transfer. Our results show that the pseudopotential approximation can be quite safely
applied to excited-state calculations, even when they involve Kohn-Sham eigenvalues and eigenvectors several
tens of eV above the Fermi energy.
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I. INTRODUCTION

Over the last years, the number of ab initio calculations of
electronic spectra on more and more complex systems has
increased impressively.1–4 Most of these calculations are
based on density-functional theory within the Kohn-Sham
scheme �DFT-KS� in the pseudopotential approximation
�PA�.5–8

The success of the PA is due to the fact that it enables the
study of very complex large-scale systems, by removing the
core electrons from the calculations and treating only the
valence electrons, which are the chemically active players. In
the PA, the core electrons are frozen and the electron-ion
Coulomb interaction for the valence electrons is replaced by
an effective �semilocal or fully nonlocal� potential. The va-
lence electrons move hence in a potential which, in the core
region, is much softer than the bare Coulomb potential. The
pseudopotentials �PPs� are constructed in order to reproduce
the true electron wave functions outside the core region de-
fined by a cutoff radius rc.

Several different procedures for constructing ab initio
norm-conserving pseudopotentials �NCPPs� have been pro-
posed. The most important ones are the Bachelet-Hamann-
Schlüter �BHS�,5 the Hamann,6 and the Troullier-Martins
schemes.7 Furthermore, starting from the resulting semilocal
pseudopotentials, a very commonly employed approach lead-
ing to fully nonlocal pseudopotentials and a separable
Hamiltonian was introduced by Kleinman and Bylander8

�KB�. The separability makes the KB approach very conve-
nient from the computational point of view, which is the
reason for its large success in today’s electronic-structure and
total-energy calculations.

Over the last decade, pseudopotential DFT-KS has also

become a common starting point for ab initio excited-state
calculations, such as the description of quasiparticle proper-
ties of solids within the first-principles GW approximation
and optical properties within many-body perturbation theory
�GW-Bethe-Salpeter equation�9–14 or the time-dependent
density-functional theory �TDDFT�.13,15–20 Different works
which calculate GW quasiparticle energies using the PA can
be found in literature, from the seminal work of Hybertsen
and Louie12 up to the work of Bruneval et al.,2 who went
beyond GW by including vertex corrections in the self-
energy. Many calculations of linear and nonlinear spectra are
based on the PA, such as the work of Weissker et al.,21 where
a combination of TDDFT and a many-body approach is suc-
cessfully used to compute the dynamical structure factor of
silicon, or for nonlinear spectra, the work of Leitsmann et
al.,22 who presented a way to include excitonic effects in the
calculation of the second-harmonic generation �SHG�.

In this kind of calculation which involves electron states
of energies ranging well above the Fermi level, the assump-
tions and approximations within the PA are often uncritically
used. However, the PA and the PP construction schemes have
been developed in particular for ground-state �GS� calcula-
tions. Only later have they been applied to calculations in the
optical range. Therefore the underlying assumptions and ap-
proximations need to be verified for the more demanding
situations mentioned above.

In the present paper, we verify the validity of the PA and
study the influence of different choices in the construction of
the PP on different spectra. The semilocality and full separa-
bility �Kleinman-Bylander form� of a pseudopotential and
other commonly used approximations are studied via a de-
tailed analysis of the DFT-KS band structure and subsequent
calculations of response functions. The effects on the inverse
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dielectric function, appearing in the calculation of the screen-
ing in the GW scheme and of the electron-energy-loss spectra
�EELS�, are investigated for different pseudopotential de-
scriptions.

Within the PA, the semilocal and fully nonlocal forms of a
PP are assumed to give equivalent physical results. In iso-
lated atoms the two give by definition the same results. How-
ever, a detailed verification has never been done before.

An additional problem arises for pseudopotentials in the
Kleinman-Bylander form because the KB Hamiltonian does
not obey the Wronskian theorem. This can lead to eigenfunc-
tions that are not energetically ordered according to the num-
ber of nodes.23 For this reason, spurious bound states, called
ghost states,24,25 can appear. We investigate the effects of
such ghost states in an extended energy region.

Furthermore, both the calculation of response functions
and the calculation of excited states in the framework of
many-body perturbation theory, such as GW calculations, in-
clude sums over transitions in which matrix elements appear.
When calculated in real space, these matrix elements are
integrals over the extension of the wave functions including
the core region. As the PA implies a poor description of the
core region, its validity is linked to the importance of the
latter. The core region can in principle affect the calculation
of the matrix elements, e.g., in the evaluation of the dielec-
tric properties.26 Some investigations of the resulting error
exist for isolated atoms,27 where it has been shown to be
small. However, the same conclusion cannot be trivially gen-
eralized when atoms are put in a different chemical environ-
ment.

In fact, the validity of the PA has recently been brought
into question.28–34,36 Kageshima and Shiraishi37 proposed a
correction to the PA for the calculation of momentum matrix
elements, improving the description of the core region. Later,
different and more sophisticated approaches to bypassing the
above problems were proposed. The main schemes are the
use of all-electron �AE� valence wave functions, as in the
projector augmented wave �PAW� approach,28–35 and the
multiprojector method.36

Direct comparisons of the optical properties of semicon-
ductors obtained within the PAW approach and within the PA
were presented by Adolph et al.,28 showing that the main
differences between the two approaches are related to the
localization of core states: the more that the core states are
localized, close to the nucleus, the more that the pseudopo-
tential calculations are reliable. Therefore it is reasonable to
assume that PP results improve when more electrons are in-
cluded in the valence region and the remaining core contains
only very deep and localized levels.

