
Electronic structure analysis of self-consistent embedding theory for quantum/molecular
mechanics simulations

Xu Zhang,1,2 Chong-Yu Wang,1,3 and Gang Lu2,*
1Department of Physics, Tsinghua University, Beijing 100084, China

2Department of Physics and Astronomy, California State University—Northridge, Northridge, California 91330-8268, USA
3The International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, China

�Received 7 September 2008; revised manuscript received 15 November 2008; published 16 December 2008�

The self-consistent embedding theory provides a rigorous framework for quantum/molecular mechanics
simulations of materials. By using crystalline aluminum as an example, we present a critical analysis on the
accuracy of the embedding theory, focusing on the electronic structure of the primary quantum mechanics
region. We examine the influence of embedding potential on the structural energy, local density of states, total
electronic density, and electronic states at the Fermi energy of the primary quantum system. The analysis
illustrates the success and limitations of the embedding scheme in describing the electronic structure of the
primary quantum region.
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Despite the ever increasing computational capacity, mod-
eling and simulation of complex material systems at the
atomic level still remain a challenge.1 For example, quantum
mechanics �QM� is necessary for a proper treatment of bond
breaking, charge transfer, electron excitation, magnetism,
etc., in materials; however, owing to its demanding compu-
tational cost, the application of QM has been limited to rela-
tively small systems consisting of up to a few hundreds of
atoms. On the other hand, atomistic simulations based on
empirical interatomic potentials are often capable of describ-
ing small-amplitude vibrations and torsions, elastic deforma-
tion and electrostatic interactions, etc., in many materials and
biological systems. Termed as molecular mechanical �MM�
methods, these empirical atomistic approaches can treat mil-
lions of atoms or more. Algorithms that combine quantum
mechanics and molecular mechanics �QM/MM� offer a
promising solution to the computational challenge in materi-
als science and they have attracted great interest in the past
decade.1,2 In general, QM/MM coupling schemes can be di-
vided into two categories, mechanical coupling and quantum
coupling, depending on how the interaction energy between
QM and MM is formulated.2 With the mechanical coupling,
the interaction energy is calculated at the MM level, whereas
the interaction energy is calculated at the QM level in the
quantum coupling.

In a typical QM/MM simulation, QM is often used to treat
a small region which is embedded into a much larger region
dealt by MM simulations. Therefore, how the boundary con-
ditions are imposed at the interface between the two regions
is of crucial of importance for QM/MM algorithms. The self-
consistent embedding theory2–8 is a quantum coupling
framework which provides rigorous boundary conditions for
the primary QM region embedded into a larger environment.
Although in general the environment could be treated at ei-
ther QM or MM level, we focus on an MM description of the
environment in this paper. Central to the embedding theory is
the embedding potential, which is defined as a functional
derivative of the interaction energy �between the primary re-
gion and environment� with respect to the electron density in
the primary region. The single-particle embedding potential

represents the quantum-mechanical effects of the environ-
ment, including both nuclei and electrons, on the behavior of
the electrons in the primary region. The embedding potential
is included in the Hamiltonian of the electrons in the primary
region, for which the quantum-mechanical problem is solved
self-consistently. Wesolowski and Warshel3 were among the
first to use this scheme for describing chemical processes in
solutions. Govind et al.4,5 utilized the method to explore the
electronic structure and excited states of molecules adsorbed
on metal surfaces. Recently, the embedding method has been
implemented in the context of QM/MM simulations of me-
tallic materials.6,7 In the self-consistent embedding QM/MM
theory, the Kohn-Sham �KS� density-functional theory
�DFT� �KS-DFT� �Ref. 9� is employed to perform QM cal-
culations. The electrons and nuclei in the MM region provide
the embedding potential which needs to be determined self-
consistently based on DFT. The ultimate goal of the
QM/MM embedding theory is to ensure that the resultant
physical quantities �such as electronic structure, energetics,
dynamics, etc.� are the same as those with the QM calcula-
tions applied to the entire system. To what extent can such
QM/MM embedding scheme reproduce the full QM results
is the main objective of this paper. In particular, we will
focus on electronic structure in the primary QM region and
examine how well it is described by the QM/MM scheme.
Since there has been no systematic study on the subject mat-
ter in the literature, this paper provides a much-needed criti-
cal assessment of the theory, which could motivate more
research in this direction, both in terms of methodology de-
velopment and applications.

