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The transport properties of photonic periodic �monomode� waveguides in the presence of realistic fabrication
errors are analyzed. They are governed by out-of-plane loss and backscattering. We derive a closed-form
expression for the mean-free path that characterizes the transition between the ballistic and localization trans-
port regimes in these waveguides. In agreement with earlier works, the mean-free path is found to be domi-
nantly affected by backscattering for small group velocities. The predictions are quantitatively supported by
fully vectorial computational results obtained for two-dimensional periodic waveguides. Three-dimensional
�3D� structures, such as single-row-defect photonic-crystal waveguides, have also been analyzed and are shown
to provide moderate backscattering in comparison to other 3D waveguides. But in all test cases, we find that
the mean-free path is critically small, even for moderately small group velocities of c /50 and for up-to-date
fabrication nanofacilities.
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I. INTRODUCTION

Planar two-dimensional �2D� photonic-crystal �PhC� slabs
have attracted much attention recently as a possible platform
for densely integrated photonic circuits and different photo-
nic functionalities. Engineering the photonic dispersion rela-
tionship might provide unique opportunities for integrated
photonics especially in the slow light regime where new
compact devices, such as delay lines, optical switches, or
Raman lasers, are currently the subject of intense research.1–5

There are many important issues in relation with the use of
slow light for optical processing, such as light injection6,7 or
group-velocity-dispersion-management problems.3,8 A criti-
cal issue is the extrinsic loss that results from inevitable fab-
rication errors and that prevent full periodicity to be realized
in practice. This implies that even for periodic waveguides
operating with a truly guided Bloch mode below the light
line of the cladding, light transport is accompanied by out-
of-plane and backscattering losses, like in z-invariant
waveguides.9–11 There is no motivation for exploring the
slow light regime if any advantage is immediately counter-
acted by excessive losses. In this context, several authors12–14

have suggested that the extrinsic losses in periodic
waveguides are drastic near the band edge, where the group
velocity vanishes, and may even be responsible for light
localization.15

In this work, we numerically study the transport of light
in monomode periodic waveguides, focusing on the back-
scattering loss issue. Through a perturbative first-Born-
approximation theory similar to that used in Refs. 12, 14, 16,
and 17, we derive a universal coefficient � that quantifies the
mean-free path induced by backscattering in periodic
waveguides �see Sec. II�. This coefficient that allows com-
parisons of the performance of various waveguides scales as
the square of the group index and can be calculated with
virtually any Bloch-mode solver. It solely depends on the
statistical disorder correlation function and on the slow
Bloch-mode field distribution on the scatterers �Born ap-
proximation�. In Sec. III, we validate the analytical formula

for � by comparing the formula predictions with computa-
tional results obtained for 2D periodic waveguides with a
fully vectorial Fourier modal method.18,19 The comparison
allows us to check the accuracy of the � formula and to
discuss the transition from the ballistic to the localized trans-
port regimes, where multiple scattering becomes predomi-
nant. In Sec. IV, we calculate the � coefficient of various 2D
and three-dimensional �3D� geometries, such as single-row-
defect waveguides in PhC slabs. We find that backscattering
is a very critical issue even for small disorders and for op-
eration at moderate group velocities. Section V summarizes
the work and offers open remarks.

II. BACKSCATTERING ANALYTICAL MODEL

Let us start by considering Fig. 1 related to light scatter-
ing in a periodic waveguide with imperfections. The unper-
turbed waveguide defined by its permittivity and permeabil-
ity � and �=�0 is assumed to sustain a forward-propagating
truly guided Bloch mode denoted by ��1�= �E�1� ,H�1��, being
a pseudoperiodic function of the z coordinate, ��1��r+az�
=exp�jk1z���1��r� with Im�k1�=0; a being the period along
the z direction. As this fundamental mode propagates through
the perturbed section, it is backscattered into the backward
propagating Bloch mode ��−1�= �E�−1� ,H�−1�� �backscattering
loss R� and it is radiated in the cladding �out-of-plane losses
P�, like in classical z-invariant waveguides.9 The scattering
problem defines two quantities r ��r�2=R� and t ��t�2=T� that
correspond to the modal reflection and modal transmission

