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Applying the surface-charge formalism, we developed a simple theory of trap-filling transitions in organic
thin films in a planar field effect transistor geometry. We derived numerical as well as approximate analytical
expressions for the current-voltage characteristics and for the saturation current as a function of the gate
voltage �saturation transfer curve� in the presence of a discrete set of traps. We show that all single-carrier
conduction possibilities in organic field effect transistors with discrete trapping levels are limited within a
triangular region of the saturation transfer curve in the logarithmic scale. This region is bounded by the Ohm’s
law, a trap-free square law, and a trap-filled limit curve which has a voltage threshold and is characterized by
a step rise of the saturation current. This “triangle” is equivalent to the Lampert’s triangle of the simple
space-charge limited conduction theory for one-dimensional charge transport between two Ohmic electrodes.
Finally, we show that two of the bounding sides of this triangle were experimentally observed in
tetrabenzoporphyrin-based organic field effect transistors reported in the literature �P. B. Shea, J. Kanicki, and
N. Ono, J. Appl. Phys. 98, 014503 �2005�� with the calculated third side fitting the experimental data very
well.
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I. INTRODUCTION

The theory of space-charge limited current �SCLC� for
bulk conduction between two Ohmic contacts with discrete
trapping levels and under constant mobility proposes that all
conduction possibilities in an insulator are limited within a
triangular region of the current-voltage characteristics �I-V�
in the logarithmic scale �Lampert’s triangle� bounded by the
Ohm’s law, Mott-Gurney’s trap-free square law, and an es-
sentially vertical trap-filled-limit line.1–3 The specific loca-
tion of possible curves within this region depends upon the
density and trapping features of a particular localized state,
as well as on the thermal-equilibrium free-carrier density in
the insulator. In the presence of a single-trap level, all I-V
characteristics within the triangular region tend to follow a
“modified” Mott-Gurney’s square law. This curve has four
regimes of conduction: at low voltages the density of in-
jected carriers is lower than the density of free carriers in the
insulator and Ohm’s law is observed. When the density of
injected carriers is greater than the density of free carriers in
the insulator, then the current becomes space-charge limited
with I�V2 �modified Mott-Gurney’s square law�. In this re-
gion the mobility is limited by the traps. At a voltage VTFL,
the traps are full and the current rises steeply until it reaches
the trap-free space-charge limited regime where the current
again depends on the square of the applied voltage �trap-free
Mott-Gurney’s square law�. The value of the trap-filled �TF�
limit voltage is VTFL�eNtd

2 /2�, where e is the elementary
charge, � is the dielectric constant of the solid, Nt is the
density of traps, and d is the length of the insulator. In this
paper we show that a similar limiting triangular region,
equivalent to the Lampert’s triangle, can be established for
the saturation current versus the gate voltage in injection-
based surface field effect transistors �IFETs�.

Contrary to bulk charge transport between two electrodes,
trap-filling effects are poorly understood in IFET structures
using a film of a high-resistivity semiconductor between

source and drain metal electrodes. The operation of such a
device involves the injection of a charge-carrier density us-
ing a voltage applied between the source and a gate elec-
trode, and the driving of those charges toward the drain using
a voltage applied between the source and drain electrodes.4

Here we call as semiconductor the film of low-conductivity
solid that forms the device’s active layer, and as insulator the
layer that separates this active layer from the gate electrode.
Since in general IFETs work in the accumulation regime, the
presence of trapping states avoid the buildup of mobile car-
riers in the active layer with increasing gate voltage �Vg�.
This effect can significantly influence the magnitude and the
shape of current flowing between the source and drain as a
function of Vg, especially in the subthreshold region.

