
Identifying the pairing symmetry in sodium cobalt oxide by Andreev edge states: Theoretical
analysis

Wen-Min Huang and Hsiu-Hau Lin
Department of Physics, National Tsing-Hua University, Hsinchu 300, Taiwan

and Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan
�Received 16 September 2008; revised manuscript received 15 November 2008; published 24 December 2008�

We study the Andreev edge states with different pairing symmetries and boundary topologies on semi-
infinite triangular lattice of NaxCoO2·yH2O. A general mapping from the two-dimensional lattice to the
one-dimensional tight-binding model is developed. It is shown that the phase diagram of the Andreev edge
states depends on the pairing symmetry and also on the boundary topology. Surprisingly, the structure of the
phase diagram crucially relies on the nodal points on the Fermi surface and can be explained by an elegant
gauge argument. We compute the momentum-resolved local density of states near the edge and predict the hot
spots which are measurable in Fourier-transformed scanning tunneling spectroscopy.
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I. INTRODUCTION

The recent discovery of superconductivity in sodium co-
balt oxide compound intercalated water molecules,
NaxCoO2·yH2O,1 trigged intense attentions and stimulated
lots of discussions.2 The superconductivity induced in the
planar structure of CoO2 is similar with that in the CuO2
plane of cuprates.3,4 However, the underlying triangular lat-
tice of the Co atoms is fundamentally different from the
square lattice of the Cu atoms in cuprates because the anti-
ferromagnetic interactions on the triangular lattice are frus-
trated. The carrier density in the sodium cobalt oxide can be
tuned by the Na concentration. By changing the sodium dop-
ing, a rich phase diagram appears and the superconductivity
occurs5,6 in the doping regime 1 /4�x�1 /3. Furthermore,
the study in Co-NMR and Co-nuclear quadrupole resonance
�NQR� found that the spin-lattice relaxation rate at the criti-
cal temperature �Tc� shows no coherent peak and follows a
power below Tc, hinting at an unconventional superconduct-
ing phase.7–9 The node of the superconducting gap is con-
firmed by the specific-heat measurements10 and also by the
muon spin-relaxation experiments.11

However, the symmetry of the Cooper pairs remains un-
known at the present. In order to identify the pairing sym-
metry, the measurement of spin susceptibility in the super-
conducting state through the Knight shift is helpful.12–14 The
measurements of the powder samples show that the Knight
shifts along the c axis do not decrease below Tc, raising the
possibility of spin-triplet superconducting state.13–15 On the
other hand, recent measurements on the single-crystal
samples16 show that the Knight shift decreases below Tc
along the a and c axes, which suggests for the spin-singlet
pairing instead. From the study of the normal-state Fermi-
surface topology by the angle-resolved photoemission
spectroscopy17 and the Mn doping effects,18 it also seems to
support the singlet superconducting state. Thus, the pairing
symmetry of superconductivity in NaxCoO2·yH2O com-
pounds remains controversial at the point of writing.

There are also theoretical efforts to pin down the pairing
symmetry of the gap function in NaxCoO2.19 The underlying
triangular lattice is proposed to host the resonating-valence-

bond �RVB� state for an unconventional superconductor.20

Based on the RVB picture, theoretical investigations on the
t-J model21,22 favor the dx2−y2 + idxy symmetry. However,
within the third-order perturbative expansions, a stable
f-wave pairing is found in the Hubbard model23 with repul-
sive on-site interaction. The same conclusion is reached from
the theoretical study on the single-band extended Hubbard
model within random-phase approximations.24 Furthermore,
recent discovery of the Hubbard-Heisenberg model on the
half-filled anisotropic triangular lattice shows that varying
the frustration t� / t changes the spatial anisotropy of the spin
correlations and leads to transitions of the pairing symme-
tries of the superconducting order parameter.25 Taking differ-
ent routes for theoretical investigations, other groups demon-
strate the possibility of the px+ ipy pairing.26,27 In addition,
starting from the fluctuation-exchange approximations, the
triplet f-wave and p-wave pairings are favored on the trian-
gular lattice.28 With the same approximations, solving the
linearized Éliashberg equation29 leads to dominant pairing in
the spin-triplet f-wave sector. Therefore, the pairing symme-
try also posts a challenging task for theoretical understanding
from the microscopic perspective.

While it is important to determine the pairing symmetry
from microscopic approaches, it is equally crucial to develop
phenomenological theories so that one can extract the pairing
symmetry from the experimental data30,31 such as the An-
dreev bound states32,33 near the edges of the superconductors.
Note that the Andreev edge state �AES� �Ref. 34� in a super-
conductor is tied up with the pairing symmetry in the bulk.
In addition, recent breakthroughs in the Fourier-transformed
scanning tunneling spectroscopy �FT-STS� experiments35,36

allow further insight into the edge states with momentum
resolutions. In these experiments, not only the spatial profile
of the local density of states �LDOS� can be measured, the
peaks of the LDOS in the momentum space can also be
determined by appropriate Fourier analysis of the experimen-
tal data. In a letter published by one of the authors,33 a the-
oretical approach was developed to compute the momentum-
resolved LDOS for the Andreev edge state in sodium cobalt
oxide with f-wave pairing symmetry. The exponential decay
away from the boundary can be compared with the experi-
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ments directly, while the dependence on the transverse mo-
mentum �along the edge where the system is translational
invariant� can be seem in Fourier space through scattering
processes. Here, we elaborate and extend the previous work
by considering gap functions of p, d, and f pairing at both
zigzag and flat edges and predict the position of the sharp
peaks that can be observed in FT-STS experiments.