FIG. 1. Extrinsic loss in a periodic waveguide. The imperfect
region ���� of length L induces backscattering R= �r�2 and out-of-
plane losses P. This results in a lowered transmission T= �t�2.
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coefficients, respectively. We denote by �� the dielectric per-
turbation in the imperfect section of length L and by �
= �E ,H�: the solution of Maxwell’s equations. In the orthogo-
nal Cartesian coordinate �x ,y ,z� system, � satisfies the curl
Maxwell’s equations at a given frequency � �� /c=2� /��,

� � E = j���r�H, � � H = − j���r�E − j����r�E ,

�1�

where j2=−1. Equation �1� shows that the imperfections act
as current sources proportional to �� and to the perturbed
field. The infinitesimal source −j����r�E�r�dr located at r
= �x ,y ,z� contributes to the modal Bloch-mode reflection co-
efficients by an infinitesimal way. Following the formalism
developed in Ref. 20 that relies on the Lorentz reciprocity
theorem for periodic waveguides, we have

r = − ��/4�� dr���r�E�1��r� • E�r� , �2�

where the integral runs over the perturbed region. Note that
for Eq. �2� to be valid, the Bloch mode ��1� has to be nor-
malized so that its power flow through any transverse wave-
guide cross section is unitary.20 Equation �2� is exact but it
supposes that the scattered field be known in the perturbed
region. A fully vectorial calculation of E�r� is a challenging
task that would require computations in three dimensions
with a high resolution in order to capture the small disorder
imperfections. However, such computations can be per-
formed in two dimensions with a high accuracy and will be
used in Secs. III and IV to check the accuracy of the model
and its domain of validity.

To keep the treatment at a simple level, we have used a
modified first-order Born approximation to derive a semiana-
lytical expression for the backscattered intensity in the weak
perturbation regime �ballistic transport�. The analysis that
shares many features with earlier works12,14,16,17 is provided
in the Appendix for the sake of clarity. In the limit of small
disorders and small group velocities, we obtain �see Eq. �A6�
in the Appendix�

�R� = ��/2�2��b − �h�2�	/��2�L/a�ng
2� �

cell

�r1,r2�

����r1�����r2�dr1dr2, �3�

where the integral runs over the etched surfaces of the unit
cell. All quantities are defined in the Appendix. ng is the
Bloch-mode group index, 	 is the disorder standard devia-
tion, 
�r1 ,r2� is the normalized displacement statistical cor-
relation function, 	2
�r1 ,r2�= ��l�r1��l�r2�� with �l�r� the
local deformation, �b and �h are the relative permittivities of
the etched material and of the etched inclusion, and ���r�
=ET

�1��r� •ET
�1��r�+ ��b�h�−1DN

�1��r� •DN
�1��r�, ET

�1� and DN
�1� be-

ing the normalized tangential electric and normal displace-
ment vectors of the Bloch mode ��1� computed at the oper-
ating point �mainly the Brillouin-zone edge in this work�.
Equation �3� relies on a number of classical approximations
�weak disorder on interfaces only, i.e., no volume disorder,
statistical disorder correlation length smaller than the wave-

guide periodicity� and allows us to define a dimensionless
coefficient �

� = lim
	→0

�R�
�	/��2�L/��ng

2 , �4�

with � given by

� = ��/2�2��b − �h�2��/a�� �
cell


�r1,r2�

����r1�����r2�dr1dr2. �5�

Hereafter, we will be concerned by periodic waveguides
composed of slits or holes. As a statistical disorder, we con-
sider a size disorder model,14,16,17 in which the hole radii �or
the slit width� are randomly varied around their mean value
with a statistical distribution �see Fig. 2�a��. We further as-
sume that distinct etched features �holes or slits� have fully
independent deformations �
�r1 ,r2�=0 if r1 and r2 are rela-
tive to two different holes� even within a single unit cell and
that the correlation is perfect in the vertical direction. De-
pending on the fabrication tool and on the specific wave-
guide geometry, the two last hypotheses may be valid or not.
However, we believe that they are reasonable for many ge-
ometries �such as single-row-defect PhC waveguides or
ridges with slits� that are fabricated by electron-beam writing
and etching techniques. Thus, the normal local deformation
�l�r� becomes constant for every etched feature, �l�r�=�l
with ��l�=0 and ��l2�=	2, and the expression of � in Eq.
�5� becomes

