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Quantum discord and quantum phase transition in spin chains
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Quantum phase transitions of the transverse Ising and antiferromagnetic XXZ spin S=1/2 chains are studied
using quantum discord. Quantum discord allows the measure of quantum correlations present in many-body
quantum systems. It is shown that the amount of quantum correlations increases close to the critical points. The
observations are in agreement with the information provided by the concurrence, which measures the entangle-

ment of the many-body system.
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I. INTRODUCTION

Quantum phase transitions (QPTs) occur when the ground
state of a many-body system at absolute zero temperature
undergoes a qualitative change by variation in a coupling
and/or an external parameter.! QPTs are present in spin sys-
tems as for example in the one-dimensional (1D) XY
model?>? and in the antiferromagnetic XXZ model.*% Quan-
tum phase transitions in spin systems have been widely char-
acterized considering the pairwise entanglement between
two spin sites.” The concurrence, which is a good measure of
entanglement,3*9 is maximal close to the critical points, and
its derivatives can signal more precisely the presence of a
quantum phase transition at the critical points.?

In another register Ollivier and Zurek!® introduced the
quantum discord as a measure of quantum correlations be-
tween two separated subsystems of a many-body quantum
system. In information theory the mutual information is de-
fined as the measure of correlation between two random vari-
ables A and B. For classical system the mutual information
can be expressed in terms of two equivalent expressions
I(A;B) and J(A;B) (explicit definitions of each expres-
sions of the mutual information are provided later in the
text). However for quantum systems the two expressions are
not equal and their difference gives the quantum discord. In
parallel to the concurrence, quantum discord measures the
quantum correlations of a quantum system. In contrary to the
concurrence, the quantum discord can be different to zero
even if a quantum system is separable. The Werner state,
pwemer=%1+)\l‘1’><\1’ , where \ is a parameter and |¥)
=(|00)+|11))/+2, provides an example for which the concur-
rence is equal to zero (separable state) for A < 1/3 while the
quantum discord is different to zero.!” Hence quantum dis-
cord shows the existence of quantum correlations where con-
currence shows that the system is separable. We point that
the concurrence measures the nonlocal quantumness of cor-
relations, while quantum discord measures the total amount
of quantum correlations of a state p.

Quantum discord is used in several contexts'!2 for its
property to discernate quantum and classical correlations of
quantum systems. The behavior of the quantum, as well as
the classical correlations close to the critical points of QPTs,
can be studied. We focus our attention here on the quantum
phase transitions of the one-dimensional Ising model, which
derives from the XY model and on the antiferromagnetic
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XXZ chain. Using the quantum discord we show that the
amount of quantum correlations increases in the region close
to the critical points. In opposite the amount of classical
correlations close to the critical points decreases in the XXZ
model while it is simply monotonous in the Ising model.

The outline of the paper is the following. In Sec. II we
recall the elements of information theory which leads to the
construction of quantum discord as demonstrated by Ollivier
and Zurek.' In Secs. III and IV the quantum correlations
close to the quantum phase transition of the Ising and XXZ
models are studied. The Appendix provides the derivation of
the quantum discord for spin S=1/2 chains.

II. QUANTUM DISCORD

Information on the correlations between two random vari-
ables A and B can be obtained by measure of the mutual
information. In classical information theory the mutual infor-
mation reads

I(A;B)=H(A) + HB) - H(A,B), (1)

where the information entropy H(A)=-2_p 4, l0og p 4, and
D 4-q 1s the probability that a is the realization of the random
variable A. The joint entropy of A and B is defined by
H(A,B)==2, yP sq.B= 108 P a=4.5=p» Where p 4, ), is the
joint probability of the variables A and B to take, respec-
tively, the values a and b. Using the Bayes rule p 45,
=pp=p X P.45=p the mutual information can be rewritten into
the equivalent expression

J(A;B)=H(A) - H(A|B), (2)

where H(A|B)=-2,,p A=a|B=b 108 P a-q|5=p 1s the conditional
entropy of the random variables A and B and p 4_,3- is the
conditional probability of a being the realization of the ran-
dom variable A knowing that b is the realization of the ran-
dom variable . For classical random variables expressions
(1) and (2) are strictly equivalent. However for quantum sys-
tems the two expressions of the mutual information are in
general not equivalent and leads to define the quantum dis-
cord 8(A:B)=Z(A;B)-J(A;B) as demonstrated in Refs.
10 and 11. Quantum discord is the difference between the
two classically equivalent expressions of the mutual informa-
tion.