First, we give a brief introduction to the self-consistent
QM/MM embedding theory. The entire system is partitioned
into two regions in real space: a QM region �region I� and an
MM region �region II� with the former embedded into the
latter. Region I is normally treated by KS-DFT calculations
while region II by classical atomistic simulations. We asso-
ciate each MM atom in region II with a valence electron
density ��at� and a pseudopotential; both of them are con-
structed a priori and remain fixed during a QM/MM
simulation.7 The charge density of region I, �I, is the degree
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of freedom and is determined self-consistently by minimiz-
ing the energy functional

E�Rtot� = min�I�EDFT��I;RI� + EOF
int ��I,�II;RI,RII�� . �1�

Here Rtot�RI�RII and RI and RII denote atomic coordi-
nates in regions I and II, respectively. The charge density of
region II, �II, is defined as the superposition of atomic-
centered charge densities �at via �II�r�=�i�II�

at�r−Ri�,
which only changes upon the relaxation of region II ions.
The interaction energy between regions I and II, EOF

int , formu-
lated by orbital-free density-functional theory �OFDFT�
�Refs. 10–12� is defined as follows:

EOF
int ��I,�II;RI,RII� = EOF��tot;Rtot� − EOF��I;RI�

− EOF��II;RII� , �2�

where �tot=�I+�II. The corresponding embedding potential
�emb�r� is defined as

�emb�r� �
�EOF

int ��I,�II;RI,RII�
��I , �3�

which represents the effective single-particle potential that
region I electrons feel due to the presence of region II �Refs.
3–8�; it is through �emb�r� that the QM/MM coupling is
achieved quantum mechanically at the level of OFDFT. The
embedding potential depends on �I and is updated self-
consistently. For QM modeling of region I, we employ KS-
DFT based plane-wave pseudopotential method implemented
in Vienna ab initio simulation package �VASP�.13–15 In this
manner, the modified KS Hamiltonian is given by H=T
+Vloc+VNL, where T is the KS kinetic-energy operator. The
local potential is given by

Vloc = Vloc
ion + VH��I� + Vxc��I� + �emb��I,�II� , �4�

where Vloc
ion, VH���, and Vxc��� are local part of the ionic

pseudopotential, the Hartree potential, and the exchange-
correlation potential, respectively. The nonlocal potential
VNL depends on the local potential.14,15 For a given charge
density �I, one can determine the band-structure energy �n
and the KS orbital �n from the modified KS eigenvalue
equations. Then the energy of Eq. �1� is calculated by

E�Rtot� = �
n

fn�n + Edc + �Ewald�RI� , �5�

where fn is the occupation number in band n, �Ewald is the
Madelung energy, and the double-counting energy term is

Edc = − EH��I� + Exc��I� −	 dr Vxc�r��I�r�

+ EOF
int ��I,�II;RI,RII� −	 dr �emb�r��I�r� . �6�

Following the same numerical schemes as implemented in
VASP, �I can be self-consistently determined for a given ionic
configuration. The Wang-Govind-Carter kinetic-energy
functional11 with a density-dependent kernel is used for the
OFDFT. The Perdew-Zunger local-density approximation
�LDA� �Ref. 16� is used to evaluate the exchange-correlation

energy. More details of the self-consistent QM/MM embed-
ding method can be found in Refs. 6 and 7.

In this work, we use aluminum as an example in the
analysis of the coupling method because of the existence of
the excellent kinetic-energy functional of Al. First, we exam-
ine the energetic convergence with respect to the volume of
region I. Specifically, we determine the critical dimension of
region I, so that the local energy of the central atom in region
I is converged; i.e., its energy is identical to the bulk value.
To this end, we vary the size of region I as na0�na0�a0, in
which n changes from 1 to 6. a0 is the equilibrium lattice
constant of Al. For each n value, we perform three different
calculations: �i� bulk—where region I is treated by a stand-
alone KS-DFT calculation with periodic boundary conditions
in x, y, and z directions; �ii� vacuum—where region I is
treated by a stand-alone KS-DFT calculation as an isolated
system, and a periodic boundary condition is applied in z
direction and vacuum is placed in x and y directions; and �iii�
embedding—the present embedding method which incorpo-
rates the influence of region II onto region I. A periodic
boundary condition is applied in z direction for region I, so
that the QM/MM coupling is carried out only in x and y
directions. If the embedding scheme worked perfectly, the
embedding calculation would reproduce the same results of
the bulk calculation. On the other hand, the discrepancies
between them can be attributed to the coupling errors, which
are always present for realistic calculations. In addition, there
are certain physical quantities that cannot be reproduced by
the present method even if the method was made exact. This
is a subtle point that deserves a close scrutiny in this paper. A
plane-wave cutoff of 300 eV is used in the calculations and
the k points are sampled according to the Monkhorst-Pack
method17 with a 1�1�9 mesh in the vacuum and the em-
bedding calculations; in the bulk calculations, k mesh of
9�9�9 is used for n=1, 5�5�9 for n=2,
3�3�9 for n=3, and 2�2�9 for remaining n values. The
computational cost is similar between the vacuum and the
embedding calculations for the same size of region I.