� = ��/2�2��b − �h�2��/a�	
i

�

Si

���r�dr
2

, �6�

which is an incoherent sum over the holes or slits surfaces Si
contained in the unit cell. It is important to have in mind that
Eq. �6� does not take into account multiple scattering. For
small disorders, this approximation is likely to be valid
within a single unit cell; but as photons propagate into the
waveguide over long distances, multiple scattering inevitably
takes place as we should see in Sec. III.

Equation �6� holds for randomly varying hole radii. This
disorder choice is motivated for its simplicity, especially for
comparing our model with fully vectorial calculation results
that can only be obtained for simple local deformations. Ac-
tually, a more realistic disorder model is shown in Fig. 2�b�,
where we introduce the roughness correlation length lc. It is

FIG. 2. Statistical disorder hole model. The local deformation is
denoted �l�r�. �a� Simplified size disorder model �l�r�=�l used in
this work. �b� More realistic model with the roughness correlation
length lc. The relationship between the loss predictions obtained
with the two models is discussed at the end of Sec. II.
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interesting to briefly identify what is the model predictions
for these more realistic deformations; this is straightforward
if one assumes that the Bloch-mode field is nearly constant
all around the hole circumference. Then the incoherent sum-
mation in Eq. �6� takes place over the correlation length and
not over the entire circumference 2�rh as it is the case for
the size disorder model. Consequently, the actual � factor for
the realistic model is found to be 2�rh / lc times smaller than
that obtained with the simplified model, provided that the
same disorder standard deviation 	 is used for the two mod-
els. While it is very difficult in practice to estimate accu-
rately the roughness disorder even with direct measurements,
it is interesting to put realistic numbers. For a W1 PhC wave-
guide with hole radius rh�120 nm �see Sec. IV� and for a
correlation length lc=70 nm, 2�rh / lc�9, implying that our
simplified model overestimates � by almost an order of mag-
nitude. In different words, we could also conclude that the
amount of backscattering that is predicted with the simplified
roughness model for a disorder standard deviation 	
=1 nm actually corresponds to that predicted with the more
realistic model for 	=3 nm. For experiments performed
with periodic waveguides with lengths of several millime-
ters, it is conceivable that neither the simplified disorder
model nor the realistic one strictly applies over the entire
waveguide. Then one may consider the model as a tool to
infer trends that allow comparing different geometries or
technologies rather than as an accurate description providing
absolute values.

III. FROM THE BALLISTIC TO THE LOCALIZED
TRANSPORT REGIMES

In order to verify the validity and the accuracy of Eqs. �4�
and �6�, we have performed 2D calculations for periodic
waveguides �periodicity a=350 nm� composed of slits
etched in a semiconductor �n=3.5� planar slab suspended in
air �see Fig. 3�a��. As a disorder model, we consider that the
slit widths are randomly varied around a mean value ��w�
=150 nm� according to a Gaussian distribution with stan-
dard deviation 	 and that they are all independent. Using the
aperiodic-Fourier modal method �a-FMM�,18,19 we have cal-
culated the Bloch-mode transmittance T= �t�2 and reflectance
R= �r�2 of finite-length waveguide sections in the vicinity of
the first valence band, where vg vanishes and where the fun-
damental Bloch mode is lossless. The a-FMM, a fully vecto-
rial method, is a generalization of Fourier modal methods21

used in grating theories to handle nonperiodic situations by
an artificial periodization via the introduction of perfectly
matched layers18 or of complex nonlinear coordinate
transformations.19 To compute the modal transmission or re-
flection coefficients of the fundamental Bloch mode, we use
the Bloch-mode orthogonality and reciprocity
relationships.20 For the two-dimensional geometries consid-
ered in that section, a large number of Fourier harmonics �we
use 201 harmonics� are retained for the computation and
high accuracy is achieved. The numerical error bar is within
the thickness of the lines used to show the calculated data.
The calculations have been performed for the first conduc-
tion and valence bands and for both TE �E field parallel to

the slit� and TM �H field parallel to the slit� polarizations
�see Fig. 3�b� for details�.