Mutual information expressions (1) and (2) for quantum
systems are obtained by replacing the Shannon entropy by
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the von Neumann entropy. The von Neumann entropy for the
joint state reads H(A,B)=-Try ppspln psp where the
trace runs over the Hilbert spaces of the subsystems .4 and
B, and p 4 5 is the density matrix of the quantum system. In a
similar way the entropy of the system A reads H(A)
=-Tr p4 log p4, where p, is the reduced density matrix
obtained by taking the trace over all states of the system B,
pa=Trzp 5. The quantum conditional entropy H(A|B) in
Eq. (2) quantifies the ignorance of the state of A knowing the
state of 3. It is worked out from the density matrix p A\HB

which is related to the density matrix of the system p
through'®

B B
pAnE = 7 pastl/p;,

where IT% ; is the projector onto the state j of the subsystem B
and the probability p;=Try BH p4 - The quantum condi-
tional  entropy  then reads  H (A|B)= H(.A|{HB})
=2 p;H (PA\H/‘?)-

Finally the quantum discord measuring the quantum cor-
relations between the two quantum subsystems .4 and B
reads

S(A:B) = mln{H(A) H(A,B) + H(AHHB})}
I 5,

It must be noticed that the quantum discord is minimized
over the set of state {H +. The information obtained on the
subsystem A is affected by the measure on the state of the
subsystem B. In order to get the maximum information on
the subsystem .4 we need to consider the projection onto the
states of B that disturbs least the overall quantum system.
Maximizing the information on the subsystem A corre-
sponds to minimizing the quantum discord with respect to
the set of projector {H b

Quantum discord prov1des information on the quantum
nature of the correlations between two systems. If two sub-
systems A and B are correlated classically the quantum dis-
cord is equal to zero. Moreover quantum discord shows that
quantum correlations can be present for states that are not
entangled. For example in Werner states the quantum corre-
lations are still present while the system is separable.'” To be
more precise we can consider a quantum mixed state p
=|y)(y] acting in an Hilbert space H 4® Hp. The quantum
mixed state is separable if its entanglement is equal to zero.
In this case the quantum separable state can be written as a
product of quantum states and reads p=32p,|¥; (W 4l
® (i pX 5/, where Wi,A) €Ha |3 €Hp, and Zp;=1.
The two systems A and B can be correlated through the
separable state p, and the quantum states |¢; 4) and |¢f; z) do
not have in general any classical counterpart. A consequence
of the quantumness of the states |¢4) and |ip) is that the
correlations between the two systems .4 and 3 have quantum
as well as classical nature. The quantum discord is nonzero
while the entanglement of the quantum separable state is
equal to zero. A good example is furnished by the two-qubit
separable mixed state'3
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+10X0] 4 © [y Xo_|p+ 1A 4 © [ Xlp),  (3)

where |- =%(|0) +|1)) and each qubit A and B have four
nonorthogonal states. Two-qubit separable state (3) shows a
product of quantum states that cannot have any equivalent
classical system and also present quantum correlation. Quan-
tum discord quantifies all quantum correlations including en-
tanglement between A and 5.

Note that the mutual information Z(.A;B) is the sum of
the quantum discord and the classical correlation CC(A;B)
defined in Ref. 14, Z(A;B)=8(A:B)+CC(A;B). In other
words classical correlations CC(A;B) are equal to the mu-
tual information J(A;B).

Using quantum discord to discernate the quantum from
the classical correlations we can study the behavior of such
different correlations in quantum phase transitions. In Secs.
IIT and IV we focus our attention on the quantum phase
transitions of the Ising and the XXZ spin-1/2 chains and we
study them using the quantum discord.

III. QUANTUM DISCORD AND QUANTUM PHASE
TRANSITION IN THE ISING CHAIN

The Hamiltonian of the transverse one-dimensional Ising
model reads

N
Higing == > (o}, +07),

i=

—_

with the boundary condition o)=07 and o® with «
={x,y,z} as the Pauli matrices and 0°=1. We denote by |g)
=|1) and |e)=|]) the spin-up and spin-down states. For \
=0 all spins are pointing in the z direction while for A —
they point in the x direction. In the thermodynamic limit N
— oo the Ising spin chain undergoes a quantum phase transi-
tion at the critical point A,=1. The correlation length di-
verges at this point.%’

The quantum discord is worked out from the joint state of
the two spins at the lattice sites i and j. The information on
the joint state is contained in the two-site density matrix p;,
which is derived from the following operator expansion:

3
pz] = TrZ][p] %0 ®aﬁo- ® UB

where the coefficients @ .z of the expansion are related to the
spin-spin correlation functions through the relation

Oup= TT[O'?U'}BPU] = <U,a(TJB>

Owing to the symmetry of the Hamiltonian most of the co-
efficients © 4 are equal to zero. Translation invariance re-
quires that the density matrix verifies p;;=p;;,, and is inde-
pendent of the position i. The reflection symmetry leads to
Pij=Pjis the Hamiltonian being real, the density matrix veri-
fies p;; ;=pij» and the global rotation symmetry implies that the
density matrix commutes with the operator O'ZO'Z Combining
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FIG. 1. Concurrence for nearest-neighbor spins in the Ising spin
S§=1/2 chain. The concurrence is maximal close to the critical cou-
pling \.=1.

all symmetry constraints the density matrix expressed in the

natural basis {|gg),|ge).|eg),|ee)} reduces to®
u, 0 0 y
0w x O @
Pij 0 x w 0]
y 0 0 u_
with ui=3—1 =+ g%"2+—<07Zﬁ>, w= l_<Tr’>, x= ((T‘Y‘TJT)Z(U?“U}), and y
_(atah~{aja)

(=

w

d¢

0 )

fﬁ (1+X\ cos ¢)

and wy=V(\ sin ¢)*+(1+\ cos ¢)? is the energy spectrum
of the transverse Ising chain. The spin-spin correlations func-

tions are related to the determinant of Toeplitz matrices'®
G, G, ... G,
Gy, G._ G_,
<0)icof+r> = 'O : ] : - ’
Gr—2 Gr—3 G—l
G G G2
, G, G G,
@)= Sk
G, G._ ... G
and (o%0?,,)=(0")*~G,G_,, where
1 (" 1 +X\ cos
G,.= —f do cos(dm)M
m™J w¢
N7 sin
- —f d¢ sin(¢pk) ¢.
m™Jo W¢

The quantum phase transition can be signaled by measure
of entanglement. Indeed the nearest- and next-nearest-
neighbors entanglement reach their maximum at the critical
point \..>” A good measure of the entanglement is provided
by the concurrence C. The concurrence of two spins may be
computed from the joint state p;; through the formula C
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FIG. 2. Concurrence for next-nearest-neighbor spins in the Ising
spin chain. The concurrence is maximal at the critical coupling A,
=1.

=max{0, y, — ¥,— ¥3— 74}, where the 7; are the eigenvalues in
decreasing order of the matrix R=\'p;;p,;.** The matrix p;; is
related to the transpose of the two-site density matrix by

p;;=(0"® 0”)p;(0” ® ¢”). Hence the entanglement between
two spins at site i and j is given by

x| = Vuu_,|y| - w}.

Cij =2 maX{O,

Figures 1 and 2 represent, respectively, the concurrence for
the nearest-neighbor spins C;;,; and next-nearest-neighbor
spins C;;y,. It shows that the maximum of entanglement is
reached close to A.=1. Only the derivatives of the concur-
rence show singularities at the critical points,® signaling the
presence of the quantum phase transition.

Entanglement increases close to the quantum phase tran-
sition. However entanglement is only one kind of quantum
correlation. It is then legitimate to ask: What is the behavior
of the rotal amount of quantum correlations close to the criti-
cal point of the QPT? The answer is provided by the quan-
tum discord. The details of the derivation of the quantum
discord are given in the Appendix. Figure 3 represents the
quantum discord for the Ising S=1/2 chain for nearest neigh-
bor &;;,; and next-nearest neighbor ¢;;,,. It shows that the
quantum correlations increase and are maximal in a region
close to the critical point A..
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FIG. 3. Quantum discord & for the nearest-neighbor (in dashed
line) and next-nearest-neighbor (in full line) spin sites of the one-
dimensional Ising model. The quantum discord is minimized for
¢»=0 and 6 varying progressively from zero for A<<1 to /4 for
N>1 (see the Appendix for the details on the derivation).
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More information on the location and the order of the
quantum phase transition can be obtained by consideration of
the derivatives of the quantum discord with respect to the
coupling parameter \. Indeed there is a relation between the
nonanalyticity in energy and quantum discord that leads to
the characterization of the quantum phase transition.'” Con-
sidering the energy of the spin system in terms of the re-
duced density matrix of two spins at positions i and j, the
energy reads