A deep understanding of trap-filling effects in IFETs is
also needed due to the great technological and fundamental
interest in organic field effect transistors �OFETs�. OFETs
using ordered organic films are essentially IFETs where the
active layer is an organic wide-band-gap semiconductor.
These materials are characterized by low electric conductivi-
ties but room-temperature mobilities in the intermediate
range5,6 so that the OFET operation depends on an efficient
injection of carriers from the electrodes. Moreover, it was
observed that trapping states in the organic semiconductor
induce trap-filling transitions during which the effective-field
effect mobility depends strongly on the gate voltage. Several
models have been previously proposed to study this phenom-
ena and describe the charge transport in OFETs.6–12 How-
ever, they do not explore the similarities of the trap-filling
effects observed in an OFET compared to trap-filling effects
observed in a two-electrode device. Some aspects of this
relation, such as the identification of a threshold voltage de-
rived from trap filling and a trap-limited square-law regime
in the saturation current, were analyzed by Horowitz and
Delannoy13 but to our knowledge, no such general theory of
trap-filling effects in organic field effect transistors with dis-
crete trapping levels has been made to date.
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In this paper we present a simple and complete theory of
trap-filling effects in IFETs applying a generalization of the
surface-charge formalism proposed in a previous work.14 The
advantage of this formalism is that in principle every balance
equation relating volumetric densities of trapped and free
carriers at each point of the channel can be written using the
respective surface charge. One can then carry out a straight-
forward analogy between the theory of SCLC for a two-
electrode device and the charge transport in an IFET struc-
ture. However, in IFETs the field produced by the gate
voltage generates an accumulation of free carriers near the
insulator/semiconductor �I/S� interface. Therefore the steady-
state concentrations of free and trapped carriers near the I/S
interface is different compared to the concentrations in points
far from this interface. This variation in carrier concentra-
tions along the thickness of the semiconductor has to be
considered to properly write the balance equations in terms
of surface charges. Moreover, the thickness of the accumu-
lation layer also varies along the channel due to the potential
difference across the insulator at the source and at the drain.4

These effects were neglected in Ref. 14 where the steady-
state concentrations of free and trapped carriers were as-
sumed uniform throughout the whole thickness of the semi-
conductor film. Here we propose a simple approach to
directly write the balance equations using surface charges
while considering, at the same time, the variation in the
populations of free and trapped carriers along the semicon-
ductor thickness at each point between the source and drain.
This procedure enables us to easily calculate numerically the
IFET’s characteristic curves, as well as derive analytical ap-
proximations for each regime of operation. We show then
that all interesting features of the saturation current �Isat� of
an IFET are confined within a “triangle” in the log Isat
� log Vg plane bounded by the Ohm’s law, a trap-free square
law, and a trap-filled limit curve that has a threshold voltage
and a step current rise. This triangle is the analog for the
saturation current in IFETs of the Lampert’s triangle.

In the following we present the mathematical formalism
together with the assumptions we used to simplify the prob-
lem. Initially we applied this formalism to the simple case of
one discrete trap level in the semiconductor. Analytical ap-
proximations to the I-V characteristics and to the variation in
the saturation current with the gate voltage �saturation trans-
fer curve� are then derived for each regime of charge trans-
port. Next we extend the formalism to the case of multiple
traps and show how to generalize the single trap’s analytical
approximations to the case of multiple discrete traps. Finally,
in Sec. IV we show evidences that two of the bounding sides
of the IFET’s triangle were measured in a
tetrabenzoporphyrin-based OFET reported in the literature.

II. THEORY

A. Assumptions and governing equations

The structure of the IFET we are interested in is schemati-
cally depicted in Fig. 1: a thin film of a wide-band-gap semi-
conductor �the active organic film in OFETs� connects the
source and drain contacts, and a high-resistivity gate insula-
tor separates the semiconductor from the gate electrode. In

Fig. 1, the direction x measures the distance in the semicon-
ductor from the source electrode and direction y measures
the distance in the semiconductor from the gate insulator
interface. Since we want to describe the fundamental prop-
erties of a model device, several simplifications are consid-
ered: �i� We assume a constant, electric-field independent
mobility �. �ii� We neglect diffusion currents. �iii� We use
the “gradual channel approximation”10,14 from which the
Gauss equation is separated by associating ng to dEy /dy and
nds to dEx /dx, for ng and nds, which are the density of
charges injected by the voltage drop between the gate and
source/drain electrodes, and by the source-drain voltages, re-
spectively. �iv� We assume that only one type of charge car-
rier can be injected through Ohmic contacts at the source and
drain electrodes. Without loss of generality, we assume that
these charge carriers are electrons. The above approxima-
tions are necessary to simplify the problem so that it be-
comes tractable to an elementary mathematical analysis. Yet
the simple model that emerges from them is able to describe
the main features of the charge transport inside the semicon-
ductor film, allowing quantitative estimations of the essential
parameters governing the trap-filling process.

