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Collective diffusion coefficient in a two-dimensional lattice gas on a nonhomogeneous substrate is investi-
gated using variational approach. In our model particles reside and jump randomly between adsorption sites
modeled as potential wells with different depths. Site blocking is the only allowed particle-particle interaction
mechanism. It is shown that the value of the diffusion coefficient in one lattice direction depends nontrivially
on the rate and the character of the particle jumps in other directions. The collective diffusion coefficient
increases, eventually approaching values predicted within the mean-field approximation when the jump rate
increases in the direction perpendicular to that in which the diffusion coefficient is measured. Analytical
predictions of our model are supported by the Monte Carlo simulation performed for selected systems.
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I. INTRODUCTION

Particle diffusion processes on a lattice play a decisive
role in various physical phenomena of both fundamental and
technological interests. Thermally activated particle jumps
between adsorption sites are the fundamental microscopic
processes resulting in diffusion. Geometry of the adsorption
sites lattice and a topology of the potential-energy surface, as
seen by the jumping particle, depend on a type of the sub-
strate lattice, direction in which the crystal is cut, chemical
properties of adsorbed particles and those of the substrate,
and interactions among all of them. A topology of the
potential-energy surface and its role in particle diffusion for
substrates of various geometries have been the subject of
intensive studies.1

Measurements show that diffusion over surfaces which
are anisotropic, such as fcc �110�, fcc �311�, fcc �331�, bcc
�211�, or bcc �321� is also anisotropic.1 The above surfaces
have a striped structure. For such surfaces when particle
jumps across rows are blocked the diffusion has a one-
dimensional �1D� character. For some systems, however,
rates of jumps across rows may be higher than those along
rows. Therefore for surfaces of the same geometric type,
depending on the chemical properties of the substrate and the
adsorbate, i.e., depending on the ratio of jump rates along
mutually perpendicular directions, we may observe anything
from truly �1D� diffusion to “mean-field” diffusion in which
jumps in one of two perpendicular directions dominate. In
the intermediate regime diffusion is genuinely two-
dimensional �2D�.

As long as we can treat particles as independent, such as
in diluted systems, a collective diffusion behavior can be
described in terms of a single-particle diffusion, i.e., diffu-
sion of a collection of independent particles. When, however,
particle-particle interactions come into play, collective diffu-
sion in a many-particle system may drastically depart from
this behavior.2–7 The most striking example is that in which
the system undergoes an ordering transition due to the inter-
actions within the adsorbate,8–13 but even when the interac-
tions are limited to merely preventing double occupations of
adsorption sites the dynamical behavior within the many-

particle system has interesting properties which cannot be
understood in terms of jumps of independent particles. It is
well known14 that as long as the underlying substrate lattice
is homogeneous the site blocking alone does not affect col-
lective diffusion and the diffusion coefficient remains inde-
pendent of an adsorbate density. When, however, adsorption
sites are not equivalent, collective diffusion does depend
strongly on the adsorbate density even in the absence of in-
teractions other than the site blocking.15–22

Adsorption sites may be nonequivalent due to interactions
with the substrate23,24 or because the surface is stepped.25,26

In this work we discuss the collective diffusion in 2D sys-
tems in which interactions are limited to the site blocking
only, but the local site potential-energy landscape changes
from site to site, i.e., when the underlying substrate is not
homogeneous. The inhomogeneity is modeled here in terms
of Schwoebel barriers.25,26 Mean-field treatment of the col-
lective diffusion in a Schwoebel barrier system were pro-
posed by Merikoski and Ying.15,16 Series of Monte Carlo
simulation results were reported by Masin et al.,17 and theo-
retical mean-field analysis of these results, based on an ap-
proach balancing nonequilibrium particle fluxes in opposite
directions, are due to Chvoj et al.20