The solid lines in Fig. 4 represent the mean values of the
backscattering �R� averaged over an ensemble of 1000 inde-
pendent random disorder realizations, as a function of the
normalized length L for various ng and 	 values. Figures 4�a�
and 4�b� are obtained for TE polarization and Figs. 4�c� and
4�d� hold for TM polarization. All plots correspond to calcu-
lation performed for the first valence band. In Figs. 4�a� and
4�c�, 	=1 nm and four values of the group index ng=25, 50,

FIG. 3. �Color online� 2D waveguide geometry considered in
this work. �a� Sketched of the geometry composed of air gooves
�width is 150 nm� in a semiconductor �n=3.5� slab membrane �t
=200 nm� in air. The period is a=350 nm. Note that the geometry
is invariant in the x direction. �b� Band diagram of the fundamental
guided mode for TE �solid blue� and TM �dashed red� polarizations.

FIG. 4. a-FMM calculations �solid curves� and model predic-
tions �dashes lines� both show a drastic effect of disorder on back-
scattering. The results are obtained for the periodic waveguide
shown in Fig. 3 and for the first valence band. �a� 	=1 nm for four
values of the group index ng=25, 50, 100, and 200. �b� ng=50 and
	=1, 2, and 5 nm. �a� and �b� hold for TE polarization. �c� and �d�:
same as �a� and �b� for TM polarization. The a-FMM fully vectorial
results for �R� are obtained for slit-width disorders obeying a nor-
mal distribution and are averaged over 1000 independent statistical
realizations of disorders.
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100, and 200 are considered. Figures 4�b� and 4�d� are ob-
tained for ng=50 and for three values of 	, 	=1, 2, and 5
nm. For all curves, the average reflectance first scales lin-
early with the normalized length before saturating, showing
the transition between the ballistic and the diffuse regimes.

The dashed lines represent the linear relationships �R�
=�ng

2�	 /��2 L /�, with the � values computed from Eq. �6�,
�=21 for TE and �=73 for TM. It is noticeable that the
dashed lines represent the slope at the origin L=0 of all the
a-FMM data. In our opinion, this represents a strong evi-
dence of the validity of Eq. �6�, at least for 2D periodic
waveguides, showing that the backscattering loss scales as ng

2

�Ref. 12� and as �	 /��2 in the ballistic regime �R�1 and
T�1�, where the Born approximation is valid.

In Fig. 5, we show the averaged out-of-plane scattering
losses �1-R-T� as a function the normalized length for ng
=50 and for three values of 	, as in Figs. 4�b� and 4�d�.
Again the plots are obtained for the valence bands. The TE
polarization case �Fig. 5�a�� corresponds to a situation for
which the out-of-plane losses are much smaller than the
backscattering loss. In this regime, �1-R-T� scales linearly
with L /� and with ng, letting us suspect that one may define
a coefficient  �similar to �� for the out-of-plane losses,
�1-R-T�=ng�	 /��2 L /�. Within the Born approximation,
the calculation of  requires that the coupling of the incident
guided state ��1� with the continuum of radiation states be
accurately taken into consideration. Although this calculation
can be performed,22,12 it is much more intricate than that of �
and analytical expressions cannot be obtained. For the TM
polarization case �Fig. 5�b��, the out-of-plane losses are sig-
nificantly larger than those obtained for TE polarization. The
photon transport shows an intricate behavior that combines
backscattering and out-of-plane losses. For instance, for 	
=5 nm, Figs. 4�d� and 5�b� evidence that a saturation regime
is obtained for short propagation distances, where �13% of
the incident photons are lost in radiation states while the
other 87% are backscattered. As shown by other computa-
tional data �not shown here for the sake of compactness�, the
relative fractions of photons lost by out-of-plane radiation or
by backscattering in the saturation regime depends on ng and
	 in an intricate way; but the general trend is that as ng
increases, backscattering dominates and �R� tends to 1.22