In IFETs the charge-carrier conduction between source
and drain is obtained mostly by the flow of free carriers
injected from the electrodes. However, we allow for the pos-
sibility of �intentional or unintentional� light doping of the
semiconductor by considering a constant concentration of
free carriers n0. For an IFET the extrinsic Debye screening
length15,16 associated to n0, Ld=�kT� /e2n0, satisfies the rela-
tion Ld�D, where D and � are the thickness and the dielec-
tric constant of the semiconductor film, respectively. This
relation is the essential condition that characterizes an IFET
operation: for a constant n0 and at low gate voltages, one can
show that the thickness necessary to screen the electric field
Ey in the semiconductor satisfies the relation �0�Ld.15

Hence, if the condition Ld�D is not satisfied, the action of
the field Ey can create an accumulation of free carriers from
doping near the I/S interface. In this regime the modulation
of the current flow using the gate electrode can be obtained
by regulating the thickness and concentration of free carriers
in this accumulation layer. As the transistor operation would
not depend on carriers injected from the electrodes, the de-
vice would resemble a conventional metal-oxide-
semiconductor field effect transistor �MOSFET�. On the
other hand, if the IFET condition is satisfied, n0 can be con-
sidered uniform along the semiconductor thickness. The
doping-related surface charge �Q0� is then independent of the
gate voltage and we can write Q0=en0D.

Using the surface-charge notation,14 the current flow be-
tween source and drain is given by

S Semiconductor
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FIG. 1. Schematic view of the injection-based field-effect tran-
sistor considered here.
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Ids

W
= �Qf�x� + Q0��

dV

dx
, �1�

with W as the channel width, Qf�x� as the surface charge of
free carriers injected from the electrodes, and V�x� as the
potential at position x from the source. The introduction of
Q0 in Eq. �1� makes the conductivity between source and
drain different from zero when the gate voltage �Vg� is zero.

If L is the distance between source and drain, the integra-
tion of Eq. �1� from x=0 to x=L gives

Ids = �
W

L
�

0

Vds

�Qf�x� + Q0�dV , �2�

where the limits of integration are V�0�=0 at the source and
V�L�=Vds at the drain.

We assume the presence of multiple trapping states in the
semiconductor. For each trap type j, the relation among the
total available trap density Nt,j, the density of occupied traps
nt,i, and the free-carrier density nf is given by the balance
equation17 �nt,j /�t=� jnf�Nt,j −nt,j�−	 jnt,j, where � j �	 j� is
the capture �emission� rate at jth trap level. Assuming steady
state between emission and capture at every coordinate x, we
find

nt,j�x� =
Nt,j

�1 + 
 j/nf�x��
, �3�

where 
 j =	 j /� j. 
 j has the units of density and is character-
istic of a particular trap level. It decreases with the thermal
activation energy of the trap, i.e., its energetic “depth” in the
band gap.

Assuming L�D, nds can be neglected compared to ng. ng
is then distributed between the free and the trapped carriers,
or

ng�x� = nf�x� + �
j

nt,j�x� , �4�

where the summation over j in Eq. �4� accounts for the pres-
ence in the semiconductor of traps with different trapping
properties.

Our model is based on the assumption that the injected
carrier density is distributed along a characteristic thickness
��x� in the y direction. ��x� represents the thickness of the
accumulation layer. It is very thin in the vicinities of the
source �where the field Ey is higher� and becomes thicker on
proceeding toward the drain. Using this approximation, we
substitute Eq. �3� in Eq. �4� and rewrite the resulting equa-
tion in terms of surface-charge densities to find

Qf�x� + Qf�x��
j
	 QT,j

Qf�x� + � j�x�
 − Qg = 0, �5�

where � j�x�=e
 j��x� and the surface charges are related to
the respective volumetric charge densities by Qi�x�=�i��x�.
From the electrostatics, Qg is a function of Vg and V�x� by
the expression Qg�x�=Ci�Vg−V�x��, where Ci is the gate in-
sulator capacitance per area. Once the variation in � with V is
determined, Eq. �5� can be solved to find Qf�V�. Inserting
this Qf�V� in Eq. �2� and performing the numerical integra-
tion assuming a constant Vg gives the curve Ids�Vds. The

transfer characteristics is obtained following the same proce-
dure but taking Vds constant and changing Vg.