We start with the two-dimensional �2D� Bogoliubov-de
Gennes �BdG� Hamiltonian and map the semi-infinite trian-
gular lattice to a collection of one-dimensional �1D� chains
labeled by the transverse momentum along the boundary.
Due to the hidden structure of these effective 1D models, the
AES can be categorized into the positive and negative Witten
parity states37 in supersymmetric �SUSY� algebra. For read-
ers who are not familiar with the Witten parity and the SUSY
algebra, we have included a brief introduction in the Appen-
dix. By computing the Witten parity states constrained by the
boundary conditions, the LDOS with specific transverse mo-
mentum is obtained. Furthermore, we can predict the hot
spots in FT-STS by spotting all momentum differences be-
tween sharp peaks in the LDOS. Our results show that the
existence of AES sensitively depends on the pairing symme-
try and the edge topology and can thus be used as a good
indicator of the underlying pairing symmetry. The existence
of the AES for different pairing symmetries and edge topolo-
gies is summarized in Table I. Finally, following an elegant
gauge argument devised by Oshikawa,38,39 we also find that
the phase diagram for the AES crucially depends on the
nodal points on the Fermi surface where the pairing ampli-
tude vanishes.

The rest of the paper is organized as follows. In Sec. II,
we introduce the 2D Bogoliubov-de Gennes Hamiltonian for
a triangular lattice with the zigzag boundary topology. By
transforming the Hamiltonian into supersymmetric form and
using the generalized Bloch state, the LDOS of AES is ob-
tained. In Sec. III, in the same spirit and method, we will
compute the LDOS of AES for the flat edge. We will discuss
the gauge argument of phase diagram and draw a conclusion
in Sec. IV.

II. BOGOLIUBOV-DE GENNES HAMILTONIAN AT
ZIGZAG EDGE

To accommodate different pairing symmetries within one
theoretical framework, it is convenient to start from the BdG
Hamiltonian40

HBdG = t �
�r,r��,�

c�
†�r�c��r�� − ��

r,�
c�

†�r�c��r�

+ �
�r,r��

����r,r��c↑�r�c↓�r�� + ��r,r��c↓
†�r��c↑

†�r�� ,

�1�

where only the nearest-neighbor hopping and pairing are in-
cluded. Because the particle-hole symmetry is absent in the
triangular lattice, the sign of the hopping amplitude t is cru-
cial. Recent experiments41,42 suggest that the maximum of
the band occurs at the � point, which implies t�0. The
pairing amplitudes are either symmetric ��r ,r��=��r� ,r� or
antisymmetric −��r� ,r� depending on whether the Cooper
pairs are spin singlets or triplets.

In this paper, we will discuss two natural boundary to-
pologies of a triangular lattice: zigzag and flat edges, as
shown in Fig. 1 and Fig. 13, respectively. The conventions
for the spatial coordinates and also the pairing symmetries
can be found in the figures as well. For instance, the zigzag
edge is chosen to lie in the y axis and the flat edge along the
x axis in our convention.

We start with the zigzag edge first by cutting the infinite
triangular lattice along the y axis. Note that the semi-infinite
lattice is still translational invariant along the boundary and
thus can be mapped onto a collection of semi-infinite 1D
chains, carrying definite transverse momentum ky after par-
tial Fourier transformation. One important subtlety about
partial Fourier transformation is the folding of Brillouin
zone. The conventional hexagonal shape must be reshaped
into appropriate rectangular one so that the summations over
kx and ky are decoupled.43 For the zigzag edge, the recon-
structed rectangular Brillouin zone is shown in the bottom of
Figs. 1, 8, and 10. After the partial Fourier transformation,

TABLE I. Existence of Andreev edge state at zigzag and flat
edges and its implication for pairing symmetry.

Zigzag edge Flat edge Pairing symmetry

Yes No px or f

No Yes py

Yes Yes dxy

No No dx2−y2 or s

FIG. 1. �Color online� Gap function with the f-wave symmetry
at the zigzag edge of a triangular lattice. The sign convention of the
pairing potential is shown in the shaded hexagon. The bottom figure
represents the Fermi surface in the reshaped Brillouin zone for the
zigzag edge. The nodal lines of the f-wave gap function are shown
in blue lines and the nodal points are the intersections of the Fermi-
surface contour and the nodal lines.
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the Hamiltonian for the collection of the effective 1D chains
along x direction is

H = �
ky

	†�ky��H P


P

† − H 		�ky� �2�

with 
= f , d, and p, which are denoted as f-, d-, and p-wave
pairing, respectively. Here we introduce the Nambu basis
	†�ky�= �c↓

†�x ,ky� ,c↑�x ,−ky�� and the semi-infinite matrix for
the hopping term of semi-infinite 1D chains

H =

− � t1 t2 0 0 ¯

t1 − � t1 t2 0 ¯

t2 t1 − � t1 t2 ¯

0 t2 t1 − � t1 ¯

· · · · · ¯

· · · · · ¯

� �3�

with the effective hopping amplitude t1=2t cos��3ky /2� and
t2= t. The momentum dependence of the matrix elements is a
consequence of the partial Fourier transformation. The pair-
ing potential P
 with different symmetries will be studied in
details in Secs. II A–II C.