In all plots, we observe that the averaged backreflection
�R� and the out-of-plane losses �1-R-T� first scale linearly
with L in agreement with Eq. �6�. For large L values, mul-
tiple scattering occurs and both quantities saturate. This char-

acterizes the transition from ballistic to localization trans-
ports, which takes place at typical characteristic lengths
equal to the effective mean-free path �. The latter is im-
pacted both by backreflection and by out-of-plane loss and
can be defined as the length for which �T��1 /2. Neglecting
the contribution of out-of-plane scattering ng�	 /��2, the
mean-free path becomes the length for which �R��1 /2, and
is approximately given by

� = 0.5�/��ng
2�	/��2� . �7�

Note that this expression neglects the out-of-plane losses and
multiple scattering. Thus it only provides an approximate
estimation for �. Actually, this upper bound is found to be
fairly small. For instance, for 	=1 nm and for a moderate
group index of 50, the effective mean-free paths are as small
as 30� and 3� for TE and TM polarizations, respectively.
The ten-fold variation arises from the electric-field distribu-
tion in the slit interfaces. For the first valence band and for
TE polarization, the electric field is strongly localized inside
the ridges and is thus rather weak on the vertical slit inter-
faces. The situation is the opposite for the other polarization
because the electric field is dominantly confined in the air
slits.

IV. THREE-DIMENSIONAL GEOMETRIES

While the numerical results presented so far are obtained
for 2D geometries, the model developed in the Appendix can
be used to study the effects of disorder-induced backscatter-
ing in a variety of waveguide geometries that are essentially
one dimensional �1D� in nature. In our opinion, the coeffi-
cient � that solely depends on the normalized statistical cor-
relation function and on the fundamental Bloch mode is an
important figure of merit that quantifies the effective mean-
free path in periodic waveguides, at least when the radiation
losses are smaller than the backscattering losses. Addition-
ally, � varies as � /a, implying that if one scales all the wave-
guide parameters with the wavelength, � is kept unchanged.
Thus the parameter � allows for a comparison between vari-
ous periodic waveguides. A question arises whether some
specific geometries offer lower backscattering losses than
others. Especially, one may wonder if the single-row-defect
PhC W1 waveguide, which is currently the subject of intense
research in the slow light regime,23–26 offers low backscatter-
ing losses with respect to other periodic waveguides.

To provide a first insight into this question, we have com-
puted the � factor of several periodic waveguides for several
Bloch modes in the first bands. The results are summarized
in Fig. 6. Figure 6�a� is related to a classical W1 waveguide
in a semiconductor �n=3.5� membrane �thickness 220 nm� in
air �hole radius rh=0.3a and periodicity a=420 nm�. As a
disorder model, we assume that only the two hole rows sur-
rounding the single-row defect are perturbed by a random
diameter fluctuation. The W1 waveguide supports three
bands. The upper flat one �with a null group velocity at �
=1.55 �m� corresponds to the classical W1 Bloch mode that
lays within the band gap of the photonic crystal and the two
other bands at lower energies correspond to index-guided
modes. The � of the upper band is found to be 29: a value

FIG. 5. Same as in Figs. 4�b� and 4�d� but for the out-of-plane
losses �1-R-T�. Note the different scales in �a� and �b�. �a�: TE. �b�:
TM.
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comparable to the two other ones. It is important to have in
mind that the two lower band frequencies do not correspond
to monomode operation since PhC bulk modes also exist at
those frequencies. However the first-Born approximation
used to derive the � factor remains valid even for multimode
waveguides, since Eq. �2� solely relies on the forward and
backward propagating modes ��1� and ��−1�. Note that Eq.
�2� applies to all the guided modes and can be used to cal-
culate backscattering into higher-order modes. However,
multimode operation impacts backscattering into the funda-
mental mode as shown in Ref. 11 for z-invariant waveguides;
but analyzing this effect requires to go beyond the first-order
Born approximation and to consider multiple-scattering situ-
ations, for which photons are first scattered into higher-order
modes and then backscattered into the fundamental mode.
This is beyond the scope of the present work.