We proceed to obtain a relation among ��x�, V�x�, and Vg.
In the y direction the electric field Ey pulls the injected car-
riers toward the I/S interface. The density of free carriers at
this interface builds up until the concentration gradient is
sufficient for the resulting diffusion current completely op-
pose the drift current created by Ey.

4 Neglecting the space-
charge generated by trapped carriers, the free charge density
of equilibrium4,10,18 is ��x ,y�=2�kT /e�y+y0�x��2, where y0
represents a characteristic distance from the I/S interface
given by

y0�x� =
2�kT

e�iEy�x�
, �6�

where �i is the dielectric constant of the insulator. The physi-
cal interpretation of y0 is that half of the charge induced by
Ey is within a distance y0 from the I/S interface.4 Hence we
can assume that ��2y0 in Eq. �5�. The variation in � with V
can be found considering Ey�x���Vg−V�x�� /di, where di is
the thickness of the gate insulator. From Eq. �6� we write

V�x� = Vg −
4�kT

eCi��x�
. �7�

In Eq. �7�, � increases when V�x�→Vg. We thus define the
voltage V� so that �=D when V�x�V�. From Eq. �7�, we
find V�=Vg−4�kT /eCiD. Following Eqs. �6� and �7�, the
variation in � with V�x� is assumed

��x� = �4�kT/eCi�Vg − V�x�� for V�x� � V�,

D for V�x� � V�.
 �8�

From Eq. �8�, the thickness of the accumulation layer is thin-
ner at the source and is given by �0=4�kT /eCiVg. In the next
subsection we will apply this result to derive analytical ex-
pressions for Ids for a single-trap level.

B. Analytical approximation for a single-trap level

In this subsection we further simplify our model to con-
sider the case of a single-trap level in the semiconductor
layer. Under this assumption, approximate analytical expres-
sions for Ids can be obtained for each regime of charge trans-
port. These expressions are derived taking �0 as the charac-
teristic thickness of the accumulation layer formed near the
I/S interface. Hence, it follows from Eq. �3� that

Qt
0 =

QT
0

1 + ��/Qf
0�

, �9�

where �=e
�0 and the surface charges are now related to the
respective volumetric charge densities by Qi

0=�i�0.
At very small gate voltages, Qf

0�Q0 in Eq. �9�, and the
charge-carrier transport is dominated by the thermal concen-
tration of free carriers �n0�. Integration of Eq. �2� is straight-
forward and yields
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Ids =
WD

L
�en0Vds, �10�

where we apply the definition of Q0. The saturation current
in this “Ohmic” regime is obtained taking Vds=Vg in Eq. �10�
or Isat= �WD /L��en0Vg.

When the density of free carriers injected from the elec-
trodes is higher than n0 in the accumulation layer, Eq. �10�
no longer holds. The charge transport between source and
drain is then dominated by the injected carriers. For the trap-
limited regime, the majority of the traps are empty so that
��Qf

0 in Eq. �9�and Qt
0 is approximately

Qt
0 �

Qf
0

�
QT

0 . �11�

From Eq. �4�, Qg=Qf
0+Qt

0. Substituting Eq. �11� in this rela-
tion yields

Qf
0 = Qg�1 +

QT
0

�
�−1

. �12�

Introducing Eq. �12� in Eq. �2� and performing the integra-
tion gives the I-V characteristics for the trap-limited regime

Ids =
W

L
��1 +

Nt



�−1

Ci	VgVds −
Vds

2

2

 , �13�

where we apply the definitions of QT
0 and �. The saturation

current is obtained taking Vds=Vg in Eq. �13�, which gives

Isat =
W

2L
��1 +

Nt



�−1

CiVg
2. �14�

The product �eff=��1+ �Nt /
��−1 in Eqs. �13� and �14�
represents the effective-field effect mobility of the charge
carriers in the trap-limited regime. From this relation one
sees that �eff is lower than � as it is expected for a trap-
limited conduction. Moreover, �eff does not depend on Vg
which produces an increase in the Isat with the square of the
gate voltage.