Pseudopotential issues in self-energy calculations have
been discussed by Lebègue et al.33 comparing GW gaps ob-
tained within the all-electron PAW method with PA ones and
showing that some differences arise. In particular the PAW
method is found to decrease the gaps. It is therefore argued
that the PA fortuitously improves the agreement with experi-
ment.

In the present paper we analyze in detail the possible
sources of errors when the PA is used for the calculations of
excited states. To improve toward an all-electron description,
which is exempt from the drawbacks mentioned above, we

consider a pseudopotential where the outer-core electrons are
explicitly considered within the valence.

In order to study the overall effect of the PA on the di-
electric response we study spectra related to different spec-
troscopies, for both zero and nonzero momentum transfers.
For vanishing momentum transfer, another problem arises
from the pseudopotential nonlocality �both in the KB form
and in the non-KB form�. The nonlocality complicates the
evaluation of dipole matrix elements. While for finite mo-
mentum transfer q the matrix elements of the operator e−iqr

are always well defined, in the long-wavelength limit e−iqr

=1− iqr, one is lead to consider matrix elements of the po-
sition operator r, which in periodic systems is ill defined.
The matrix elements of the position operator must therefore
be calculated via the velocity operator �i.e., the commutator
between the Hamiltonian and the position operator� which is
not proportional to the momentum p, but includes also an
additional term proportional to the commutator �Vnl ,r�,38,39

where Vnl is the nonlocal part of the pseudopotential.
Finally, the effects of the PA have also been studied be-

yond the linear response. In fact, the theoretical description
of nonlinear processes in solids is a formidable task, and
important difficulties have delayed any accurate calculations
for many years.22,40 In this difficult framework, the influence
of pseudopotentials on the nonlinear spectra has to be ana-
lyzed carefully. All calculations have been performed for Si
and cubic SiC semiconductor crystals, which are well char-
acterized experimentally and for which several theoretical
results exist in the literature.

The paper is organized as follows. In Sec. II, after a brief
summary of the main issues involved in first-principles
pseudopotential theory, approximations, and possible prob-
lems, we review the technical details of semilocal and fully
nonlocal �separable� pseudopotentials, including the choice
of the “reference” angular component, and we define the set
of pseudopotentials considered in this work. In Sec. III we
present our results for the logarithmic derivatives �LDs� and
for the Kohn-Sham eigenvalues and eigenfunctions, address-
ing specifically the local-density approximation �LDA� band
structure. In Sec. IV we address quasiparticle energies com-
puted within the GW approximation of Hedin.41 Subse-
quently, in Sec. V we study absorption spectra and the loss
function. Results for zero and nonzero momentum transfers
Q are presented, comparing the use of different pseudopo-
tential schemes and analyzing the influence of the �Vnl ,r�
commutator on the resulting spectra. Finally, results beyond
the linear response, namely, for second-harmonic generation,
are presented in Sec. VI.

II. PSEUDOPOTENTIAL DETAILS

A. Theory

We start from the usual expression for a NCPP written, in
principle, as an infinite sum of nonlocal terms,

VPP�r,r�� = �
l=0

+�

vl�r,r��P̂l��,��� . �1�

Here P̂l is the angular momentum projection operator. Usu-
ally, one assumes that all terms corresponding to angular
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momenta larger than a chosen value lmax can be well approxi-
mated by one and the same vl, called the reference compo-
nent vlref of the pseudopotential. In this way, the pseudopo-
tential can be set up in terms of an angular momentum–
dependent part plus a local term. Considering Eq. �1� and the
assumptions described above,

VPP = �
l=0

l=lmax

vlP̂l + �
l=lmax+1

+�

vlP̂l

= �
l=0

l=lmax

�vl − vlref�P̂l + �
l=lmax+1

+�

vlP̂l + vlref �
l=0

l=lmax

P̂l

� �
l=0

l=lmax

�vl − vlref�P̂l + vlref = vnloc + vlref, �2�

where the dependence on r and r� is the same as in Eq. �1�.
In this way, the use of angular momentum projectors is lim-
ited to a few small-l components.

The explicit expression of the nonlocal term in real-space
representation is

vnloc�r,r�,�,��� = �
l=0

l=lmax

�vl�r���r − r��P̂l��,��� , �3�

where �vl�r�=vl�r�−vlref�r� and P̂l, given in terms of spheri-
cal harmonics Ylm, is

P̂l��,��� = �
−m

+m

Ylm
� ���Ylm���� . �4�

The nonlocality is hence limited to the angular coordinates,
while the radial coordinate is local. For this reason, this is
also called the semilocal form of the pseudopotential. How-
ever, applying vnloc on wave functions is computationally
very demanding since in reciprocal space vnloc is a full ma-
trix and for a given number N of plane waves used in the
expansion of the wave functions, one has to compute N2

matrix elements for each l, and then one has to perform a
matrix-vector multiplication, which scales as N2.

A clever way to bypass this bottleneck was introduced by
KB.8 In fact, KB transformed the nonlocal part into

vKB = �
lm

�vl��lm�	�lm��vl

	�lm��vl��lm�
, �5�

where �lm=Ylm���Rl�r� are the atomic pseudo-wave-
functions used in the construction of the PP. In this way the

PP becomes fully nonlocal in real space and completely
separable. Using the PP in the KB form, the number of ma-
trix elements to be computed grows only linearly with N, and
the subsequent actions on the wave functions are reduced
essentially to vector-vector scalar products.