We have also performed calculations in two dimensions
for the same geometry using an effective index of 2.83 for
the refractive index of the semiconductor and a magnetic
polarization parallel to the PhC cylinder y axis. The effective
index value was chosen so that the cut-off frequency of the
W1 waveguide at the edge of the first Brillouin zone matches
that of the 3D structure. The calculated � values are similar
to those obtained with the 3D calculations ��=36 instead of
29 for the upper band�, showing that 2D calculations are
quantitatively accurate although they do not take into ac-
count the electric-field component that is parallel to the cy-
lindrical hole axis.

Figure 6�b� is related to a semiconductor �n=3.5� periodic
nanowire �width is 500 nm and height is 340 nm� in air, with

a hole radius rh=0.34a. The bands correspond to Bloch
modes predominantly TE polarized �like in the W1�. The
periodicity has been chosen equal to a=335 nm so that � is
equal to 1.55 �m at the Brillouin-zone edge of the valence
band. As for the planar waveguide with slits in TE polariza-
tion, we found that the � value associated to the valence band
is significantly smaller than that of the conduction band. The
calculation of the � values is obtained, as previously, by
assuming a hole-diameter disorder model. The � value of
212 calculated in the first valence band is significantly larger
than that obtained for the W1 waveguide. Similar calcula-
tions have been performed for smaller holes �r=50 nm�, and
a significant lowering of the � factor for the valence band
��=5� has been obtained. This reduction is also accompanied
with a lowering of the band-gap width that becomes compa-
rable to that obtained for the W1 waveguide in Fig. 6�a� for
the two lower branches.

It is interesting to compare the model prediction for W1
waveguides with experimental results obtained at telecom
wavelengths ��=1.55�. In Ref. 13, transmission measure-
ments performed for different lengths �from 100 �m to 1
mm� by the cut-back method have shown that for moderate
group velocities ng=40, the total transmission loss are as
large as �=800 dB /cm. Assuming that the total attenuation
is predominantly due to backscattering and that the transmis-
sion is given by exp�−�ng

2�	 /��2L /�� in the localization
regime,27 we obtain 	=1.3 nm by equaling −�ng

2�	 /��2L /�
and � for �=29 and ng=40. We regard the 	 value to be
physically reasonable, although it is likely to slightly under-
estimate the actual disorder standard deviation 	=3–4 nm,
as inferred in Ref. 13 from scanning electron microscopy
�SEM� pictures. But we believe that our underestimation of
the disorder level basically results from the specific hole size
disorder model we use �see the previous discussion at the
end of Sec. II�. In addition, it is important to realize that the
loss measurements in Ref. 13 are performed in the multiple-
scattering �localized transport� regime for propagation
lengths much larger than the mean-free path. For this regime,
the Born approximation is no longer valid and the intricate
interplay between out-of-plane and backscattering losses �see
Figs. 4�d� and 5�b�, for instance� are likely to render our �
analysis too simplistic. More studies are necessary to under-
stand the transport properties in the localization regime.

V. CONCLUSION

Through a perturbative approach, we have derived a uni-
versal coefficient � that quantifies the amount of backscatter-
ing in periodic waveguides. This coefficient, which solely
depends on the statistical disorder model and on the slow
Bloch-mode field distribution, can be easily calculated with
presently available software. The model predictions have
been quantitatively checked �Fig. 4� against fully vectorial
computational results obtained for 2D periodic waveguides
composed of slit arrays in slab waveguides. Quantitative
agreements have been obtained for all bands and for short
propagation distances, showing the validity of the model at
least in two dimensions.

The performance of 3D single-row-defect PhC
W1-waveguides has also been analyzed �Fig. 6�. Due to the

FIG. 6. �Color online� � coefficients obtained for 3D periodic
waveguide geometries and for various band edges at k=� /a. �a�
W1 waveguide in a semiconductor �n=3.5� membrane �thickness
220 nm� in air �rh=0.3a and a=420 nm�. �b� Air-wire semiconduc-
tor waveguide �width is 500 nm; height is 340 nm� with rh

=0.34a=114 nm and a=335 nm. Similar calculations have been
performed for rh=50 nm and much smaller values for � have been
obtained ��=5 and 396 for the valence and conduction bands,
respectively�.
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side-located periodic holes, the backscattering losses in that
waveguide are slightly smaller than those achieved for peri-
odic waveguides with similar confinements and with fully
centered holes. The gap-guiding mechanism that is a unique
property of PhC waveguide does not appear to be crucial in
the context of extrinsic losses, at least for small group ve-
locities.