We have shown recently that a developed variational ap-
proach to collective diffusion in Refs. 13, 22, and 27–31
provides a very efficient and systematic method of describ-
ing collective diffusion in inhomogeneous 1D systems. In
this paper we extend the analysis from Ref. 22 to a class of
two-dimensional systems. We demonstrate that the diffusion
is not a simple superposition of one-dimensional collective
diffusions in two main directions of the lattice. Whereas the
diffusion coefficient of a single particle/single hole over such
a lattice �a limit approached at low/high densities, respec-
tively� always factorizes so the diffusion coefficients in both
directions can be calculated independently, this is no longer
the case in a many-particle system in which the site blocking
alone induces dynamical correlations between jumps in dif-
ferent directions. Properly selected variational parameters
lead to expressions for the collective diffusion coefficient
which nontrivially depend on all present in the model jump
rates in all directions. When for different systems considered
the rate of jumps in one direction varies from zero to infinity,
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the resulting diffusion coefficients in perpendicular direction
evolve from effectively 1D of Ref. 22 to the 2D mean-field
theory result of Refs. 15 and 16. In fact, only in these two
extreme cases the diffusion coefficient depends only on the
jump rates in the diffusion direction.

We compare here the diffusion coefficients for an adsor-
bate on a surface with striped structure with that on a check-
ered anisotropic one. For both these structures we have the
same 1D and the mean-field limits for the adsorbate density
dependence of the diffusion coefficient. They differ, how-
ever, for all finite values of the jump rate in the direction
perpendicular to the one in which the diffusion coefficient is
measured. In case of the striped structure the diffusion pro-
ceeds on a surface with rows, such as fcc �110�, which due to
the interactions with the substrate have several nonequivalent
adsorption sites. For the checkered structures, such as
NaCl�100� surface, every second site in both principal direc-
tions is different. For either system the particle migration
processes in two mutually perpendicular directions are
coupled to each other due to stochastic site blocking even if,
at a microscopic level, the particle jumps in each direction
are independent of each other. Applying the variational
approach22 to properly tailored model, we obtain simple ana-
lytical expressions for the adsorbate density-dependent col-
lective diffusion coefficients. Our approach allows one not
only to interpret correctly the role played by kinematic cou-
pling of particle jumps in different directions but also offer
the possibility to compare analytic results with those of the
Monte Carlo simulations performed for the same model sys-
tems.

The model and the variational approach to collective dif-
fusion are summarized in Sec. II. It is applied to the striped
and checkered substrate lattices in Secs. III and IV, respec-
tively. Comparison with the results of the Monte Carlo simu-
lations for selected systems is presented in Sec. V, followed
by brief conclusions in Sec. VI.

II. MODEL

A system of N particles forming an adsorbate is distrib-
uted over a two-dimensional nonhomogeneous substrate. We
treat diffusion within the adsorbate using a kinetic lattice-gas
model. Basic assumptions are standard: kinetics of the mi-
crostates of the lattice gas is due to the stochastic hopping of
particles to neighboring sites, only one particle in the gas
hops at any given instant, an average residence time of par-
ticles at the adsorption sites is much longer than the transit
time between the sites, and the transition rates of these hops
depend on the potential-energy landscape experienced by the
hopping particle. Thus, particles jump between neighboring
sites provided the target site is unoccupied with the hopping
rates that depend on the type of the site which the particle
jumps from. The time evolution of this system is governed
by the set of Markovian master rate equations for the prob-
abilities P��c� , t� that a microscopic microstate �c� of a lattice
gas occurs at time t,

d

dt
P��c�,t� = �

�c��

�W��c�,�c���P��c��,t� − W��c��,�c��P��c�,t�� .

�1�

�c� is understood as a set of variables specifying which par-
ticular sites in the lattice are occupied and which are not.
W��c� , �c��� is a transition probability per unit time �transi-
tion rate� that the microstate �c�� changes into �c� due to a
jump of a particle from an occupied site to an unoccupied
neighboring site. The rates W satisfy the detailed balance
conditions;

W��c�,�c���Peq��c��� = W��c��,�c��Peq��c�� . �2�

Here, Peq��c�� is the equilibrium probability of a configura-
tion �c�. In the absence of interparticle interactions the rate
depends only on the local potential-energy landscape experi-
enced by the hopping particle. For thermally activated jumps
it depends on the difference between the potential energy of
the particle at the top of the potential-energy barrier between
the sites involved and that at the initial site.