However, as mentioned above, using the KB form one has
to take care of ghost states. Ghost-free KB pseudopotentials
can be constructed at least in a limited energy range by
choosing suitable reference components, by adjusting the
cutoff radius rc, and by changing the ionization of the initial
reference configuration.

We have identified and monitored the ghost states through
two different techniques: direct spectral investigation and
analysis of the logarithmic derivatives.24,25 The latter are
computed as

Dl��, r̄� =
d

dr
ln ul��,r��r=r̄, �6�

where ul is the radial atomic pseudo-wave-function. By con-
struction, Dl�� , r̄� for r̄�rc is the same for the pseudo- and
the all-electron atoms at the reference energy �.42 The loga-
rithmic derivatives are used as a test of the transferability of
the pseudopotential, i.e., its validity in different chemical en-
vironments.

B. Set of pseudopotentials considered

The set of silicon pseudopotentials considered in our
study includes the following:

�a� One pseudopotential constructed with the standard
partitioning between core and valence, i.e., by putting the
n=1 and n=2 electron shells in the core. This pseudopoten-
tial will be called standard in the following.

�b� One pseudopotential generated with inclusion of the
2s and 2p electrons �outer-core states� in the valence �only
the two 1s electrons remain in the core�. In this case, this PP
will be named outer-core.

In particular, independently of the core-valence partition
chosen, we have used two different initial electronic configu-
rations to construct the pseudopotential: �i� a neutral atom
configuration �1s22s22p63s23p23d0� and �ii� an ionized-
excited atom configuration �1s22s22p63s13p0.753d0.25� which
corresponds to that proposed by Bachelet et al.5

In Table I a summary of the parameters chosen for the
different atomic configurations is reported. We have used
excited atomic configurations to generate the d component
because the corresponding atomic wave functions are un-
bound in the atomic ground state. For the standard pseudo-

TABLE I. Atomic parameters used for generating the standard and the outer-core PPs. The cutoff radii are
given in bohr.

rcut �a.u.� rcut �a.u.�

Ref. configuration
Neutral s p d

Ref. configuration
Excited-ionized s p d

Standard 3s23p23d0 1.05 1.27 1.27 3s13p0.753d0.25 1.00 1.10 0.95

Outer-core 2s22p63s23p23d0 0.58 0.70 1.27 2s22p63s13p0.753d0.25 0.58 0.70 1.20
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potentials, both the fully nonlocal Kleinman-Bylander �sepa-
rable� and the BHS �semilocal� forms have been considered
and tested.

In all cases, as discussed above, a reference component
vlref has been chosen for the local part of the pseudopotential,
and all components vl for l� lmax are set equal to vlref. The
choice of the most appropriate reference is not trivial, par-
ticularly in the Kleinman-Bylander case, where the appear-
ance of ghost states is often triggered by the choice of vlref.
In the case of silicon most applications use lmax= lref=2, in
which case only the l=0 and l=1 projectors have to be con-
sidered. However, there is no physical reason to assume the d
angular component to be more representative of the high-l
components than, e.g., the s component.43 For this reason,
we include in our analysis the results of calculations per-
formed by choosing different lref, ranging from l=0 to l=2.

III. LOGARITHMIC DERIVATIVES, GROUND-STATE
PROPERTIES, AND KOHN-SHAM BAND-

STRUCTURE RESULTS

The logarithmic derivatives Dl��� have been analyzed for
all the PPs considered in this paper, looking into an energy
region extended as much as 100 eV above and below the
Fermi energy. In the high-energy region ghost states are un-

avoidable, and they can enter in our calculations of the spec-
tra.

In Fig. 1 we show the resulting Dl��� as a function of
energy, comparing all-electron to PP results. As a matter of
fact, choosing an s or p reference yields better results for the
Kleinman-Bylander separation. The outer-core pseudopoten-
tial, on the other hand, gives LD very close to the all-electron
ones in both the semilocal and the fully nonlocal cases, and
for all possible choices of lref. However, the outer-core PP is
harder; i.e., it requires a much larger set of plane waves to
converge �125 hartree instead of the 15 hartree which is re-
quired for the standard PP�.

It is important to note that in the case of the standard PP
taking lref=2 the LDs are quite bad beyond about 1.0 hartree
above the zero energy reference. This behavior is acceptable
for ground-state calculations because energies in that range
are not involved, whereas they might create problems for
excited-state calculations.

The following step is the analysis of the influence of the
PP on the usual ground-state properties, such as the equilib-
rium lattice constant. Results, as displayed in Table II, show
that the choice of vlref has a negligible effect, as expected.
The outer-core PP produces better result than the standard
PP. In fact, the lattice constant for an outer-core calculation is
closer to the all-electron result in agreement with the work of
Fiorentini et al.44 In order to eliminate all the possible
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FIG. 1. Logarithmic derivatives of the s, p, and d components of our standard and outer-core pseudopotentials, in both their semilocal
�dashed lines� and separable �KB� �dot-dashed lines� forms compared with their all-electron counterparts �solid lines�. Results for different
reference components �lref=0 and lref=2� are reported in the top and bottom parts of the figure, respectively. Note the large energy scale,
ranging from −5.0 to 5.0 hartree.
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sources of deviations in the spectra, which can be on the
same order as the differences we are looking at, we perform
all calculations of electronic properties at the experimental
lattice constant, i.e., 10.26 a.u. for silicon and 8.24 a.u. for
SiC. We have checked for silicon that using the theoretical
lattice constants for our two pseudopotentials, instead of the
experimental one, does not change the conclusions of this
paper.