In all our simulations, we have found that backscattering
due to imperfections is fairly drastic. Although the � coeffi-
cient of W1 waveguides appears modest in comparison to
those of other waveguides, it is found that the mean-free path
�see Eq. �7�� of these waveguides at telecommunication
wavelengths is only 25 �m �60 periods�: a value that holds
for state-of-the-art manufactured waveguides �	=1 nm� and
for ng=50. This corresponds to a very small group delay ��
=�ng /c� of only 5 ps. Thus one may be inclined to operate
W1 waveguides for propagation lengths that are larger than
the effective mean-free path, as it is often the case in experi-
mental situations.13,26 Backscattering losses �as well as out-
of-plane diffraction that has not been considered here� may
then become prohibitive. But more importantly for signal
processing, one should expect a drastic pulse broadening be-
yond the ballistic regime: in the localized regime, the es-
sence of the energy transport is multiple scattering and the
transmitted light experiences many backward and forward
reflections as it propagates.
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APPENDIX

In this appendix, we develop a modified Born approxima-
tion to derive a semianalytical expression for the backscat-
tered intensity in the weak perturbation regime. Figure 1 is
related to light scattering in a periodic waveguide with im-
perfections. The waveguide is formed by air holes in a semi-
conductor background. Within a given section of length L,
the waveguide is assumed to be perturbed by fabrication er-
rors. Figure 7 shows an example of an exaggerated perturba-
tion, where a circular air ��h=1� hole in the semiconductor
��b=3.5� background is deformed. The local deformation de-
fined on the hole interfaces at position r is denoted by �l�r�.
The deformation defines two different regions with positive
�� ��l�0� and negative �� ��l�0�. With up-to-date nano-
fabrication facilities, roughness and disorder are in the nan-
ometer range, while typical Bloch confinements are of the
order of the wavelength. Thus, with a good approximation,
the perturbed regions can be all considered as infinitely small
surfaces and by assuming that the electromagnetic fields are
locally constant within the deformation thickness �static
limit�, the volume integral over the perturbed regions in Eq.
�2� can be replaced by a surface integral over all the hole

interfaces contained in the perturbed section of length L

r = − ��/4���b − �h�� dr�l�r�E�1��r� • E�r� , �A1�

where E�1��r� and E�r� are defined on the interface.
Referring to Eq. �A1�, the first-order Born approximation

merely consists in replacing the unknown perturbed electric
field E�r� by the fundamental Bloch-mode �unperturbed�
field E�1��r�. However, this replacement has to be handled
with caution. At a position r corresponding to a positive �l,
the unknown perturbed field E�r� is well approximated by
the unperturbed Bloch-mode electric field E�1��r� calculated
on the outer boundary of the hole; a quantity that we further
denote by E�1,out�. Similarly, for r in a region with �l�0,
E�r� is approximated by the fundamental Bloch-mode field
E�1,in� calculated on the inner boundary of the hole. In both
cases, �l�0 or �l�0, the product E�1��r� •E�r� in Eq. �A1�
is equal to E�1,in��r� •E�1,out��r�. The relevancy of this non-
standard replacement is easily understood if one considers
that the unknown field E�r� is approximately given by the
fundamental Bloch mode of every perturbed cell. As we have
checked with fully vectorial computational results for the
backscattering R of perturbed waveguides in two dimen-
sions, this replacement that leads to a nonstandard Born ap-
proximation increases the numerical accuracy of the model
predictions.17

Thus for tangential electric-field components that are con-
tinuous across the surfaces, E�1,out��r�=E�1,in��r�=ET

�1��r� and
E�r� •E�1��r� is simply given by E�1��r� •E�1��r�. For normal
electric-field components that are discontinuous across the
interfaces, �bE�1,out��r�=�hE�1,in��r�=DN