In order to investigate how the collective diffusion coef-
ficient in a given direction is controlled by the particle jumps
and the geometry of the lattice in the direction perpendicular
to it, we analyze diffusion over two types of two-dimensional
lattices, as shown in Figs. 1 and 2. They consist of periodi-
cally repeated patterns of site potentials and intersite barriers.
Elementary cell of the striped lattice �Fig. 1� is 2�1: there
are two nonequivalent sites along x axis, and all sites are
identical along y axis. The checkered lattice has a ��2
��2�45° elementary cell with two nonequivalent adsorption

(b)(a)

FIG. 1. �Color online� Potential geometry and jump schema in
the system with striped substrate lattice.

(a) (b)

FIG. 2. �Color online� Potential geometry and jump schema in
the system with checkered substrate lattice.
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sites but is more convenient to consider a larger 2�2 “peri-
odic” cell with two pairs of such sites in it. In general, for
either structure, we have nx�ny periodic cells repeating Lx
and Ly times in the x and y directions, respectively, i.e., the
directions along which the elementary jumps between the
nearest sites are only possible. The potential energy at the top
of all barriers between the sites is assumed to be the same.
Therefore, the system under study is a 2D box of Lx�Ly unit
cells containing Lxnx�Lyny sites. Periodic boundary condi-
tions are assumed, and eventually, thermodynamic limit
Lx ,Ly→�, with the adsorbate density kept constant, is taken.

We employ the variational approach to extract the diffu-
sion coefficient from Eq. �1�.22,27–30 To this end, microscopic
states of the systems need to be properly parametrized. Fol-
lowing Ref. 27 we identify a microstate �c� by selecting one
particle as a reference particle and specify positions of all

remaining N−1 particles with respect to it. Position X� +al�0 of
the reference particle in systems with nonequivalent sites is

specified using two variables:22 �i� position X� of the periodic

cell in which it resides and �ii� position al�0 within the cell.

For two-dimensional systems X� and l�0 are vectors with two
components and a is a distance between the adsorption sites
referred to as a fractional lattice constant in what follows.
Then a microstate �c� may be identified by the following set
of 2�N+1� numbers:

�c� = �X� ;��0:m� 1,m� 2, . . . ,m� N−1� 	 �X� ;�m� �� , �3�

where m� j = �mx ,my� j is a pair of integers indicating how far,
in units of the fractional lattice constant a, the jth particle
�j=1,2 , . . . ,N−1� is away from the reference particle. The

set of 2N integers, �m� �= ���0 :m� 1 ,m� 2 , . . . ,m� N−1�, is referred to
as a configuration, which accounts for the relative arrange-
ment of particles in a given microstate �c�. The transition rate
between two microstates depends on their configurations
only, i.e., W��c� , �c���	W�m� �,�m� ��. This allows us to take an
advantage of the lattice periodicity by taking a lattice Fourier
transform,

P�m� ��k�,t� = �
X�

eik�X� P�m� ��X� ,t� , �4�

of both sides of the rate �Eq. �1��. P�m� ��X� , t� stands here for

P��c�= �X� ; �m� �� , t�. It is convenient to treat P�m� ��k� , t� as an
�m� �th component of a one-column array P�k� , t� with a mac-
roscopic number of components—each component corre-
sponds to an admissible microscopic configuration of the
system. The Fourier-transformed rate equations can be writ-
ten in a compact form,

d

dt
P�k�,t� = M�k�� · P�k�,t� , �5�

where “·” denotes multiplication following usual “rows times
columns” multiplication rules. The matrix elements of M�k��
�referred to as the rate matrix from now on� are, in general,
expressed in terms of the rates W�m� �,�m� ��, except for �m� to
�m�� transitions involving a jump of the reference atom
across a boundary between neighboring elementary cells. For

such jumps elements of M are multiplied by an additional k�
dependent factor exp��kxnx� or exp��kyny�. For details of
the matrix M properties and the derivation of all formulas see
Refs. 22 and 27–30.