A. f-wave paring

We start with the AES of f-wave pairing symmetry at
zigzag edge. The f-wave symmetry carries angular momen-
tum l=3 and thus corresponds to spin-triplet pairing required
by Fermi statistics. It implies that the pairing potential is
antisymmetric, ��r ,r��=−��r� ,r�. Taking the tight-binding
approximation, the pairing potential is rather simple
��r ,r��=����=� cos 3� with the relative angle �=2n� /6,
where n is an integer. The sign convention for different bond
orientations is fixed in Fig. 1. We can solve for the nodal
lines by setting the gap function to zero, �cos�kx /2�
−cos��3ky /2��sin�kx /2�=0. These nodal lines are drawn in
the reshaped Brillouin zone in Fig. 1. At different fillings
�chemical potentials�, the nodal points are the intersections
of the Fermi-surface contour and the nodal lines. These nodal
points turn out to be the key for determining the structure of
the phase diagrams for the AES. The presence of the open
boundary complicates the story and we need to write down
the pairing potential in the coordinate space. After some al-
gebra, the semi-infinite matrix P f of Eq. �2� takes the form

P f =

0 − �1 � 0 0 ¯

�1 0 − �1 � 0 ¯

− � �1 0 − �1 � ¯

0 − � �1 0 − �1 ¯

· · · · · ¯

· · · · · ¯

� �4�

with �1=2� cos��3ky /2�. A simple unitary transformation
brings the Hamiltonian into SUSY form described in the Ap-
pendix. The effective Hamiltonian37,44 in canonical SUSY
notation is

H = �
ky



†�ky�� 0 A


A

† 0

	
�ky� , �5�

where the matrix A
 takes the general form

A
 =

− � T1


 T2

 0 0 ¯

T
1̄



− � T1


 T2

 0 ¯

T
2̄



T

1̄



− � T1


 T
2̄



¯

0 T
2̄



T

1̄



− � T1



¯

· · · · · ¯

· · · · · ¯

� . �6�

Although we concentrate on the f-wave symmetry in this
section, the derivations of the matrix elements of A
 are
completely general and work for different pairing symme-
tries.

For the current case, P f
†=−P f for f-wave pairing, the ba-

sis for the SUSY form is

 f�ky� = c↓�x,ky� − c↑
†�x,− ky�

c↓�x,ky� + c↑
†�x,− ky�

� �7�

and the matrix elements of A f are

T
1,1̄

f
= 2�t � ��cos��3

2
ky	 ,

T
2,2̄

f
= t � � . �8�

It will become clear later that T1
f �T

1̄

f
and T2

f �T
2̄

f
are crucial

for the existence of the edge states.
For the Hamiltonian in Eq. �5�, the zero-energy states are

“nodal;” i.e., half of the components in the spinor vanish and
can be classified by the so-called SUSY parity �see the Ap-
pendix� as

�−� = � 0

�−�x�
	, �+� = ��+�x�

0
	 . �9�

It is straightforward to show that the Harper equations be-
come decoupled for the zero-energy states and simplify a bit.
The solution with positive Witten parity �+�x� is annihilated
by A


†; i.e., it belongs to the null space of the operator. Simi-
larly, the solution with negative Witten parity �−�x� spans the
null space of the operator A
. It is worth emphasizing that
bringing the Hamiltonian into the SUSY form simplifies the
algebra and allows analytical calculations for AES as derived
here.

To include the open boundary condition, the edge state
can be constructed by the generalized Bloch theorem.33 Tak-
ing states with negative Witten parity as a working example,
one can construct an edge state from appropriate linear com-
binations of the zero-energy modes, �−�x�=��a��z��x. Since
the zero-energy modes satisfy A
�−�x�=0, z is a solution of
the following characteristic equation:

IDENTIFYING THE PAIRING SYMMETRY IN SODIUM… PHYSICAL REVIEW B 78, 224522 �2008�

224522-3



T
2̄


 1

z2 + T
1̄


1

z
+ T1


z + T2

z2 = � . �10�

It is clear that the algebraic equation gives four solutions of
z for the given chemical potential and the transverse momen-
tum. However, not all solutions are allowed. For the infinite
lattice, the wave function must remain finite at infinities,
�������� and ���−�����. It implies that only �z�=1 solu-
tions are allowed. These are the plane-wave solutions with
real momentum defined as z=eik. However, for an open
boundary with zigzag shape, the boundary conditions change
to

��− 1� = 0, ��0� = 0, ������ � � . �11�

Thus, �z��1 is required to keep the wave function finite
which is less strict than the �z�=1 criterion for translational
invariant systems. However, we have additional two bound-
aries conditions at x=0,−1. The edge state does not always
exist, unless we have enough �z���1 zero modes to construct
the edge states.

Here comes the simple counting. If all of the four solu-
tions satisfy �z���1, we can construct two edge states. If
three solutions are found, one edge state can be constructed.
Otherwise, there will be no edge state. In the case of the
f-wave pairing symmetry, we plot the magnitude of the so-
lutions �z�� as a function of the transverse momentum ky in
Fig. 2. The z plot sensitively depends on the chemical poten-
tial �.

Now we would like to explain how to obtain the phase
diagram for AES from the z plots. We start with the first z
plot �upper left� in Fig. 2 where the chemical potential is
� / t=4 and the pairing potential is � / t=0.4. There are four
intersections with �z�=1 dashed line. These are the nodal
points. At larger momentum, the �z�=1 dashed line intersects
with one solution �orange line� and gives rise to the nodal
point. At small momentum, the dashed line intersects with
two degenerate solutions �orange and blue lines� at the same
time and corresponds to a pair of degenerate nodal points.
These nodal points correspond to the single and double
circles in the phase diagram. Now we can proceed to deter-

mine how many edge states �−� with negative Witten parity
can be found. Near the zone boundary ky =� /�3, there are
two solutions �green and blue lines� with �z��1. Since there
are two constraints from the zigzag boundary, no edge state
can be constructed. Passing the nodal point, there are three
solutions �green, blue, and orange lines� and thus one edge
state starts to emerge. The AES with negative Witten parity is
marked by yellow color in the phase diagram. Moving to-
ward the zone center, the number of desired solution reduces
to one �green line� after passing the twofold-degenerate
nodal point. Thus, no edge state is present in this regime.
Due to the parity symmetry in y direction, the phase diagram
is symmetric when ky→−ky.