�1��r�; DN
�1� being the

displacement vector of the fundamental Bloch mode.
E�r� •E�1��r� then reduces to ��b�h�−1DN

�1��r� •DN
�1��r�. To

summarize, within the limit of small perturbation regions,
the modified Born approximation results in

r = − ��/4���b − �h�� dr�l�r���r� , �A2�

where the integral runs over the dielectric interfaces �e.g., the
unperturbed hole boundaries� and the complex number � is
given by

FIG. 7. Modified first-order Born approximation leading to Eq.
�A2�. The three main quantities �l�r�, E�1��r�, and E�r� in Eq. �A1�
are all defined for the regions with positive and negative ��.
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��r� = ET
�1��r� • ET

�1��r� + ��b�h�−1DN
�1��r� • DN

�1��r� .

�A3�

In Eq. �A3�, ET
�1� �respectively, DN

�1�� refers to the tangential
�respectively, normal� components of the Bloch-mode elec-
tric �respectively, displacement� fields. Note that a related
tensor description of roughness has been used in Refs. 14
and 17.

The mean reflectance �R� of the perturbed section of
length L is then easily derived from Eq. �A2�, and assuming
that �l is null on ensemble average, one gets

�R� = ��/4�2��b − �h�2	2� � 
�r1,r2���r1����r2�dr1dr2,

�A4�

where each integral runs over the perturbed interfaces. In Eq.
�A4�, 
�r1 ,r2� represents the normalized displacement cor-
relation function defined by 	2
�r1 ,r2�= ��l�r1��l�r2��, with
� � a notation for ensemble averages. Hereafter, we assume
that the disorder displacements induced by the fabrication
errors are independent from one unit cell to the other �in the
main text, we will further assume that the �l’s of distinct
holes within a single cell are also independent�. Within this
reasonable hypothesis �see main text�, Eq. �A4� becomes

�R� = ��c/2�2��b − �h�2�	/��2�L/a�� �
cell


�r1,r2�

���r1����r2�dr1dr2, �A5�

with a being the waveguide period. The contribution of ev-
ery cell adds incoherently on average and the mean back-
scattering scales linearly with the waveguide-section length

L. Equation �A5� that neglects multiple-scattering processes
provides a semianalytical expression for the averaged back-
scattering. The latter solely depends on the Bloch mode of
the unperturbed waveguide through ��r� and on the displace-
ment correlation function of the statistical disorder through

�r1 ,r2� defined within one cell.

Equation �A5� applies to any Bloch mode at any point in
the dispersion diagram �� ,kz�. To analytically explicit the vg
dependence of �R�, we must consider a Bloch mode with a
small group velocity vg in the vicinity of an operating point
where vg vanishes, for instance, at the Brillouin-zone edge.
Let us define by E�1� and H�1� the Bloch-mode electric and
magnetic fields at vg=0 normalized such that �cell���E�1��2
+��H�1��2�dr=4a. Because any Bloch mode with a unitary
transverse power flow satisfies �cell���E�1��2+��H�1��2�dr
=4a /vg �Ref. 20�, ET

�1� or DN
�1� in Eq. �A3� can approximately

be written as ET
�1�= �vg�−1/2ET

�1� or DN
�1�= �vg�−1/2DN

�1�, showing
that the Bloch-mode electric and magnetic fields scale as
�vg�−1/2. Therefore, in the limit of small disorders and small
vg’s, we obtain

�R� = ��/2�2��b − �h�2�	/��2�L/a�ng
2� �

cell

�r1,r2�

����r1�����r2�dr1dr2, �A6�

where ���r�=ET
�1��r� •ET

�1��r�+ ��b�h�−1 DN
�1��r� •DN

�1��r� is de-
fined for the scaled fields calculated at the operating point in
the dispersion diagram, essentially the Brillouin-zone edge in
this work. Note that the last approximation leading to Eq.
�A6� is not strictly necessary for our analysis and that Eq.
�A5� is more accurate for large vg values. However, Eq. �A6�
that requires only a single Bloch-mode calculation at some
operating point of interest allows explicitly emphasizing the
group-velocity impact on the backscattered intensity.
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