We define the structural energy of atom l in a solid as18

El = 	
−�

EF

E�
	

n	l�E�dE , �7�

where n	l�E� is the local density of states �DOS� �LDOS� of
atomic orbital 	 of atom l and EF is the Fermi energy. The
structural energy El represents the energy contribution of the
atom l to the total band-structure energy of the system and is
dominated by the bonding energy contribution from its
neighboring atoms. Therefore if region I is large enough for
the central atom, the surfaces would not affect El of the
central atom, and thus as far as the central atom is concerned,
the vacuum calculation is equivalent to the embedding cal-
culation. However, as shown later, this conclusion is not true
for the global properties of the material.

In Fig. 1�a�, we show the structural energy of the central
atom as a function of n for both the vacuum and the embed-
ding calculations. The horizontal line represents the struc-
tural energy from the bulk calculations. It is found that for
n
4, the vacuum and the embedding calculations yield the
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identical El for the central atom, indicating that the surfaces
do not affect the central atom for n
4 in terms of the struc-
tural energy. In this analysis, we take the central atom as the
sole atom of interest whose properties are to be determined
accurately by the QM/MM approach. In general, a region of
“central atoms” �“central region”� may be required; as a re-
sult, the critical size determined here needs to be increased
by an amount which corresponds to the volume of the central
region. Nevertheless, the results are useful for providing the
lower bound of the vacuum dimension for similar material
systems.

A critical observation from Fig. 1�a� is that both the con-
verged vacuum and the embedding results �n
4� deviate
from the bulk value by 
0.01 eV. The discrepancy can be
understood by realizing that the LDOS in Eq. �7� depends on
the energy spectrum of the total Hamiltonian of the system.
In other words, it does not only depend on the electronic
states of the primary region which are determined accurately
but also on the eigenstates of the environment, which are not
considered explicitly in the present theory—only the electron
density of region II is included in the formulation. Therefore,
the present theory cannot give correct LDOS and the struc-
tural energy. The reasons that the present theory focuses on
the coupling of the electron densities as opposed to the elec-
tronic wave functions are the following: �i� the electron den-
sity is the essential physical quantity—a correct determina-
tion of the electron density ensures the correct description of
other physical properties of the system, particularly, the total
energy and atomic structure—and �ii� it is more convenient

to deal with the electron density than wave functions because
the latter often depend on the band index and k point, in
addition to the spatial dependence. In particular, a wave-
function-based embedding scheme would require the cou-
pling of every electronic bands unless further approximations
are involved. The downside of the electron-density-based
coupling method is that the information of the electronic
states in region II is missing, and as result certain physical
quantities such as LDOS cannot be correctly accounted for.
The embedding theory becomes exact only in the limit when
the size of the primary region approaches infinity. This is
because although the QM/MM coupling is supposed to
eliminate fictitious surface effects, it does not render the fi-
nite primary region infinite. Therefore certain electronic fine
structure of an extended system, such as Van Hove singulari-
ties of DOS �Ref. 19� cannot be reproduced by a QM/MM
calculation of a finite system. For example, as shown in Fig.
1�b�, the LDOS for an atom at the surface of the vacuum
calculation traces closely to that of the corresponding atom at
the QM/MM interface of the embedding calculation for n
=4; but both deviate significantly from the LDOS of the bulk
system. This result confirms that the absence of the elec-
tronic states in region II leads to an incorrect LDOS in spite
of the presence of the embedding potential.

Next, we examine the results of electron density from the
bulk, embedding, and vacuum calculations. As shown in
Figs. 2�a�, 2�b�, and 2�d�, there is a rather good agreement of
the total charge density between the bulk and the embedding
calculations. The minor density errors at the interface are due
to the fact that the superposition of the atomic-centered
charge densities does not reproduce the bulk charge density
exactly. Our recent work has shown that a better approxima-
tion of the atomic-centered density could reduce the density
errors significantly. On the other hand, as expected, the total
charge density of the vacuum calculation shown in Fig. 2�c�
differs significantly from the bulk result, with the greatest

FIG. 1. �Color online� �a� The structural energy El of the atom l
which is located at the center of the primary region with n varying
from 1 to 6. The black and red solid lines represent the structural
energy from the vacuum and the embedding calculations, respec-
tively. �b� The LDOS of the atom at the interface for n=4. The blue,
red, and black solid lines denote the results from the vacuum, the
embedding, and the bulk calculations, respectively. The Fermi level
is shifted to zero.