What about the edge state �+� with positive Witten par-
ity? One should repeat the derivation for the characteristic
equation and look for �z��1 solutions to construct the edge
states again. However, there is some symmetry hidden in the
algebraic equation and the repetition is not necessary. Since
the matrices A and A† are Hermitian conjugate to each other,
the algebraic equation for the positive Witten parity modes
can be obtained by replacing z→1 /z in Eq. �10�. That is to
say, the decaying solutions for positive Witten parity can be
calculated from the �z��1 solutions in Eq. �10�. This relation
is very helpful in constructing the remaining part of the
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FIG. 2. �Color online� The ky momentum dependence of �z� for the generalized Bloch states with the f-wave symmetry at the zigzag edge.
The lines with different colors represent four solutions of the Bloch state with the parameters t=1 and �=0.4. The chemical potentials in the
top-left and top-right figures are � / t=4 and � / t=1, respectively. The bottom-left and bottom-right figures are for � / t=−1 and � / t=−2.5.
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FIG. 3. �Color online� Phase diagram for AES with the f-wave
pairing at different chemical potentials. The single point circle
marks the nodal points without degeneracy while the double circles
denote the twofold-degenerate nodal points. The green/yellow col-
ors denote the SUSY parity �1 and the single/double lines mean
onefold/twofold-degenerate edge states.
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phase diagram. Near the zone center in the first z plot �upper
left� in Fig. 2, there are three �z��1 solutions and they cor-
respond to one edge state with positive Witten parity. In
other regimes, no such edge state exists. Combining the re-
sults for both Witten parities, the first part of the phase dia-
gram in Fig. 3 is obtained.

Since we compute the value of z for each transverse mo-
mentum ky, the quasiparticle wave function of Bloch states
can be obtained straightforwardly. Thus, in addition to the
phase diagram, we can also compute the LDOS of the edge
state at specific transverse momentum ky. We can also inte-
grate over the Brillouin zone to obtain the spatial profile for
LDOS that can be measured directly in the scanning tunnel-
ing microscopy �STM� experiments. Furthermore, the
momentum-resolved LDOS provides additional information
about the enhanced spectral weight of the quasiparticles at
specific transverse momenta. Thus, we can predict the evo-
lution of the so-called “hot spots” in the FT-STS experi-
ments.

Let us elaborate on the physical properties of the AES
now. In order to visualize these edge states better, we calcu-
late the local density of states D�x ,ky�=� j�� j�x��2��E� versus
transverse momentum ky, as shown in the top panels of Figs.
4–6 at different chemical potentials. Note that the edge states
merge into the bulk at the nodal points and the weighting of
the LDOS is suppressed to zero. Furthermore, the lattice ap-
proach reveals a much richer spatial structure in comparison
with the conventional Andreev equations in the continuous

limit. For instance, the LDOS has a strong dependence on
the transverse momentum with transparent peak structures.
For 2�� / t�6, there are three peaks separated by the nodal
points and the peak positions change with the chemical po-
tential. At � / t=2, the outer peaks move to the boundary of
Brillouin zone and merge into one. Therefore, for 0�� / t
�2, there are only two peaks located at the center and the
boundary of the Brillouin zone and the locations of the peaks
do not change with the chemical potential. Further reducing
the chemical potential to the regime −2�� / t�0, the rela-
tive weights of the peaks change but the locations remain
fixed.

By integrating over the Brillouin zone, we can compute
the spatial profile of the LDOS in coordinate space as shown
in Figs. 4�b�, 5�b�, and 6�b� at different chemical potentials.
On top of the decaying trend, the LDOS also shows non-
trivial oscillation due to quantum interferences due to differ-
ent zero modes. These oscillations can only be captured
faithfully in the lattice approach. For instance, at � / t=4, the
LDOS at the outermost edge site is not the largest as one
would naively expect in the continuous theory. Furthermore,
the decay length is smaller as the chemical potential de-
creases.

The momentum-resolved LDOS can also help us to deter-
mine the hot spots due to quasiparticle scattering or interfer-
ences in FT-STS experiments. By Fourier analysis of the
STM data, the momentum transfer between quasiparticle
scatterings is revealed. The momentum transfer associated
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FIG. 4. �Color online� LDOS for the f-wave pairing �a� along the x direction at different transverse momentum ky at the chemical
potential � / t=4. �b� Shows the spatial trend of the integrated LDOS over the Brillouin zone that can be measured directly from STM
experiments.
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FIG. 5. �Color online� Momentum-resolved �a� and the integrated �b� LDOSs for the f-wave pairing at the chemical potential � / t=1.
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with the scattering process between peaks in LDOS will
emerge after Fourier transformation. In Fig. 7, the momen-
tum transfers between peaks in LDOS are plotted versus the
chemical potential. For � / t�2, there are three peaks giving
two specific momentum transfers. For � / t�2, there are only
two peaks located at the center and the boundary of the Bril-
louin zone. Thus, the momentum transfer is always � /�3
that is half of the Brillouin zone.