At this point we can determine the gate voltage V� of
crossover from Ohm’s law to the trap-limited square law in
the saturation transfer curve. Equating the saturation currents
given by Eqs. �10� and �14�, we find V�= �Q0 /Ci�
�1+ �Nt /
��. Thus V� increases with increasing n0 or de-
creasing 
, i.e., higher thermal activation of the trap. At this
point, the characteristic curves for the ideal case of a trap-
free active layer can be obtained assuming Nt=0 in Eqs. �13�
and �14�. The trap-free square law for the saturation curve is
then

Isat =
W

2L
�CiVg

2. �15�

In the trap-free regime the crossover gate voltage from
Ohm’s law to the trap-free square law is simply Vfree
=Q0 /Ci.

Upon further increasing the gate voltage in the presence
of a single trap, more charges are injected from the elec-
trodes, increasing the density of occupied levels. Eventually,
Vg can be high enough to fill all the traps and a TF regime is

established in the active layer. Near the TF regime Qt
0�QT

0

and, from Eq. �4�, Qf �Qg−QT
0. Substituting this relation in

Eq. �2� and performing the integration gives

Ids =
W

L
�Ci	�Vg − V0�Vds −

Vds
2

2

 , �16�

where V0=QT
0 /Ci=eNt�0 /Ci. Physically V0 is the voltage that

should be applied to the gate to fill the set of traps with
concentration Nt within a distance �0 from the I/S interface,
assuming that all these traps are initially empty. Note that
since �0 depends on Vg V0 in Eq. �16� changes with the gate
voltage.

The saturation current in the TF-limit regime is obtained
taking Vds=Vg−V0 in Eq. �16�,

Isat =
W

2L
�CiVg

2�1 −
V0

Vg
�2

. �17�

Equation �17� has a strong dependence on the gate voltage
when V0 /Vg�1. From this condition and the definitions of
V0 and �0, one finds that there is a steeply rise in the satura-
tion current when the gate voltage approaches the value
VTF=�4�NtkT /Ci. VTF has the same role for IFETs as the
role represented by the trap-filled voltage in the one-
dimensional space-charge limited conduction.13 In the range
Vg�VTF, Isat tends to the trap-free square law given by Eq.
�15�.

Figure 2 illustrates a typical saturation transfer curve for a
single-trap level in the semiconductor. It was calculated nu-
merically from Eqs. �2� and �5� with j=1 and Eq. �8�, taking
characteristic parameters representative of IFETs using a
high-quality organic semiconductor. For comparison, in Fig.
2 we also plot the analytical approximations given by Eq.

FIG. 2. Saturation current as a function of the gate voltage for a
single-trap level. The solid curve is numerically calculated from
Eqs. �2�, �5�, and �8� for j=1. The dotted line follows from Eq. �10�
with Vds=Vg, the dotted-dashed line follows from Eq. �14�, and the
double-dotted-dashed line follows from Eq. �17�. The dashed line
follows from Eq. �15� �trap-free regime�. The simulation parameters
are L=25 �m, W=1.5�10−3 m, D=40 nm, Ci=1,2
�10−4 F /m2, �=3�0, n0=2�1017 m−3, �=1�10−4 m2 /V s, Nt

=1025 m−3, and 
=1.34�1019 m−3. The base used in the log Isat

� log Vg plot is ten.
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�10� with Vds=Vg �Ohmic regime�, Eq. �14� �trap-limited re-
gime�, Eq. �15� �trap-free regime�, and Eq. �17� �TF-limit
regime�, and indicate the values of the characteristic voltages
V� and VTF. The solid curve shows four conducting regimes:
at low gate voltages the curve increases linearly with Vg up
to the gate voltage V�. It then follows a trap-limited square
law until the voltage VTF is reached. At VTF, the saturation
current rises very steeply with the gate voltage reflecting the
huge increase in free carriers available for conduction during
the trap-filling transition. The rise in Isat occurs until the den-
sity of free carriers in the accumulation layer is nf �Nt at
Vg�2VTF. Thereafter the curve tends to the trap-free square-
law regime.