Eigenvalues of the rate matrix which are always negative
account for the temporal decay of a k�th Fourier component
of a density fluctuation from equilibrium. The eigenvalue
vanishing such as 
k�
2 in the long-wavelength limit, −�D�k��,
is referred to as a diffusive eigenvalue and yields the collec-
tive diffusion coefficient. The corresponding eigenvector of
M�k�� is referred to as the diffusive eigenvector. This eigen-
value is estimated calculated on using variational principle,22

�D
var�k�� 	

�̃ · �− M�k��� · �

�̃ · �
� �D�k�� = − D
k�
2, �6�

where �̃ is a trial �variational� left eigenvector, possibly k�
dependent and containing appropriate variational parameters
to be determined by minimizing �d and � is the correspond-
ing right eigenvector with components,

��m� � = P�m� �
eq �̃�m� �

� . �7�

Here, P�m� �
eq is an equilibrium probability of a configuration

�m�—it is a component of a right eigenvector of M�k� =0�
corresponding to its zero eigenvalue.

For a nonhomogeneous substrate, we propose, following
Ref. 22, that the trial left eigenvector has �m� �th component
equal to a sum of phase factors associated with all occupied
sites in the configuration �m� �;

�̃�m� ��k�� = eik�a�����0
+�� ��0

� + �
j=1

N−1

eik�a�m� j+���� j
+�� �� j

�. �8�

The phase contributed by the jth particle is determined not
only by its distance am� j from the reference particle �it is a
sole contribution to the phase for a homogeneous system�. It

receives two additional distinct contributions ���� j
= ��x�� j

,�y�� j
�

and �� �� j
= ��x�� j

,�y�� j
� which play a role of the variational pa-

rameters allowing us to minimize �D
var�k��. Both depend on the

position a�� j within a periodic cell of the site at which the jth
particle resides. The first one, ��� j

, called the geometrical
phase, accounts for an inhomogeneity at the substrate within
a periodic cell and does not depend on the presence of other
particles in the system. It is always possible to select one
particular site �the same within each periodic cell� which, if
occupied, contributes the geometrical phase �0=0. The other
phase, ��� j

, called the correlational phase, is introduced to
account for correlations between the jth particle and all the
remaining ones, and in principle, it depends on the state of
occupation of all sites in the system. Following previous
work22 we assume that it is sensitive to the occupation of

sites nearest to �� j only. Thus correlational phases ��� j
, asso-

ciated with a pair of particles at ��xj −1,��yj and �� j =��xj ,��yj,
will appear in all equations as a sum of contributions to the

phase of the particle at the position �� j due to its left neighbor
and of the phase of the particle at the position �xj −1,�yj due
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to its right neighbor �� ��xj
=�� �xj−1,�yj

R +�� �xj�yj

L . Similarly the

phase �� ��yj
appears with neighbors along direction y. Differ-

ent phases associated with particle pairs are additive. Sum-
marizing: a phase related to each particle in the system de-
pends on �i� the distance of the particles from the reference
particle, �ii� an address within the periodic cell of the site
which it occupies �geometrical phase�, and �iii� the state of
occupation of the sites adjacent to it �correlational phase�.

Periodic boundary conditions in two dimensions imply in
the wave-number �k�� domain that the conditions,

eikxanxLx = 1, eikyanyLy = 1, �9�

must be used in the calculations before the long-wavelength
limit 
k�a
2	1 is applied �recall, Lx and nx are the number of
periodic cells and the number of sites within the cell, respec-
tively, along x�.

We see from Eq. �6� that the diffusion coefficient Dvar is a
ratio,

Dvar = −
�D

var


k�
2
=

M�k��

N�k��
k�
2
, �10�

of the “expectation value” numerator,

M�k�� = �
�m�,�m��

no rep

P�m��
eq

W�m�,�m��
�̃�m��
� �k�� − �̃�m�

� �k��
2, �11�

to the “normalization” denominator,

N�k� = �
�m� �

P�m� �
eq 
�̃�m� ��k��
2. �12�

Equations �7� and �8� have been used to get the final expres-
sion for the numerator in Eq. �11�. Due to the detailed bal-
ance condition �2� each term in Eq. �7� corresponds to a pair
of configurations ��m� � , �m� ��� for transitions from �m� �� to �m� �
and back. Each such pair should then appear in the sum only
once �as indicated by the comment “no rep” above the sum
in Eq. �11�� in order to avoid double counting. In fact, it was
shown in Ref. 22 that the dependence of the diffusion de-