B. dxy-wave pairing I

For easier experimental comparisons, we would also work
out some other pairing symmetries explicitly. Since the deri-
vations are rather similar, we would skip the repeated parts
and concentrate on the different outcomes. Now we turn to
the dxy pairing symmetry at the zigzag edge. For dxy pairing
symmetry, Cooper pairs form spin singlets and the gap func-
tion in the coordinate space is thus symmetric, ��r ,r��
=��r� ,r�. Again, within the tight-binding approximations,
the pairing potential is rather simple, ��r ,r��=� sin 2�, with
relative angle �=2n� /6, where n is an integer. The nodal
lines, satisfying the constraint sin�kx /2�sin��3ky /2�=0, are
shown in the reconstructed Brillouin zone in Fig. 8. The
Hamiltonian for the hopping is identically the same, so that
we do not put it down again. On the other hand, the pairing
potential consists of another semi-infinite matrix Pd

Pd =

0 − i�2 0 0 0 ¯

i�2 0 − i�2 0 0 ¯

0 i�2 0 − i�2 0 ¯

0 0 i�2 0 − i�2 ¯

· · · · · ¯

· · · · · ¯

� �12�

with the effective 1D pairing potential �2
=�3� sin��3ky /2�. Note that the next-nearest-neighbor pair-
ing potentials are absent due to the nodal structure of
dxy-wave pairing symmetry along the x direction �see Fig. 8�.
Making use of Pd=Pd

†, a unitary transformation,

d�x,ky� = c↓�x,ky� − ic↑
†�x,− ky�

c↓�x,ky� + ic↑
†�x,− ky�

� , �13�

is devised to bring the BdG Hamiltonian into the SUSY form
in Eq. �5�. Although the pairing symmetry is different, the
structure of the SUSY Hamiltonian remains the same form.
After some algebra, the off-diagonal components of the
semi-infinite matrix Ad are,
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FIG. 6. �Color online� Momentum-resolved �a� and the integrated �b� LDOSs for the f-wave pairing at the chemical potential � / t=−1.
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FIG. 7. �Color online� Predicted hot spots in FT-STS experiment
for the f-wave symmetry near the zigzag edge. The hot spots are
obtained by locating the momentum difference between large peaks
in LDOS. After � / t�2, the second peak disappears since the outer
peaks merge into one at the boundary of Brillouin zone.

FIG. 8. �Color online� Gap function with the dxy symmetry at
the zigzag edge of a triangular lattice. The bottom figure represents
the reshaped Brillouin zone, nodal lines, and nodal points for the dxy

symmetric gap function with the same convention as explained in
the f-wave case.
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T
1,1̄

d
= 2t cos��3

2
ky	 � �3� sin��3

2
ky	 ,

T
2,2̄

d
= t . �14�

As mentioned before, the hidden SUSY in the BdG
Hamiltonian makes the zero-energy modes nodal for all pair-
ing symmetries. Repeating the same calculations, the z plots
are obtained at different chemical potentials. The only differ-
ences are the matrix elements T

1,1̄

d
and T

2,2̄

d
due to different

pairing symmetry. By counting the decaying modes with �z�
�1, we can construct the phase diagram for AES with dxy
pairing symmetry as shown in Fig. 9. The phase diagram for
dxy symmetry appears to be much simpler since the number
of nodes is reduced and the only double node lies in ky =0.
Starting from the regime 2�� / t�6, there exists an edge
state with the positive/negative Witten parity depending on
the sign of the transverse momentum. When reaching � / t
=2, the nodal points move to the boundary of the reshaped
Brillouin zone, so that the edge state exists for every trans-
verse momentum. Further reducing the chemical potential to
the regime −2�� / t�2, the nodal points move backward to
the center again. For −3�� / t�−2, no edge state can be
found. It is worth mentioning that the nodal point connecting
edge states with opposite Witten parities must be twofold
degenerate by simple counting. Finally, we also calculated
the hot spots at different chemical potentials, as shown in
Fig. 12, which can be measured in FT-STS experiment.

C. px-wave paring

We come to the last case at the zigzag edge—the px pair-
ing symmetry. Within the tight-binding approximations, the
gap function is ��r ,r��=� sin �, with relative angle �
=2n� /6 where n is an integer. The nodal lines in the mo-
mentum space, as shown in Fig. 10, are determined by the
constraint �2 cos�kx /2�+cos��2ky /2��sin�kx /2�=0. Follow-
ing the same steps, the semi-infinite matrix Pp is

Pp =

0 �3 � 0 0 ¯

− �3 0 �3 � 0 ¯

− � − �3 0 �3 � ¯

0 − � − �3 0 �3 ¯

· · · · · ¯

· · · · · ¯

� �15�

with the effective gap potential �3=� sin��3ky /2�. It is clear
that Pp=−Pp

†. Since the semi-infinite matrix Pp shares the

same property as P f for the f-wave pairing, the same basis
�Eq. �7�� can be utilized to bring the BdG Hamiltonian into
the SUSY form.

After some algebra, the matrix elements of the semi-
infinite matrix Ap in Eq. �5� can be computed as

T
1,1̄

p
= �2t � ��cos��3

2
ky	 ,

T
2,2̄

p
= t � � . �16�

Following the same steps to obtain the z plot, we can count
the number of decaying modes with �z��1. The same con-
struction leads to the phase diagram of AES for the px pair-
ing symmetry as plotted in Fig. 11. Although we do not show
the momentum-resolved LDOS for the present case, it can be
computed in a similar way as for the f-wave pairing. Figure
12 shows the evolution of the momentum transfer between
the peaks in LDOS at different chemical potentials and can
be compared with the hot spots in the FT-STS measurements.