Up to this point all the considered PPs behave well for
ground-state calculations. We are now interested in under-
standing their influence on spectroscopic quantities, which
are usually constructed starting from Kohn-Sham eigenval-
ues and eigenfunctions. The latter have been computed for an
unusually extended energy range, up to about 100 eV above
the Fermi level, as needed for spectroscopic quantities. In
fact, quantities such as the macroscopic dielectric function
and the self-energy are constructed as infinite sums over
states, involving virtual or real transitions.

To understand the differences, individual eigenvalues at
the � point are analyzed in Figs. 2 and 3. The energy region
is chosen around 60–90 eV above the Fermi level, a region
where larger differences appear.

First evidence is that for the standard PP �Fig. 2, top� the
influence of the choice of lref is much stronger than in the
case of the outer-core PP �Fig. 2, bottom�. The former can in
fact be considered closer to an all-electron description.
Hence it shows a better transferability �as demonstrated by
the LD shown in Fig. 1�, at the price of requiring a much
larger number of plane waves to converge.

Furthermore, Fig. 3 compares the behaviors of the semilo-
cal and the separable forms of the standard PP at fixed lref,
showing also results from the outer-core PP. Assuming the
latter as reference, results obtained using the separable form
of the standard PP appear to be worse than those obtained
using the semilocal form, with some dependence on lref. In-
deed lref=0 gives a more stable behavior and better agree-
ment between the separable and the semilocal forms. Choos-
ing lref=2 can induce a visible scattering of some
eigenvalues, as shown in Fig. 3 �top and central panels for
the � point, and lower panel for a point of lower symmetry in
the reciprocal space�.

The simplest quantity involving a sum over states is the
electronic density of states �DOS�, for both occupied and
empty states. No visible differences appear in the DOS of the
occupied states nor in the lowest conduction states. Hence
we only plot the range above 35 eV, where differences start
to become visible. Differences between the semilocal and the
separable forms of the same PP, at fixed reference compo-

nent, are plotted for lref=0 in Fig. 4 and for lref=2 in Fig. 5.
Consistent with the findings for single eigenvalues, the

influence of lref is smaller for the PP in its semilocal form,
while differences between the semilocal and the separable
forms of the PP are amplified when the d reference compo-
nent is chosen �note that lref=2 is another choice adopted
because it reduces the computational cost�. As a result, the
choice of lref has a clear influence on the calculated DOS
above 35 eV: the eigenvalues are affected, leading to visible
change in the DOS.

Finally the quality of the corresponding eigenvectors has
to be investigated. The influence of the PP on the KS eigen-
vectors has been analyzed through a direct comparison of
two sets of eigenfunctions. To this end, we have computed
the scalar products between two sets of low-energy eigenvec-
tors, obtained with the semilocal and the separable forms.
Only deviations of 1% from orthonormality were found.

IV. QUASIPARTICLE ENERGIES: GW CORRECTIONS TO
THE KS-LDA BAND STRUCTURE

Realistic band structures are given by the poles of the
one-particle Green’s function, i.e., by quasiparticle energies,
EQP. The latter can be calculated through the electron self-
energy 	, a nonlocal and energy-dependent operator. The
GW approximation41 for computing 	 is nowadays the stan-
dard approach to including many-body effects in band-
structure calculations.

TABLE II. Influence of the choice of the pseudopotential local
reference component on the calculated equilibrium lattice constant
of silicon. The separable form has been used in all six cases. The
experimental value is 10.26 a.u.

Lattice parameter
lref=0
�a.u.�

lref=1
�a.u.�

lref=2
�a.u.�

Standard 10.178 10.180 10.170

Outer-core 10.250 10.250 10.249
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FIG. 2. Effects of the pseudopotential choice on individual KS-
LDA eigenvalues of bulk Si at the � point in the high-energy region
�60 eV above the Fermi level�. Top panel: Influence of a change in
the local reference component for the case of the standard pseudo-
potential used in its fully separable form. Bottom panel: Same as
top panel, but for the outer-core pseudopotential. Results for lref

=0 �points� and lref=2 �squares� are shown in both panels.
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In this approach, the self-energy operator, which is the
proper “potential” acting on an excited electron or a hole in
the system, is calculated as 	= iGW, where G is the one-
particle Green’s function and W is the screened Coulomb
interaction. Quasiparticle energies are usually obtained
within first-order perturbation theory as �i

GW=�i
KS+ �1 / �1

−�	 /����	�i
KS�	GW��i

KS�−vxc��i
KS�. In actual calculations,

the one-particle Green’s function and the screened Coulomb
interaction are most often obtained starting from DFT-LDA
pseudopotential-based calculations.

In this paper we have used this G0W0 approximation,
where DFT-LDA single-particle orbitals ��i

KS� and energies
��i

KS� are hence used for building both

G0�r,r�,
� = �
i

�i
KS�r��i

KS��r��

 − �i

KS + i� sgn ��i
KS − ��

, �7�

with � as the chemical potential, and the independent-
particle linear polarizability


0
1�r,r�,
� = �

ij

�f i − f j�
�i

KS��r�� j
KS�r�� j

KS��r���i
KS�r��


 − ��i
KS − � j

KS� + i�
,

�8�

where i� is a small imaginary part.
The screened Coulomb interaction is obtained as W

=�−1v, where v is the bare Coulomb potential and

� = 1 − v
0
1 �9�

is the dielectric matrix in the random-phase approximation
�RPA�.