nominator N�k� on variational parameters, ���j
and �� �j

, can
be ignored in the long-wavelength limit and that

lim
k→0

N�k� = �N� ��
��
� ln �


T
�−1

	 �N2� − �N�2. �13�

Here � is the chemical potential and 
= �kBT�−1 is usual
thermodynamic parameter for a system of temperature T.
The diffusion denominator reduces to the square of the par-
ticle number fluctuation in the system, whereas the numera-
tor M�k� depends on the details of particle dynamics and on
all variational parameters of the model.

III. STRIPED LATTICE

Let us consider first the striped lattice shown in Fig. 1. It
consists of rows of sites, with alternating deep and shallow
potential-energy minima. Transition rates of jumps along x
are Wd= exp�−
Ed� for a jump from a deep well and Ws

= exp�−
Es� for a jump from a shallow well. Energies Ed
and Es are activation energies for a jump out of deep and
shallow potential minima, respectively, and  measures an
attempt frequency of these jumps. All jumps along y axis
have the same rate V= exp�−
Ev�, depending on the acti-
vation energy Ev. A ratio r=Wd /Ws=exp�−
�Ed−Es�� be-
tween both rates along x axis depends on the difference of
the site energies. It is the only parameter which determines
the equilibrium properties of the system at a given density of
particles. With the site blocking interactions, preventing
double site occupation, the mean equilibrium densities are

�s =
r exp�
��

1 + r exp�
��
�14�

for the shallow and

�d =
exp�
��

1 + exp�
��
�15�

for the deep sites. The chemical potential � determines the
total particle density �= ��s+�d� /2, understood as a fraction
of adsorption sites that are occupied, and �s and �d are, re-
spectively, the mean occupation numbers for the shallow and
the deep well sites. The denominator N�0� given by Eq. �12�
in the limit �
k�
a�2→0 depends only on the equilibrium prop-
erties of the system. With no interactions other than the site
blocking we have

N�0� = �s�1 − �s� + �d�1 − �d� . �16�

In order to derive the numerator M�k��, given in Eq. �11�,
we use variational vector �̃�m��k�� �Eq. �8��. There are four
types of different jumps for particles in the striped lattice:
from deep to shallow site and from shallow to deep site
along the x axis and between two deep sites or between two
shallow sites along the y axis. The sum in Eq. �11� contains
a macroscopic number of terms. Grouping the terms with the
same jump rate is done by surrounding two sites between
which the hopping occurs by “correlated” sites whose occu-
pation state affects both the hopping rate and, more impor-
tantly, values of geometrical and correlational phases to be
used. Such a cluster of sites, termed as an active cell, con-
tains in our case eight sites, out of which six may be in any
occupation state. This results in 26 phase terms in the sum
which are multiplied by the same jump rate. Adding these
phase terms is a relatively straightforward matter, particu-
larly in the long-wavelength limit, because of the symmetri-
cal arrangement of sites within the active cell. The number of
different variational parameters to be determined is signifi-
cantly reduced due to symmetry. Thus, selecting a deep well
site as a reference for geometrical phases we can set the
geometrical phase due to a particle residing at a deep well
site to be zero, �d

S=0. This leaves only one geometrical
phase, �s

S, due to a particle in a shallow well site which,
however, also vanishes for the substrate with potential ener-
gies of all barriers being the same. Due to the same reason,
all correlational phases are either �x

S or −�x
S for a particle in

a shallow potential well with the neighboring deep well site
to its right/left occupied. For the particle residing in the deep
site well the corresponding correlational phases are −�x

S and
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�x
S. The correlational phases corresponding to the direction

along y are zero because the substrate is homogeneous along
this direction. With all that, components of a trial eigenvector
are