From the discussion above we conclude that the same
sequence of power-law dependences expected for the I-V
characteristics of an insulator with a single-trap level sand-
wiched between two Ohmic contacts1 is also followed by the
saturation current of the IFET. However, we should point out
that the physical origin of the square-law dependencies in the
two kinds of devices is different: for SCLC conduction the
drift velocity of the charge carriers is proportional to the
electric field that induces the carrier motion, resulting in a
variation in the current with the square of the applied volt-
age. In the IFETs, the density of free charges induced by the
field Ey is proportional to Vg while those charges are drifted
toward the drain by the field Ex that, under the saturation
condition, is also proportional to Vg. The saturation current is
then Isat�Vg

2.
Figure 3 shows a family of curves numerically calculated

from Eqs. �2�, �5�, and �8� for the single trap with different
values of the parameter 
. The other parameters are the same
as those used in calculating the numerical curve in Fig. 2. In
Fig. 3 we also plot the trap-free saturation current obtained
from Eq. �15�. One sees from the curves in Fig. 3 that, with
decreasing values of 
 �higher thermal activation energies of
the trap�, the voltage V� approaches VTF and the trap-limited
square-law regime is suppressed. The Ohm’s law is then ob-
served almost up to the voltage VTF. Beyond this voltage the

saturation current follows the trap-filled curve. On the other
hand, with increasing values of 
, V�→Vfree and �eff→�.
The saturation current approaches then the trap-free square-
law regime. Therefore we conclude that for fixed values of
n0 and Nt all important features of the saturation curve are
confined within a triangle in the log Isat� log Vg plane
bounded by the Ohm’s law given by Eq. �10�, the TF-limit
curve given by Eq. �17� with a threshold voltage VTF, and the
trap-free curve obtained from Eq. �15�. We call this triangle a
modified Lampert’s �ML� triangle in analogy to the similar
limiting region proposed by Lampert1 in the I-V characteris-
tics for single-carrier injection in a two-terminal device.
From Fig. 3 one also sees that within the ML triangle all
curves tend to follow the trap-limited square-law regime.

Using Eqs. �17� and �14� and assuming that at Vg=2VTF,
the TF-limit curve approximately merges with the trap-free
curve, the ratio of the slopes �=dIsat /dVg of the trap-free
square-law regime ��T,free�, and the slope of the trap-limited
curve ��T,limited� at their extrapolate point of intersection1 is
�T,free /�T,limited��1+Nt /
�. Following the same procedure
and using Eq. �10� instead of Eq. �17�, the ratio between the
slope of the trap-free curve and the Ohmic regime ��T,Ohmic�
is �T,free /�T,Ohmic���4�kT /eD���Nt /n0�. The changes in the
slope calculated above can be very great which makes the
current rise due to trap-filling looks similar to the subthresh-
old regime of a conventional MOSFET.13,15

C. Multiple discrete trap levels

The analysis developed in the previous subsection pre-
sents the basic tools in constructing the saturation transfer
curve for situations in which there are more than one set of
electron traps in the semiconductor. We exemplify the proce-
dure in Fig. 4 using three sets of traps characterized by the
densities Nt1, Nt2, and Nt3, respectively, and capture-emission
constants 
1, 
2, and 
3, respectively, where 
3�
2�
1 and

FIG. 3. Saturation current as a function of the gate voltage for
trap levels with different thermal activation energies. The curves are
numerically calculated from Eqs. �2�, �5�, and �8� for j=1 using the
same parameters as in Fig. 2 but with different 
’s. The dotted line
follows from Eq. �15� �trap-free regime�. The base used in the
log Isat� log Vg plot is 10.

FIG. 4. Saturation current as a function of the gate voltage for
three discrete trap levels. The continuous curve is numerically cal-
culated from Eqs. �2�, �5�, and �8� for j=3. The discontinuous
curves are analytical approximations. The traps’ parameters are
Nt1=1023 m−3 and 
1=1.75�1012 m−3, Nt2=1.5�1023 m−3 and