Containing wave functions and energies, both G0�r ,r� ,
�
and 
0

1�r ,r� ,
� are sensitive to the different pseudopotential
choices. These states considered in Eqs. �7� and �8� include
those far from the Fermi level for which the validity of the
pseudopotential has been brought into question.

Furthermore GW energies are often used as input for other
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FIG. 3. Top panel: High-energy KS-LDA eigenvalues for bulk
Si at the � point for the standard pseudopotential in semilocal
�square� and separable forms �crosses�, compared with results using
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spectroscopic calculations, such as ab initio exciton calcula-
tions within the Bethe-Salpeter approach. A quantitative un-
derstanding of the limitations inherent to the DFT-LDA start-
ing point is then even more crucial.

In the following we show the results obtained by perform-
ing standard G0W0 calculations based on the DFT-LDA elec-
tronic structure computed using the different pseudopoten-
tials. Our results for the standard and the outer-core PPs
relative to the Kohn-Sham LDA band gaps of bulk silicon
are within the scattering of available PP and all-electron cal-
culations from literature, as shown in Table III. There is an
overall weak tendency of decrease in the gaps when the core
states are included.

To converge GW results for the standard �outer-core�
pseudopotential, we had to use 411 �12 039� plane waves for
the wave functions and polarization matrices 283�283
�869�869� in the plane-wave basis. In both cases, we in-
cluded 146 empty bands and 256 k points in the full Bril-
louin zone �BZ�. All calculations have been done within the
standard plasmon-pole approach.56

A first remarkable result is that changing the reference
component or using a PP in its semilocal or separable form
has a very little influence on the resulting QP corrections.
Table IV shows our results for the quasiparticle-corrected
�-point band gap of bulk silicon, together with the corre-
sponding GW corrections. The differences are on the order of
meV, i.e., only on the fourth significant digit. Since we con-
sider that our results are precise within 50 meV, such differ-
ences are completely negligible. This robustness of GW cor-
rections with respect to changes in the high-energy part of
the KS spectrum suggests that the states far from the Fermi

level could be quite safely approximated by using some kind
of simplified model, without affecting the results.

The only significant differences induced by changing the
pseudopotential scheme are found between the standard and
the outer-core PPs since in the latter the calculated QP gaps
are, on average, slightly smaller. All the values lie within the
range of the different theoretical �PA and all-electron� and
experimental results from literature as shown in Table V. As
at the LDA level, the inclusion of the outer-core states de-
creases the gaps. This effect is stronger in the GW results
than for the LDA gaps.

In the work of Tiago et al.52 a pseudopotential with core
states was used, generated from an initial electronic configu-
ration different with respect to the one we have used for our
outer-core PP. If we compare our results at the � point for the
outer-core PP with their results, we obtain a value smaller by
0.15 eV. What Tiago et al.52 obtained for � seems to be more
similar to a standard PP calculation. However, their result for

TABLE III. Calculated Kohn-Sham LDA band gaps for silicon, with our standard and outer-core pseudo-
potentials, compared with pseudopotential and all-electron results from several other works. “Present work”
results are those for lref=0.

Si LDA �c−�v Xc−Xv Lc−Lv Xc−�v Lc−�v

PP method

Present work, standard 2.56 3.47 2.63 0.64 1.44

Ref. 14 2.56 3.53 2.67 0.66 1.46

Ref. 46 2.57 3.43 2.64 0.65 1.47

Ref. 47 2.57 0.60 1.51

Ref. 48 2.59 0.65 1.47

Ref. 49 2.57 0.65 1.46

Ref. 50 2.57 2.75

Ref. 51 2.58 2.63

Ref. 9 2.55 3.48 2.69

Present work, outer-core 2.52 3.42 2.53 0.56 1.33

Ref. 52 2.52 0.60

All-electron method

Ref. 53 2.55 3.49 2.62 0.65 1.43

Ref. 54

Ref. 55 2.53

Ref. 31 2.53 0.65 1.52

Ref. 33 2.54 3.46 2.63 0.61 1.44

TABLE IV. Influence of the choice of the local reference com-
ponent on the quasiparticle band gap: Egap

QP of bulk silicon at the �
point �first row�. The second row shows the GW corrections, i.e.,
Egap

QP −Egap
LDA.

Separable Semilocal

lref=0
�eV�

lref=1
�eV�

lref=2
�eV�

lref=0
�eV�

lref=1
�eV�

lref=2
�eV�

Egap
QP 3.233 3.232 3.231 3.232 3.232 3.229

�Egap
GW 0.675 0.675 0.677 0.675 0.674 0.676
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the X−� gap is closer to an all-electron calculation.
The scattering in all these results can be explained by the

different pseudizations of the wave functions and the core-
valence partition chosen. These effects have been analyzed
by studying their influence on the matrix elements of the
LDA Kohn-Sham exchange-correlation potential and of the
self-energy operator. In Table VI the contributions from Vxc
and from 	xc are separately compared for the standard and
the outer-core PPs. Furthermore, for the outer-core PP we
have performed a valence-only calculation, neglecting all the
contributions from the core states for the screening and for
the self-energy. The results are shown only for the � point as
the same conclusions are valid also for X and L.

The correlation terms never differ by more than 0.1 eV in
all three cases. The exchange terms—for both the Kohn-
Sham potential and the self-energy—can differ by more then
1 eV between the standard and the outer-core PPs. Neglect-
ing the core states �valence-only outer-core� results in a dif-
ference with the standard on the order of 0.2 eV. We obtain
the same trend shown by Gómez-Abal et al.58 in a work
where an all-electron and an all-electron valence-only G0W0
calculation were compared with PP results.