�̃�mj�
�k�� = �

j=1

N−1

eikxa�mxj+�xj
S �+ikyamyj , �17�

with �y
S=0, �s

S=�d
S=0 and �xj

S equal to either ��x
S or zero

depending on the occupancy of neighboring sites. After solv-
ing the variational equation minimizing M�k�� we get

�x
S =

Ws − Wd

Ws + Wd + V
, �18�

resulting in the expression for the diffusion coefficient along
the x direction,

Dx
S = a2 2Ws

Ws + Wd + 4V
� Wd +

4V�s�1 − �d�
�s�1 − �s� + �d�1 − �d��

�19�

while for the y direction we get

Dy
S = a2V . �20�

The adsorbate density dependence of the diffusion coeffi-
cient Dx

S��� for a striped substrate lattice is plotted in Fig. 3
�dashed lines�.

Setting V=0 in Eq. �19� we get

Dx
1D = a2 2WsWd

Ws + Wd
, �21�

which is the result for the diffusion coefficient in 1D system
with alternating shallow and deep potential well sites, ob-
tained in Ref. 22. In this limit diffusion does not depend on

the adsorbate density, as illustrated by the lowest line in Fig.
3. For all nonzero values of V, however, the diffusion coef-
ficient along x axis depends on the adsorbate density �. This
dependence changes as the jump rate along y direction, V,
varies. While the diffusion coefficient due to a migration of
an isolated particle ��→0� or hole ��→1� remains the same
no matter what the jump rate along the y direction is, the
diffusion coefficient values for intermediate densities in-
crease with increasing V. In the limit V→�, on the other
hand, we get

Dx
inf = a2 2Ws�s�1 − �d�

�s�1 − �s� + �d�1 − �d�
, �22�

which reproduces exactly the result for the collective diffu-
sion coefficient obtained in the mean-field approximation in
Refs. 15 and 16.

We can see that V the rate of the jumps along y axis
controls the character of the density dependence of the dif-
fusion coefficient. With increasing V we observe a smooth
transition from a purely one-dimensional to the mean-field
behavior. While the former limit is obvious, the latter one
can be understood in such a way that a particle, capable of a
fast travel along y axis, detects mean-field occupation of the
neighboring site and instantaneously adjusts to it.

The character of the density dependence of the diffusion
coefficient depends strongly on the ratio r of rates from the
deep and shallow sites along the direction under study. In
Fig. 4 we show how the diffusion changes with r. The jump
rates along y axis increase with decreasing r such as V
=Wd /�r, slower than the quicker of two rates along x, Ws
=Wd /r. We see in Fig. 4 that with such a choice of param-
eters, the curves become higher and steeper as r decreases,
approaching to the limiting behavior in which diffusion co-
efficient has value D=2Wd for all densities except at a one
discrete point of �=0.5 for which D=6Wd.

To illustrate the consequences of the transition from 1D to
2D character of dynamics for a striped substrate lattice, we
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/(

W
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θ

r=0.01
Mean field

Vd=10Wd

Vd=3Wd

Vd=Wd

Vd=0.1Wd

Vd=0

FIG. 3. �Color online� Adsorbate density dependence of the col-
lective diffusion coefficient Dx��� on a striped �dashes� and a check-
ered �solid lines� substrate lattices. Jump rates along y direction on
striped lattices are related to the jump rates on checkered lattices for
the corresponding diffusion curves like V=�VdVs=Vs

�r. The lowest
line corresponds to 1D case, V=Vs=Vd=0. The topmost line for
V=Vs=Vd→� reproduces the mean-field result from Refs. 15 and
16.
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FIG. 4. �Color online� Adsorbate density dependence of the col-
lective diffusion coefficient Dx��� on a striped substrate lattice for
different values of r �defined above Eq. �14��. The jump rate along
y direction is equal to the geometrical mean value of rates in x
direction V=Wd /�r.
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have calculated the effective activation energy EA�T ,�� de-
fined as follows:

D = e−
EA. �23�

An expression for EA may be obtained by differentiating a
logarithm of D �Eq. �19�� with respect to 
. For an arbitrary
� it results in a rather complicated expression, but it simpli-
fies for �=0.5 considerably,