As Fig. 11 shows, for the px pairing symmetry, all edge
states live in the null space of the semi-infinite matrix Ap

†,
which are rather different from the f- and d-wave symme-
tries. That is to say, only AES with positive Witten parity

FIG. 9. �Color online� Phase diagram for AES with the dxy pair-
ing in the presence of the zigzag edge. The meanings of the labels
are the same as in the f-wave case.

FIG. 10. �Color online� Gap function with the px symmetry at
the zigzag edge of a triangular lattice. The bottom figure represents
the reshaped Brillouin zone, nodal lines, and nodal points for the px

symmetric gap function with the same convention as explained in
the f-wave case.

FIG. 11. �Color online� Phase diagram for AES with the px

pairing in the presence of the zigzag edge. The meanings of the
labels are the same as in the f-wave case.
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�according to the our convention here� exists. The qualitative
difference arises from the sign of the gap function across the
open boundary. For the px pairing symmetry, the pairing po-
tentials at the edge sites all share the same sign. The pairing
potential only changes signs when crossing the edge along
the y direction. As a result, the null space of the semi-infinite
matrix Ap vanishes and all edge states belong to the null
space of Ap

† instead. Later, we will find that it also happens
for the py pairing symmetry at the flat edge. Again, the un-
derlying reason is that the gap function only changes signs
across the open boundary of the system.

III. BOGOLIUBOV-DE GENNES HAMILTONIAN AT FLAT
EDGE

By cutting the triangular lattice in another direction �along
the x axis�, we end up with a semi-infinite lattice with a flat
edge as shown in Figs. 13 and 15. Since the semi-infinite
lattice is still translational invariant along the x direction, the
semi-infinite can be brought into the sum of the 1D chains by
partial Fourier transformation along the edge direction. Note
that, to maintain the Fermi statistics between the lattice op-
erators, the Brillouin zone must be reshaped in a different
way as shown in Figs. 13 and 15. In the Nambu basis,

	̃†�kx ,y�= �c↓
†�kx ,y� ,c↑�−kx ,y��, the BdG Hamiltonian of the


-wave pairing symmetry can be represented as

H̃ = �
kx

	̃†�kx,y�� H̃ P̃


P̃

† − H̃

		̃�kx,y� . �17�

Here H̃ is a semi-infinite matrix for the effective hopping in
the 1D chains labeled by different momentum kx,

H̃ =

− �̃ t̃1 0 0 0 ¯

t̃1 − �̃ t̃1 0 0 ¯

0 t̃1 − �̃ t̃1 0 ¯

0 0 t̃1 − �̃ t̃1 ¯

· · · · · ¯

· · · · · ¯

� �18�

with the momentum-dependent hopping amplitude t̃1
=2t cos�kx /2�. Note that the chemical potential is renormal-
ized, �̃=�−2t cos�kx�, after the partial Fourier transforma-
tion. Not only the hopping matrix is different from that for

the zigzag edge, the other semi-infinite matrix P̃
 for the
pairing potentials with the 
-wave pairing symmetry would
be different as well. In the following, we will study the phase
diagrams of AES with different pairing symmetries near the
flat edge in detail.

A. dxy-wave pairing II

For the dxy pairing symmetry, the AES exists for both the
zigzag and the flat edges. After partial Fourier transformation

in the x direction, the pairing potential P̃d in Eq. �17� can be
explicitly worked out as follows:

P̃d =

0 − i�̃1 0 0 0 ¯

i�̃1 0 − i�̃1 0 0 ¯

0 i�̃1 0 − i�̃1 0 ¯

0 0 i�̃1 0 − i�̃1 ¯

· · · · · ¯

· · · · · ¯

� �19�

with �̃1=�3� sin�kx /2�. To obtain the zero-energy states, it
is convenient to bring the effective Hamiltonian into the
SUSY form as in the zigzag case,

H̃ = �
kx

̃

†�kx,y�� 0 Ã


Ã

† 0

	̃
�kx,y� , �20�

where 
 denotes the pairing symmetry considered. For the

flat edge, the semi-infinite matrix Ã
 is simpler than that for
the zigzag edge since it only has two off-diagonal rows in-
stead of four,

−3 −2 0 2 4 6
0 µ/t

∆k
y

p
x

d
xy

3

π

3
π

2

FIG. 12. �Color online� Predicted hot spots in FT-STS experi-
ment for the dxy or px pairing symmetry near the zigzag edge. The
hot spots are obtained by locating the momentum difference be-
tween large peaks in LDOS.

FIG. 13. �Color online� Gap function with the dxy symmetry at
the flat edge of a triangular lattice. The figure on the right-hand side
represents the reshaped Brillouin zone, nodal lines, and nodal points
for the dxy symmetric gap function with the same convention as
explained in the f-wave case.
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Ã
 =

− �̃ T̃1


 0 0 0 ¯

T̃
1̄



− �̃ T̃1


 0 0 ¯

0 T̃
1̄



− �̃ T̃1


 0 ¯

0 0 T̃
1̄



− �̃ T̃1



¯

· · · · · ¯

· · · · · ¯

� . �21�

The matrix elements can be worked out explicitly from the

semi-infinite matrix P̃
 in Eq. �17� which depends on the
pairing symmetry. For the dxy pairing symmetry, the semi-

infinite matrix satisfies P̃d= P̃d
†. Thus, the unitary transforma-

tion to the SUSY form is

̃d�kx,y� = c↓�kx,y� − ic↑
†�− kx,y�

c↓�kx,y� + ic↑
†�− kx,y�

� . �22�

It is straightforward to work out the matrix elements of the

semi-infinite matrix Ãd,

T̃
1,1̄

d
= 2t cos� kx

2
	 � �3� sin� kx

2
	 . �23�

Again, the zero-energy modes exhibit the nodal structure
and can be classified into two categories with opposite Wit-
ten parities,