The effect of the core polarization is important on the
single terms of the self-energy, and it is at the origin of the
differences between the exchange contributions in the two
outer-core calculations. Nevertheless, when the G0W0 gap is
calculated �Table VII� the gaps are almost unchanged by the
inclusion of the core states. This is due to a cancellation in
the exchange part between the self-energy and the Kohn-

Sham potential. The correlation contribution is practically
the same in all three cases. Thus the exchange term seems to
be the main cause of the differences between the outer-core
and the standard PPs in the calculation of the G0W0 gaps. To
get a deeper insight, we have directly plotted some of the
matrix elements entering the calculation of the exchange
self-energy, which reads

TABLE VI. Comparison of the exchange and correlation contri-
bution to the matrix elements of the self-energy and of the DFT-
LDA exchange and correlation potential, computed with our three
types of PPs.

Vx Vc 	x 	c

Standard

�HOMO −9.76 −1.50 −12.45 0.49

�LUMO −8.63 −1.42 −5.82 −4.06

V.O. outer-core

�HOMO −9.93 −1.50 −12.28 0.52

�LUMO −8.75 −1.43 −5.75 −4.01

Outer-core

�HOMO −11.73 −1.56 −14.00 0.51

�LUMO −10.13 −1.47 −7.02 −4.03

TABLE V. Calculated G0W0 band gaps for silicon with our standard and outer-core pseudopotentials,
compared with pseudo- and all-electron results from several other works. “Present work” is shown for lref

=0. In parentheses we report the corresponding LDA gaps.

Si GW �c−�v Xc−Xv Lc−Lv Xc−�v Lc−�v

PP method

Present work, standard �2.56� 3.23 4.19 3.30 1.33 2.10

Ref. 14 �2.56� 3.25 4.27 3.38 1.31 2.13

Ref. 46 �2.57� 3.36 4.36 3.44 1.43 2.19

Ref. 47 �2.57� 3.27 3.44 1.44 2.27

Ref. 48 �2.59� 3.35 1.31

Ref. 49 �2.57� 3.20 1.29 2.08

Ref. 50 �2.57� 3.30 3.49 2.30

Ref. 51 �2.58� 3.24 4.14 3.31 1.34 2.14

Ref. 9 �2.55� 3.23 4.18 3.38 1.35 2.18

Present work, outer-core �2.52� 3.09 3.96 3.07 1.00 1.84

Ref. 52 �2.52� 3.24 1.18

All-electron method

Ref. 53 �2.55� 3.30 4.17 3.41 1.14 2.15

Ref. 54 3.12

Ref. 55 �2.53� 3.12

Ref. 57 3.19 4.10 3.35

Ref. 31 �2.53� 3.13/3.17 4.13/4.17 3.41/3.42 1.15/1.20 2.16/2.17

Ref. 33 �2.54� 3.09 3.91 3.21 1.01 2.05

Expt. 3.05–3.40 1.25 2.1�2.4�0.15�
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�q+G�, as a function of the G vectors for the stan-
dard and the outer-core PPs.

Figure 6 shows M�q+G� for the valence bands and the
bottom conduction band at the X point. Degenerate states are
summed over. In general, the matrix elements for the stan-
dard PP are larger by about 1%.

In conclusion, the pseudization of the wave functions
seems to play the main role in the explanation of the differ-

ences between the gaps calculated with our two pseudopo-
tentials, with or without inclusion of the core states, when
using the outer-core PP, and does not change the final results.
On the other hand the contribution of correlation is very
stable. As a further investigation we have also performed a
calculation by using the screening from the standard PP cal-
culation, but the wave functions and energies calculated with
the outer-core PP. We obtain for 	c at � lowest unoccupied
molecular orbital �LUMO� �highest occupied molecular or-
bital �HOMO� 0.50 �−4.00� to be compared with 0.51 �
−4.03�. For X and L the variations are on the same order.

All the GW results shown here were performed neglecting
the effects of the �Vnl ,r� commutator, discussed below, in the
calculation of the screening because it is very time consum-
ing. Their relative contribution, less than 1% on the band
gap, can be reduced by improving the q-point sampling of
the Brillouin zone since it depends only on the q=0 term.
Moreover, all our GW calculations are performed at the
G0W0 level, i.e., in a non-self-consistent scheme.

Most of the calculations in literature adopt this G0W0

scheme since full self-consistency, besides being numerically
very heavy, has been shown in some cases to lead to a wors-
ening of the results.59,60 Self-consistency, using a static ap-
proach for the self-energy, tends to increase the GW
gaps.49,61

On the other side, all-electron schemes do not suffer from
the problems of the core-valence partitioning. The improve-
ment in this direction is found for the outer-core PP which
has been shown to reduce the gaps with respect to standard
PA results. The reduction in the gaps leads to worse agree-
ment with experimental results, even if the treatment of
semiconductors is more consistent, as also shown by Sharma
et al.62 This means that there may be a certain cancellation
between the effects of the PA and the non-self-consistency of
the G0W0 calculation as proposed by Ku and Eguiluz.55

TABLE VII. Calculated quasiparticle gaps at �, X, and L for the standard, the valence-only outer-core,
and the outer-core calculations, as well as the corresponding contributions to the gaps from the Vxc−	x,
Vx−	x, and Vc−	c.