2=1.84�1015 m−3, and Nt3=2.5�1023 m−3 and 
3=1.34
�1019 m−3. The other parameters are the same as in Fig. 2. The
base used in the log Isat� log Vg plot is ten.
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Nt3�Nt2�Nt1. The continuous line in Fig. 4 plots the trans-
fer curve calculated numerically from Eqs. �2� and �5� with
j=3 and Eq. �8�. The parameters are the same as those used
in the simulations of Fig. 2. The current follows a trap-
limited square-law regime up to the TF voltage VTF1
��4�Nt1kT /Ci. Since the levels with the highest thermal
activation energy dominate the charge transport at low gate
voltages, the saturation current in this regime can be approxi-
mated by Eq. �13� with �eff=��1+ �Nt1+Nt2+Nt3� /
1�−1 and
Vds=Vg �dotted-dashed line in Fig. 4�. Beyond VTF1 the cur-
rent rises steeply until an injection level such that nf �Nt1 is
reached in the accumulation layer at Vg�2VTF1. Thereafter
the curve tends to follow a trap-limited square law up to a
voltage VTF2�VTF1+�4�Nt2kT /Ci. In the range VTF1�Vg
�VTF2, the traps with capture-emission constant 
2 dominate
the transport. The saturation current in this region can then
be approximated by Eq. �13� with �eff=��1+ �Nt2
+Nt3� /
2�−1 and Vds=Vg−VTF1 �double-dotted-dashed curve
in Fig. 4�. After VTF2 again the current rises steeply until an
injection level such that nf �Nt1+Nt2 is reached in the accu-
mulation layer at Vg�VTF2+2�VTF2−VTF1�. At this point the
current tends to follow a trap-limited square law up to the
voltage VTF3�VTF2+�4�Nt3kT /Ci. The saturation current in
the range VTF2�Vg�VTF3 region can be approximated by
Eq. �13� with �eff=��1+ �Nt3 /
3��−1 and Vds=Vg−VTF2 �dot-
ted curve in Fig. 4�. Beyond VTF3, the current rises steeply
until an injection level such that nf �Nt1+Nt2+Nt3 is reached
at Vg�VTF3+2�VTF3−VTF2�. After this point the current
tends to merge with the trap-free square law. In the range
Vg�VTF3 the saturation current can be approximated by Eq.
�17� with V0=VTF3 �dashed curve in Fig. 4�. Finally, it is
important to note that the trap-filling transition in Fig. 4
starts at VTF1 and ends at approximately VTF3+2�VTF3
−VTF2� �see Fig. 4�. As a consequence, the current rise from
the trap-limited square-law regime to the trap-free square-
law regime is less abrupt compared to the single-trap transi-
tion described in Fig. 2.

III. COMPARISON WITH EXPERIMENTAL DATA

In Fig. 5 we apply our theory to the saturation regime
transfer curve measured in an OFET with tetrabenzoporphy-
rin �TBP� as active layer, and gold as source and drain
electrodes.19 The device was fabricated using a heavily
doped n-type silicon wafer that served as mechanical base
and gate electrode. The soluble precursor form of TBP was
spun cast from the solution onto a 100-nm-thick layer of
silicon dioxide to function as the gate insulator
�Ci=24.5 nF /cm2�. The precursor is converted into a poly-
crystalline 120-nm-thick TBP thin film using a process de-
scribed in Ref. 19. For the device in Fig. 5, W=12 mm and
L=22.5 �m. For simplicity we take the modulus of the
negative voltages applied to the injection and conduction of
holes in the TBP layer.

From the abrupt rise of the experimental saturation cur-
rent, we estimate VTF�13 V. It follows from VTF
=�4�NtkT /Ci that Nt=2.2�1025 m−3. This value of Nt is
two orders of magnitude higher than the density of traps
estimated in Ref. 19 using a threshold gate voltage of 17 V.

The difference comes from the assumption in Ref. 19 that all
the traps along the thickness of the semiconductor film are
homogeneously filled by the injected charge. Hence the au-
thors in Ref. 19 approximated VTF by VTF�eNtD /Ci. This
assumption is obviously not precise, especially for thick de-
vices, since the electrostatic action of the gate induces a
higher concentration of filled states within a characteristic
thickness approximately equal to �0 from the semiconductor/
insulator interface. Therefore, the estimation of Nt using the
procedure of Ref. 19 underestimates the density of traps by a
multiplicative factor of order �D /�0 compared to our pro-
cedure �for instance, when Vg=17 V, �0�1 nm which
gives D /�0�120�.

The theoretical curves �solid lines in Fig. 5� are from Eqs.
�10� and �13� using adjustable n0 and �, and a threshold
voltage given by VTF=13 V. From fitting we obtain n0=9
�1017 m−3 and �=6.1�10−7 m2 /V s. Our � is in the
range of values measured in Ref. 19 for the field effect mo-
bility of holes in TBP devices, between 3.6�10−7 and 1.1
�10−6 m2 /V s. It is important to note that the values of n0
and � above are obtained in order to give a self-consistent
trap-free line:20 from Vfree=en0D /Ci, and for a given value of
n0, we calculate Vfree. This voltage defines the point A in the
extrapolation of the Ohm’s law to lower gate voltages in the
log Isat� log Vg plane �see Fig. 5�. Then from this point we
extend a line with slope 2 to higher gate voltages which
represents the trap-free curve. The self-consistent values of
n0 and � are those which fit the experimental data and si-
multaneously merge the trap-filled curve calculated from Eq.
�13� with the line extended from point A in the range of high
Vg. Using this procedure one sees that all experimental points
in Fig. 5 are within the triangular region of the log Isat
� log Vg plane limited by the trap-free curve, the Ohm’s law
curve, and the TF-limited curve. This result suggests that the
data measured in the TBP-based OFET represent two of the
bounding sides of a ML triangle.