�̃−� = � 0

�̃−�y�
	, �̃+� = ��̃+�y�

0
	 . �24�

Here �̃−�y� and �̃+�y� belong to the null space of the semi-

infinite matrices Ã
 and Ã

†, respectively. The edge state is

constructed from the generalized Bloch theorem. For in-
stance, the edge state with negative Witten parity is �−�y�
=��a��z��y, where z satisfies,

T̃
1̄


1

z
+ T̃1


z = �̃ . �25�

The above algebraic equation gives two solutions for z. In
the presence of the flat edge, the boundary conditions are
slightly different,

�̃�0� = 0, ��̃���� � � . �26�

As before, only decaying modes with �z��1 are allowed.
But, only one constraint is required at the flat edge in con-
trast to the two constraints for the zigzag edge. The simpli-

fication is due to the missing matrix elements T̃
2̄



and T̃2


 at
the flat edge which makes searching for the AES much easier
here. The phase diagram for the AES with dxy pairing sym-
metry is shown in Fig. 14. Using the Bloch wave function of
those edge states, we obtain the LDOS for all transverse
momenta kx. Then, we can proceed to predict the sharp peaks
in STM data after Fourier analysis by finding out the mo-
mentum transfer between peaks in the LDOS. The results are
plotted in Fig. 17 versus the chemical potential � / t.

B. py-wave pairing

We now continue to study the AES with the py-wave pair-
ing symmetry at the flat edge as shown in Fig. 15. The
nearest-neighbor gap amplitude of py-wave pairing takes the
form ��r ,r��=� cos � with relative angle �
=0,� /3,2� /3, . . . ,5� /3. The nodal lines in reshaped Bril-
louin zone, shown in Fig. 15, are determined by the equation
sin��3ky /2�cos�kx /2�=0. Again, applying partial Fourier
transformation to the gap function, we obtain the semi-
infinite matrix for the pairing potential,

P̃p =

0 �̃2 0 0 0 ¯

− �̃2 0 �̃2 0 0 ¯

0 − �̃2 0 �̃2 0 ¯

0 0 − �̃2 0 �̃2 ¯

· · · · · ¯

· · · · · ¯

� �27�

with �̃2=�3� cos�kx /2�. Because of P̃p= P̃p
†, the Hamil-

tonian can be brought into SUSY form in the basis,

̃p�kx,y� = c↓�kx,y� − c↑
†�− kx,y�

c↓�kx,y� + c↑
†�− kx,y�

� . �28�

After straightforward algebra, the components of the matrix

Ãp for the py-wave pairing are

T̃
1,1̄

p
= �2t � ��cos� kx

2
	 . �29�

The effective 1D chains for the flat edge are universal.
Thus, the whole discussions and calculations for the d-wave

FIG. 14. �Color online� Phase diagram for AES with the dxy

pairing in the presence of the flat edge. The meanings of the labels
are the same as in the f-wave case.

FIG. 15. �Color online� Gap function with the py symmetry at
the flat edge of a triangular lattice. The figure on the right-hand side
represents the reshaped Brillouin zone, nodal lines, and nodal points
for the py symmetric gap function with the same convention as
explained in the f-wave case.
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pairing with the flat edge can be applied here. Substituting

the matrix elements T̃1
p and T̃

1̄

p
into Eq. �25� and combining

the boundary conditions of the flat edge �Eq. �26��, we obtain
the phase diagram of AES for the py pairing symmetry as
shown in Fig. 16. As we mentioned in Sec. II, the p-wave
pairing potential changes sign across the edge boundary and
lead to edge states with positive Witten parity only. Finally,
using the Bloch wave function of those edge states, we ob-
tain the LDOS for all transverse momenta kx. Then, we can
proceed to predict the sharp peaks in STM data after Fourier
analysis by finding out the momentum transfer between
peaks in the LDOS. The results are plotted in Fig. 17 versus
the chemical potential � / t.

IV. DISCUSSIONS AND CONCLUSIONS

There are simple patterns behind the phase diagrams we
investigated in Secs. II and III. For instance, the total Witten
parity changes by one when crossing a single nodal point
while it changes by two across the double nodal point. It
seems that the global structure of the phase diagram is dic-
tated by the nodal points. These observations are indeed cor-
rect and can be explained by the continuity of z plots. How-
ever, there is something deeper about why the nodal points
are so important. In the following, we would like to make
use of Oshikawa’s gauge argument38,39 and explain why edge
states can only start or end at the nodal points.

Suppose we wrap up the semi-infinite lattice into tubular
conformation and adiabatically thread a unit flux 	0=2�
through it. The flux insertion changes the Hamiltonian from
H�	=0� to a different topological sector H�	=	0�. If the

ground state of the original Hamiltonian is protected by a
gap, the insertion of a unit flux also transforms the ground
state from �0� to �0�� of the same energy. The flux insertion
can be achieved by the constant vector potential Ad=	0 /Ld
with the circumference of the tube Ld in the transverse direc-
tion of xd. Meanwhile, the constant vector potential com-

mutes with the transverse momentum P̂d that implies that the
momentum remains constant in the whole adiabatic proce-

dure, i.e., P̂d�0��= P0�0��. Before being able to compare
�0� with �0��, we need to restore the Hamiltonian to the
same topological sector H�	=0�. The required large gauge
transformation is

U = expi
2�

Ld
�

r�
xdn̂r�� , �30�

where n̂r� is the electron density at r�. Now UH�	0�U†

=H�0�, so U�0�� is a ground state of the original Hamil-
tonian H�0�. The momentum of the ground state can be

evaluated straightforwardly, P̂dU�0��= �UP̂d+ �P̂d ,U���0��
= �P0+2�N /Ld�U�0��. The total number of electrons can be
separated into bulk and edge parts, N=NB+NE. The momen-
tum shift is then �P=2�N /Ld=2�C
b+2�
e, where 
b
=NB /Va and 
e=NE /Ld are the filling factors of the lattice
and edge, respectively. The area of the system is Va and the
transverse size is C=Va /Ld.