EA�T,� = 0.5� = Ed + �2Ev − Es − Ed�
Vr1/2

Wd + 2Vr1/2

+ ��Ed − Es�Wd + 4�Ev

− Es�V�
r

Wd�1 + r� + 4Vr
, �24�

in which T enters through V and Wd. In Fig. 5 we see the
dependence of EA on the temperature T for several values of
�v=Ev−Ed, the difference between actual activation ener-
gies for jumps along and across rows and a typically
reported1,3,19,23 activation energy difference Ed−Es
=0.05 eV for jumps from the deep and shallow well along x
direction. The parameter �v is positive when jumps are
slower across than they are along the rows and negative
when jumps across the rows are quicker. The dotted line
shows the temperature dependence of activation energy for
an independent particles diffusion ��=0� at the same surface.
Diffusion coefficient along the x direction for the indepen-
dent particles does not depend on the rate V and is equal to
the collective diffusion coefficient in a 1D case. In Fig. 6 we

show EA�T=100 K,�� as a function of the surface coverage
at T=100 K. In general, the observed activation energy de-
pends on both the temperature and the coverage.

IV. CHECKERED LATTICE

Let us now consider a checkered substrate lattice which
has the same structure in both x and y directions. We assume
that the potential energy at every second adsorption site in
either direction is the same, i.e., the shallow and the deep
adsorption sites alternate along both directions �see Fig. 2�.
Jumps rates out of the shallow sites in x direction are given
by Ws= exp�−
Es� and those in y directions are given by
Vs= exp�−
Es

V�, with the jump rates out of the deep sites
are Wd= exp�−
Ed� and Vd= exp�−
Ed

V�, respectively. All
rates are proportional to the same attempt frequency  and
are determined by the appropriate activation energies. The
condition,

Wd

Ws
=

Vd

Vs
= r , �25�

has to be fulfilled. The equilibrium occupancies are again
given by Eq. �14� for the shallow site and by Eq. �15� for the
deep site. Consequently, the diffusion denominator is again
given by Eq. �16�. As before, all geometrical phases � are
equal to zero due to equal height of all potential-energy bar-
riers. There are now two nonzero correlational phases. Mini-
mizing the diffusive eigenvalue �or M�k��� yields the corre-
lational phase associated with a pair of particles oriented
along x direction;
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FIG. 5. �Color online� Temperature dependence of the activation
energy EA�T ,�=0.5� for a striped substrate lattice for Es−Ed

=0.05 eV and varying �v=Ev−Ed. EA for 1D diffusion, when
�v→�, is plotted by a dotted line.
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�x
C =

�Ws − Wd��s�1 − �d�
�Ws + Wd��s�1 − �d� + 2Vd��d�1 − �d� + �s�1 − �s��

,

�26�

and another one associated with similar pair along oriented
along y direction,

�y
C =

�Vs − Vd��s�1 − �d�
�Vs + Vd��s�1 − �d� + 2Wd��d�1 − �d� + �s�1 − �s��

.

�27�

The resulting diffusion coefficient along x direction is �the
superscript C refers to “checkered”�

Dx
C = a2 2Ws�s�1 − �d��Wd + 2Vd�

�Wd + Ws��s�1 − �d� + 2Vd��d�1 − �d� + �s�1 − �s��
,

�28�

and for diffusion along y we must replace in the above ex-
pression all V and W rates with W and V, respectively, with
the same subscript s or d.

Dx
C as a function of � for several values of rates Vs and Vd

is plotted in Fig. 3 �solid lines�. Maxima of the diffusion
coefficient at �=0.5 for the striped and checkered substrate
lattices are equal to each other if we relate the rates of jumps
along y direction in both model systems as follows: V
=�VsVd=Vs

�r. They all merge at the dilute system limits,
�=0 and 1. For all other densities the diffusion coefficient
for the checkered substrate lattice is somewhat larger than
the one for the striped substrate lattice. The 1D and the
mean-field limits, V→0 and V→�, respectively, are the
same for both types of substrate.