At high gate voltages, the experimental data in Fig. 5
apparently tends to merge with trap-free curve. Hence there

FIG. 5. Transfer saturation curve measured in TBP-based OFET
�squares�. The solid curves are calculated from Eqs. �10� and �13�
with n0=9�1017 m−3, �=6.1�10−6 m2 /V s, and a threshold
voltage given by VTF with Nt=2.2�1025 m−3. The theoretical volt-
age to the trap-free regime �Vfree� is defined at point A of the Ohm’s
law and a line with slope 2 is extended from point A to high gate
voltages. This line represents the trap-free regime. The base used in
the log Isat� log Vg plot is ten.
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appears to be no room for further trap-filling transition
within the ML triangle. This result is consistent with mea-
surements in alpha-sexithienyl ��6 T� OFETs where the
charge transport was modeled using a single dominant trap
level.13 In �6 T a trap-limited square-law regime is apparent
in the measurements �here we mention we have also applied
our model to fit the data shown in Fig. 9 of Ref. 13, repro-
ducing nicely the transition from the trap-limited to the trap-
filled square-law regimes observed in the �6 T device�. In
TBP, however, the Ohm’s law is observed almost up to VTF
which suggests high thermal activation energy in relation to
the main transport states. Since the trap-limited square-law
regime is not apparent in the TBP experimental curve, we
assume a value of 
 so that V�=Vfree for Nt=2.2
�1025 m−3, which yields 
=3.8�1019 m−3. Using this re-
sult and assuming that 
 is related to the density of conduct-
ing states �Nc� and the thermal activation energy of the trap
�Ea� by 
=Nc exp�−Ea /kT�,13 we can estimate Ea
�0.38 eV for Nc=1026 m−3.13 This energy is deeper com-
pared to the activation energy of the dominant level in �6 T
which is Ea�0.23 eV.13

The last point to be considered is the relation between the
extrinsic Debye screening length and the thickness of the
TBP film. From the definition of the extrinsic Debye screen-
ing length and taking the value of n0 above, we have Ld
�2.2 �m at T=300 K. Since D=120 nm, Ld /D�18
which reasonably satisfy the IFET condition.

IV. CONCLUSION

Using a simple theory to model trap-filling transitions in
organic field effect transistors, we identified a triangular re-
gion in the saturation transfer curve plotted in the logarith-
mic scale that confines all conduction regimes for the charge

transport in this kind of devices when discrete sets of trap-
ping states are present. This triangle is limited by the Ohm’s
law, a trap-free square law, and the trap-filled limit line char-
acterized by a step rise of the saturation current after a
threshold gate voltage.

Considering the single-trap case, we derived analytical
expression for the I-V characteristics and the saturation cur-
rent as a function of the gate voltage for each regime of
charge transport. We show that all particular single-trap satu-
ration transfer curves within the modified Lampert’s triangle
tends to follow a trap-limited square-law regime where the
effective-field effect mobility depends on the trap’s density
and energetic depth relative to the main conducting states.
We numerically calculated the saturation transfer curve when
multiple sets of traps are present in the active layer and dem-
onstrated how the analytical expressions for single traps can
be applied to reproduce the main features of this curve. In
this case the presence of multiple trap-filling transitions very
close in voltage decreases the steepness of the saturation cur-
rent rise with increasing gate voltage compared to the single-
trap case.

Finally, we applied our theory to fit the experimental satu-
ration transfer curve measured in OFETs based on a thin film
of TBP. We found good agreement between theory and ex-
periment. The absence of a clear trap-limited square-law re-
gime in these measurements suggests that the data corre-
spond to the observation of two of the bounding sides of the
modified Lampert’s triangle for IFETs.
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