Now, let us focus on the edge part. If we fill in only one
edge state with 
e=1 /Ld, the momentum shift by the flux-
insertion-removal trick is �P=2� /Ld. The number of edge
state is then equal to the ground-state degeneracy. Since the
gauge argument holds only when the ground state is pro-
tected by a finite gap, we can move one edge state to another
between the nodal points.

Another interesting perspective is to relate the existence
of AES to the underlying structure of the effective 1D
model.33 The semi-infinite lattice can be mapped into effec-
tive 1D models. By choosing an appropriate unit cell, the 1D
chain will contain only nearest-neighbor hopping described
by the general Hamiltonian

H = C1
†

� R + C1 � R† + C0 � 1 , �31�

where C1 is the hopping matrix connecting nearest-neighbor
cells and C0=C0

† for the hopping within the cell. The matri-
ces C0 and C1 are square matrices with s rows, where s is the
number of effective lattice sites in the unit cell. The semi-
infinite matrix �R�i,i�=�i+1,i is the displacement operator on
the effective 1D chain. We construct the edge states from the
Bloch states ��i�=��a����z��i, where z satisfies det�zC1

†

+ 1
z C1+C0�=0. The boundary condition is extremely simple

in this representation, C1��0�=��C1�a����=0. Therefore,
the number of the edge states is the dimension of the null
space of C1.

If the rank of matrix C1 is full, it means no edge state. In
fact, the reflection symmetry with respect to the open bound-
ary often implies that the rank of C1 is full. For example, in
the py-wave pairing symmetry at the zigzag edge, one can
find out that z in the Bloch state should satisfy Eq. �10� with
T2̄=T2 and T1̄=T1. That is to say, if z is a solution, 1 /z is also

FIG. 16. �Color online� Phase diagram for AES with the py

pairing in the presence of the flat edge. The meanings of the labels
are the same as in the f-wave case.

−3 −2 0 2 4 6
0 µ/t

∆k
x

p
y

d
xy

π/2

π

FIG. 17. �Color online� Predicted hot spots in FT-STS experi-
ment for the dxy or py pairing symmetry near the flat edge. The hot
spots are obtained by locating the momentum difference between
large peaks in LDOS.

WEN-MIN HUANG AND HSIU-HAU LIN PHYSICAL REVIEW B 78, 224522 �2008�

224522-10



a solution. Thus, except the nodal points, there are always
two zero modes with �z��1. Since there are also two con-
straints, we end up with no edge state. One can also check
that the reflection symmetry makes the rank of the matrix C1
full and thus leads to no edge state.

In conclusion, we study the AES with different pairing
symmetries and boundary topologies on semi-infinite trian-
gular lattice of NaxCoO2·yH2O. By mapping the 2D triangu-
lar lattice to the 1D counterpart, we can obtain the phase
diagram and calculate the LDOS of the AES at both zigzag
and flat edges. Surprisingly, the structure of the phase dia-
gram crucially relies on the nodal points on the Fermi sur-
face and can be explained by an elegant gauge argument.
Finally, the momentum-resolved LDOS allows us to predict
the hot spots in Fourier-transformed scanning tunneling
spectroscopy experiments.
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APPENDIX: N=2 SUPERSYMMETRIC QUANTUM
MECHANICS

The effective Hamiltonians in Eqs. �5� and �20� can be
described as the N=2 SUSY quantum mechanics,37 where N
is the number of supercharge operators. The two supercharge
operators can be constructed explicitly as

Q1 = H = � 0 A
A† 0

	, Q2 = � 0 − iA
iA† 0

	 . �A1�

One can verify that all SUSY algebra is satisfied. According
to the definition, the SUSY Hamiltonian is

HSUSY = Q1
2 = Q2

2 = �AA† 0

0 A†A 	 . �A2�

Once we know how to diagonalize the SUSY Hamiltonian,
we can also construct the eigenstates of the supercharge op-
erators �our goal here� as well. The SUSY algebra relates the
E�0 �the energy of the SUSY Hamiltonian� eigenstates with
the opposite Witten parities

�−� =
1

�E
Q†�+� , �A3�

�+� =
1

�E
Q�−� , �A4�

where the complex supercharges are defined as

Q =
1
�2

�Q1 + iQ2� = �0 A
0 0

	 , �A5�

Q† =
1
�2

�Q1 − iQ2� = � 0 0

A† 0
	 . �A6�

From the transformation of the Witten parities, one can real-
ize that the energy spectrum of Q1 is symmetric about �=0,
i.e., �= � �E�. On the other hand, the E=0 states satisfy the
operator equation; i.e., they live in the null space of the com-
plex supercharge Q and Q†,

Q�−� = 0, �A7�

Q†�+� = 0. �A8�

If we do find some states satisfying the above equation, it is
called good SUSY because the E=0 states are annihilated by
supercharge. On the other hand, if we cannot find any E=0
state. it is often referred as bad SUSY since the ground state
carries nonzero supercharge.37 However, for condensed-
matter systems, the good SUSY gives rise to the zero-energy
anomaly while the bad SUSY actually makes the energy
spectrum symmetric about the zero energy without anomaly.
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