In Fig. 7 we follow the changes in the shape of the density
dependence of the diffusion coefficient with changes in r
�see Eq. �25�� for the checkered substrate lattice. We keep
here Vs=Ws and Vd=Wd.

For Es−Ed=0.05 eV and choosing Ed
V=�v+0.025 eV to

assure that V=�VsVd, all the activation energy curves
EA�T ,�=0.5� plotted in Fig. 5 for the striped substrate lattice

are indistinguishable from the similar ones for the checkered
system. This is obvious because the condition V=�VsVd was
designed specifically to match the diffusion coefficient be-
tween the two model systems at �=0.5. For other densities
the effective activation energies differ as seen in Fig. 6.
These differences are consistent with those observed in
Fig. 3.

V. MONTE CARLO SIMULATIONS

In order to verify the accuracy of the variational approach
to diffusion in a lattice gas on an inhomogeneous substrate
and that of the resulting analytical expressions for the adsor-
bate density dependence of the collective diffusion coeffi-
cient, we have simulated such systems for selected set of
system parameters using Monte Carlo dynamical approach.
We have used the Boltzmann-Matano analysis of the shape
of a steplike density profile after letting it decay via diffusion
process.32,33 Results of this analysis are shown in Fig. 8 for a
striped �left panel� and a checkered substrate lattices with r
=0.01 and three different jump rates along the y direction. In
particular, the lowest lines represent results for V=Vd=0
which do not depend on the coverage in agreement with the
results for a 1D system. For the two other sets of parameters
�lines in the middle� for which the diffusion has genuinely
2D character, the maxima of the diffusion coefficient differ
by a factor of 2 between them, as seen also in the Monte
Carlo results despite considerable noise present. Unfortu-
nately due to a considerable noise the differences between
the two types of analyzed substrate lattices, seen in Fig. 3 for
analytic results, are too small to be clearly visible in the
simulation data. It is evident, however, that the evolution of
the adsorbate density dependence of the diffusion coefficient
with varying jump rates along the y axis �V and Vd� for both
substrate lattice types, observed in Fig. 3, is confirmed by
simulations.

VI. CONCLUSIONS

We have shown that the recently formulated variational
approach to the collective diffusion, originally designed for
1D systems, is an effective and a promising method of deal-
ing also with diffusion in 2D systems. We have applied this
method here to describe collective diffusion in a system of
particles adsorbed on nonhomogeneous substrates with two
types of the potential-energy landscape experienced by the
adsorbed particles. The resulting density dependence of the
collective diffusion coefficients depending on all jump rates
present in either system are given by simple analytic expres-
sions. The predicted density dependence agrees with the
Monte Carlo simulation results for such system parameters
for which running the simulations was feasible. An example
of such a comparison have been shown here.

We show that the kinetics diffusion in two-dimensional
system is interesting and far from trivial even if the site
blocking is the only interaction that particles experience. In
contrast to a single-particle �dilute� systems, collective diffu-
sion along each of the two directions in which particles can
jump depend nontrivially on microscopic jump rates in both
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FIG. 7. �Color online� Adsorbate density dependence of the col-
lective diffusion coefficient Dx for a checkered substrate lattice for
several values of r. Rates of jumps out of a given adsorption site in
the x and y directions are equal to each other.
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directions, e.g., collective diffusion along x, say, depends on
jump rates in x and y directions. This effect is due to the site
blocking and nonhomogeneity of the substrate lattice. It is
not present in a system of many independently moving par-
ticles without the site blocking interactions, and it is not
present in a homogeneous system with the site blocking.

We have demonstrated that the character of diffusion
changes continuously from a one-dimensional one to the
mean-field-like when the rates of jumps in direction perpen-
dicular to the one along which diffusion is observed are var-
ied from very slow to the very fast ones. We can understand
this as a result of an activation of alternative diffusion path-

ways when the direct pathway is blocked. Transition from
the 1D to the 2D behavior is highly nontrivial even if par-
ticles do not interact with each other except for hard-core
interactions preventing multiple occupancy of the adsorption
sites.
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