Egap
QP �Egap

GW Vxc−	x Vx−	x Vc−	c

Standard

�c−�v 3.23 0.68 −5.42 −5.50 4.63

Xc−Xv 4.18 0.71 −6.22 −6.33 5.39

Lc−Lv 3.30 0.67 −5.69 −5.75 4.87

V.O. outer-core

�c−�v 3.09 0.57 −5.28 −5.35 4.60

Xc−Xv 3.97 0.55 −5.99 −6.10 5.38

Lc−Lv 3.13 0.61 −5.50 −5.56 4.78

Outer-core

�c−�v 3.09 0.57 −5.29 −5.38 4.63

Xc−Xv 3.96 0.54 −5.91 −6.11 5.42

Lc−Lv 3.07 0.55 −5.47 −5.52 4.81
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FIG. 6. Matrix elements entering 	x at the X point. The matrix
elements have been calculated between the top valence �TV� �bot-
tom valence �BV�� and the top conduction �TC� bands, and are
shown as a function of the G vectors. The outer-core and the stan-
dard PPs are in their separable form.
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V. SPECTRA

In this section we consider PP effects on theoretical spec-
tra. We study both the optical absorption spectra, which are
given by the imaginary part of the dielectric function in the
limit of vanishing momentum transfer, and the electron-
energy-loss spectra for transferred momentum Q, given by
−Im��−1�q ,
��GG, where q lies in the first Brillouin zone, G
is a reciprocal-lattice vector, and Q=q+G.

We present results within the RPA, where the dielectric
matrix ��q ,
�GG is given by Eq. �9�. As we focus on the
effects of the PA, the crystal local-field effects are not in-
cluded �neglecting the off-diagonal elements of the micro-
scopic dielectric matrix in reciprocal space�. The error due to
neglecting the local-field effects is known to be small in both
Si and SiC.63,64 The resulting simplified expression of the
imaginary part of the macroscopic dielectric function �2
=v
0 allows us to analyze directly the contribution of indi-
vidual valence-conduction transitions to the absorption spec-
tra.

The imaginary part of the dielectric function for bulk sili-
con for Q=1.86 a.u. along the �110� direction is shown in
Fig. 7 for the standard and the outer-core pseudopotentials.65

In the case of the standard PP, results using both the semilo-
cal and separable forms are shown together with the outer-
core for lref=0. Differences remain quite small, mainly ap-
pearing for the separable PP used with lref=2 �inset starting
from 60 eV�, consistent with our findings on the eigenvalues.

In Fig. 8 we show an example of calculated loss spectra at
Q=0.53 a.u. along the �111� direction, demonstrating the in-
fluence of a change in the reference component. Spectra in
this range of Q are clearly quite independent of the choice of
lref. Only for very large Q some differences appear because
spectra become more sensitive to small changes in the high-
energy electronic response. The main differences among

these spectra are due to the inclusion of the outer-core states
in the pseudopotential. The same effect is shown, for higher
Q, in Fig. 9, where silicon 2p levels are present only for the
outer-core �the respective transitions are obviously missing
in the calculation with the standard PP�.

In the case of the outer-core PP we have also investigated
if the presence of the high-energy electronic transitions in-
volving the outer-core �deep� electron levels induces a vis-
ible effect on the valence part of the loss spectra. A calcula-
tion �not shown� of loss spectra using the outer-core PP,
either explicitly including or excluding the outer-core levels
from the calculation of the macroscopic dielectric function,
shows that this is not the case. The differences in the loss
function at low energies due to the core polarization are
rather small in the case of silicon. The only strong difference
in the loss spectra is the L2/3 absorption edge due to the
presence of the outer-core states. Comparison with experi-
mental spectra shows that the energy for the edge is under-
estimated by about 10 eV.

This can be explained in view of the DFT-LDA band
structure. The binding energy of the Si 2p electrons is under-
estimated by about 10% �our results give −89.4 eV mea-
sured from the valence-band maximum by using lref=0, and
89.7 eV by using lref=2�. The energy difference corresponds
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FIG. 7. Effects of the pseudopotential choice on the calculated
imaginary part of the finite-Q macroscopic dielectric function of
bulk silicon. Results obtained with the standard pseudopotential
used in the semilocal and separable forms �stars and light solid line,
respectively� and for the outer-core pseudopotential �solid line� with
lref=0 are reported. In the inset, lref=2 is shown for the standard
pseudopotential. The Q value is Q=1.86 a.u., and a grid of 32
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roughly to the self-energy corrections found for these states
by Rohlfing et al.66

For vanishing momentum transfer, the analysis of theoret-
ical spectra deserves additional care due to the above-
mentioned problem of the nonzero commutator between a
nonlocal PP and the position operator �Vnl ,r�. In fact, a cor-
rect inclusion of the latter turns out to give rise to much
larger effects on the calculated loss spectra than those due to
the inclusion of outer-core electrons or to the change in the
local reference component.

Figure 10 shows that neglecting the commutator can in-
troduce changes in the plasmon energy by as much as 2 eV.
However including the contribution from �Vnl ,r� leads to
very stable results with a plasmon peak much more indepen-
dent of the pseudopotential choice. As a consequence of this,
calculations which do not consider the commutator will be
clearly affected by a degree of arbitrariness linked to the
choice of the pseudopotential details �reference component
and separable or semilocal form�. The largest effect is found
in the case of the standard pseudopotential used in its sepa-
rable form. The outer-core pseudopotential, however, mini-
mizes the effect of the commutator since it is closer to an
all-electron description and the nonlocality has a lesser ef-
fect. The calculation of dipole matrix elements in the all-
electron case would imply no nonlocal contribution at all.