FIG. 2. �Color online� The total charge density �Å−3� in the
primary region for n=4 from �a� the bulk calculation, �b� the em-
bedding calculation, and �c� the vacuum calculation. �d� The differ-
ence of the total charge density between the embedding and the
bulk calculations along a horizontal line shown in �a�. �e� The dif-
ference of the charge density �I between the embedding and the
vacuum calculations. The blue and magenta �partially visible�
spheres represent regions I and II atoms, respectively.
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errors occurring at the surfaces. Specifically, the surface
charge density does not resemble the directional bonding that
exists in bulk Al.7,20 In Fig. 2�e�, we plot the differential
charge density between the embedding and the vacuum cal-
culations for region I, �embed

I �r�−�vacuum
I �r�. It is evident that

the charge-density difference is primarily localized at the
QM/MM interface, and it is due to the nearest-neighbor di-
rectional bonding. The result shows the benefit of coupling
charge densities as opposed to wave functions because
“charge densities are nearsighted and wave functions are
not.”21 Therefore, the embedding potential can reproduce the
directional bonding that is characteristic of bulk Al, and its
influence is short ranged.

Finally, we analyze the band-decomposed charge density
to examine the effect of the embedding potential on the elec-
tronic states near the Fermi energy. The band-decomposed
charge density at EF

− and EF
+ for the vacuum and the embed-

ding calculations are presented in Figs. 3�a� and 3�b�, respec-
tively. Here, the band-decomposed charge density at EF

− �EF
+�

is evaluated in the energy range between EF−0.1 eV and EF
�EF and EF+0.1 eV�, including the contributions of all k
points. We focus on these states because they constitute pos-
sible “frontier orbitals” and could play critical roles in

chemical reactions for certain material systems. It turns out
that the majority contributions to the band-decomposed
charge density at EF

− come from the surface atoms in the
vacuum calculation; the electronic states at EF

− are mainly
localized surface states. On the other hand, the electronic
states at EF

+ are much more extended and spread all over the
primary region. Although the surface states are clearly vis-
ible in Fig. 3�a� of the vacuum calculation, they are signifi-
cantly suppressed by the embedding potential as shown in
Fig. 3�b�. Further analysis reveals that the electronic states
associated with the boundary atoms are shifted into lower
energy levels in the embedding calculation. As expected, the
short-ranged embedding potential has little effect on the ex-
tended states at EF

+; there is minor difference between Figs.
3�a� and 3�b� in terms of EF

+ states. Therefore the embedding
potential could suppress or eliminate the localized surface
states arising from the vacuum calculation, but it has little
effect on the extended states that are inherent to the bulk
system. More importantly, like the vacuum calculation, the
band-decomposed charge density of the embedding calcula-
tion does not reproduce the periodic charge density of the
bulk calculation shown in Fig. 3�c�. This is again due to the
finite size of the primary region. However, it should be real-
ized that the present embedding method is not developed to
treat perfect lattice but rather to treat systems where the
translational symmetry is broken, such as lattice defects. For
these systems, the embedding method is quite useful because
no matter how large a bare cluster is chosen for a QM cal-
culation, the surface states are always present and show up
close to the Fermi energy as frontier orbitals. These fictitious
states can be eliminated by a moderate size embedding cal-
culation. On the other hand, the fictitious surface states can-
not be suppressed or removed by mechanical-based QM/MM
schemes2,22,23 even though these schemes are capable of pre-
dicting reliable atomic structures. Another advantage of the
present method over the mechanical-based methods is that
for certain magnetic systems, the spin-polarized DFT calcu-
lation of a bare cluster �which is done in mechanical-based
methods� can often have difficulties to converge while the
present method does not suffer from this problem.

In summary, we have performed critical analysis on the
self-consistent embedding QM/MM theory for material
simulations, using fcc aluminum as an example. We compare
the energetics and the electronic structure between the
vacuum, embedding, and bulk calculations in aluminum. We
find that the embedding scheme reproduces accurately the
total electron density of the bulk system. The embedding
method could eliminate the localized surface states at the
Fermi energy which originate from the dangling bonds at the
surface. Since the embedding method does not involve the
electronic states from the environment, it cannot provide the
correct LDOS of the system. Although we believe the quali-
tative conclusions drawn from the present study are appli-
cable to other materials as well, details remain to be assessed
in future studies. In any case, the assessment of the embed-
ding QM/MM method provides guidance for further devel-
opment and application of the method in material problems.

FIG. 3. �Color online� The band-decomposed charge density at
EF

− and EF
+ for n=4 from �a� the vacuum calculation, �b� the embed-

ding calculation, and �c� the bulk calculation. Contour scale �in
Å−3� ranges from 0.0 �blue� to 0.007 �red�. The contour scale at EF

−

in �c� ranges from 0.0 �blue� to 0.002 �red�. The blue and magenta
�partially visible� spheres represent regions I and II atoms,
respectively.
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