The importance of the �Vnl ,r� commutator in a correct
evaluation of the position of the peaks of the inverse dielec-
tric function can be understood as follows. An error in the
evaluation of the matrix elements will affect, to first order,

only the intensity of the real and the imaginary parts of the
dielectric function �Fig. 11� without changing the peak posi-
tions �provided it is calculated in the independent-particle
approximation and without local-field effects�. However,
when the inverse has to be computed to obtain the loss func-
tion, a change in the overall intensity of the imaginary part
will give rise to a change in the position of the zero crossing
of the real part and consequently of the maximum of the
imaginary part of the inverse function.

VI. NONLINEAR ELECTRONIC RESPONSE

The expressions arising in the description of the nonlinear
response are much more complex than their linear counter-
parts. Thus the effects introduced by the PA have to be con-
sidered carefully. In the following, we consider the second-
order response function in the RPA in the vanishing q limit:
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FIG. 10. Influence of the inclusion of the �Vnl ,r� commutator on
the computed loss function of bulk silicon at Q=0, for both the
standard pseudopotential �dashed line� and the outer-core pseudo-
potential �solid line�. Dark �light� lines refer to calculations with
�without� including the commutator. lref=0 has been used through-
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FIG. 11. Influence of the inclusion of the �Vnl ,r� commutator on
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standard and the outer-core PPs are in their separable form.
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To the best of our knowledge, the effects of the PA on the
calculations beyond the linear response have never been
studied explicitly before, and the fact of having a triple sum-
mation over states �both occupied and empty�, involving the
product of three matrix elements, could cause this quantity to
be more sensitive to the approximations used in its construc-
tion. The complexity of the 
0

2 clearly gives rise to more
subtle convergence issues compared to the linear case �see,
e.g., Eq. �8��. The required ingredients are, once again,
independent-particle eigenvalues and eigenfunctions, which
are taken from a pseudopotential-based electronic-structure
calculation within DFT-LDA in the Kohn-Sham scheme.

Since bulk silicon, being centrosymmetric, has no second-
order response, we performed our calculations for silicon
carbide �SiC�, which is one of the simplest nonlinear semi-
conductors thanks to its ionicity and its lack of inversion
symmetry. Moreover, experimental and theoretical results on
the SHG spectra are available for this material.

As in the case of the linear response discussed above, we
have performed Kohn-Sham band-structure calculations
within a standard plane-wave pseudopotential approach, us-
ing the ABINIT code,67 and the nonlinear response calcula-
tions using the DP code.68 The main convergence difficulty is
found to be the k-point sampling. It was solved by using an
off-symmetry-shifted grid of 256 k points in the full Bril-
louin zone. To converge the calculations 25 empty bands was
required �i.e., up to about 10 eV above the Fermi energy�,
and 169 plane waves, corresponding to an energy cutoff of 5
hartree.

The effects induced by the pseudopotential choice turn
out to be very small. Even a delicate quantity such as the
second-order response turns out to be a little sensitive to the
change in the local reference component of the pseudopoten-
tial. This result could be expected since only bands near to
the Fermi energy are involved.

By contrast, the effects due to the inclusion of the �Vnl ,r�
commutator in the calculation of the dipole matrix elements
are much larger, as shown in Fig. 12. As in the case of the
linear response, the inclusion of the commutator gives rise
�in the case of SiC� to a reduction in the spectral strength, but
in this case the effect seems to be stronger.

VII. CONCLUSIONS

We have presented a detailed analysis of pseudopotential-
induced effects in ab initio calculations in Si and SiC, in-
cluding Kohn-Sham band structures, quasiparticle correc-
tions, and electron-energy-loss and optical spectra in both the
linear and the nonlinear regimes. Our results show that the
usual �Kleinman-Bylander� pseudopotential scheme, origi-
nally developed for ground-state calculations, can be quite
safely applied to excited-state calculations even when they
involve summation over Kohn-Sham eigenvectors and eigen-
values up to 100 eV. The performance of the standard
�valence-only� KB pseudopotential can be optimized by an
appropriate choice of the local reference component. Inclu-
sion of the outer-core states in the valence, however, leads to
harder but more stable �i.e., less influenced by the reference
component� pseudopotentials.

Kohn-Sham band structures computed using a PP in both
its semilocal and fully nonlocal �KB� forms have shown that
in the Kleinman-Bylander case the influence of the choice of
the reference component is larger. Concerning GW quasipar-
ticle corrections, our results indicate that fine details of the
density of states and of the matrix elements do not play a
critical role in the calculation. In particular, the variations in
quasiparticle corrections computed within different PAs are
always on the order of 0.1 eV. The pseudopotential including
outer-core states, however, systematically yields results
closer to those of all-electron calculations because of an im-
provement of the wave functions, even if the transitions in-
volving the outer-core states are not important in these cal-
culations. The relative stability of the GW results also
suggests that simplified methods for treating the high-energy
part of the Kohn-Sham spectrum could be applied.69

The relevant quantities such as the spectra have been
found to be a little sensitive to the details of the PP construc-
tion. This also holds for the nonlinear response. However,
our results for energy-loss spectra at vanishing momentum
transfer show that the role of the �Vnl ,r� commutator in the
calculation of the matrix elements is important, and defi-
nitely more important than the role played by the choice of
the pseudopotentials. The effect of �Vnl ,r� is even stronger in
the case of the nonlinear second-order response.
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