= E Tr[ﬁijpij]’ (5)

ij

E(p;))

where H,, ;

positions i and j. The sum of ﬁ-» over the positions i,jis

is the reduced Hamiltonian of the two spins at

equal to the Hamiltonian of the spin system, X, H =H. For
the one-dimensional Ismg model the reduced Hamlltonlan

reads Hl“ng— ()\o’“o‘” i+1,;+07/N), where N is the number of

spins and 5,-j is the Kronecker delta. The order as well as the
location of a quantum phase transition can be characterized
by the nonanalyticity of the energy. If the first derivative of
the ground-state energy presents a finite discontinuity then
the quantum phase transition is of the first order. However if
the first derivative is continuous while the second derivative
shows discontinuity or divergence, then the quantum phase
transition is of the second order. Moreover the derivatives of
the energy are related to the derivatives of the reduced den-
sity matrix, and one can show that!’

E(pl 2 |: p,j] ,
Y

FE(py) H oH,; dp;;
—5 =207 ; pu +Tr
N i 2N (7)\ 2N
Note that the derivatives of the reduced Hamiltonian are con-
tinuous with respect to the coupling parameter A. Hence a

discontinuity in the first derivative —(p'L of the energy at the
critical point implies a dlscontlnulty at least of one of the
reduced density matrices p;;. Similarly a d1scont1nu1t(y )or a
PE(p;;
N2 ;
quires the divergence of at least one of the derivatives —‘ at
the critical points. It now becomes evident that the quantum
phase transition can be characterized by an analysis of the
derivatives of the quantum discord with respect to the cou-
pling parameter A. With the quantum discord being depen-
dent on the reduced density matrix, one deduces that (i) a
discontinuity in the quantum discord implies a discontinuity
in p;; (hence the first derivative of the energy is discontinu-
ous) and a first-order QPT, and (ii) a singularity in the de-

rivative of the quantum discord implies a discontinuity or a
ﬂ

singularity in the second derivatives of the energy re-

divergence of (the second derivative of the energy is
discontinuous) and the QPT is of the second order.

Figure 4 shows that for nearest neighbors d4; ;,,/J\ pre-
sents a discontinuity at the critical point and for the next-
nearest neighbors d6; ;,»/ I\ shows a singularity. The fact that
the quantum discord is continuous while its derivatives are
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FIG. 4. First derivatives of the quantum discord with respect to
the coupling parameter \ for the nearest-neighbor (in dashed line)
and next-nearest-neighbor (in full line) spin sites of the one-
dimensional Ising model.

discontinuous or singular at A=A\, indicates that the precise
location of the critical point is at \.=1 and that the QPT is of
the second order.

For A>1 and approaching the critical point from the
right, the classical correlations decrease in opposite to the
quantum discord, which increases as depicted by Figs. 3 and
5. For A <1 both classical and quantum correlations are de-
creasing when the coupling parameter N decreases. Classical
correlations monotonically increase with respect to N while
quantum discord shows that the amplitude of the quantum
correlations increases close to the critical point A .. From the
mutual information we infer that the spins are uncorrelated
for A— 0 as depicted in Fig. 6 and can be confirmed by the
Hamiltonian which reduces to HIsing,A:O=_E§\i10§‘ Close to
the critical point the amount of quantum correlations is maxi-
mal as supported by the concurrence.

IV. QUANTUM DISCORD AND QUANTUM PHASE
TRANSITION IN THE XXZ CHAIN

The Hamiltonian of the one-dimensional XXZ spin-1/2
chain reads

Hyxz =2, (SIS} + S)S) + AS3S?),
(ij)
where the sum runs over the nearest-neighbor bonds (ij). At
the critical point A.=1 the XXZ spin chain undergoes a quan-

0.8

CG,

i, i+l

0.6

0.4

CcC

02

FIG. 5. Classical correlation CC for the nearest-neighbor (in
dashed line) and next-nearest-neighbor (in full line) spin sites of the
one-dimensional Ising model.
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FIG. 6. Mutual information Z(.A; B) for the nearest-neighbor (in
dashed line) and next-nearest-neighbor (in full line) spin sites of the
one-dimensional Ising model.

tum phase transition between an XY phase for -1 <A <1
and an Ising antiferromagnetic phase for A>1.

The density matrix of two nearest-neighbor spin sites is
given by Eq. (4). However owing to the spin-flip symmetry
the magnetization is equal to zero, (¢%)=0, and the XXZ
Hamiltonian is also symmetric with respect to the rotation in
the xy plan, which leads to the equality between the spin-spin
correlation function in the xy plan (o“o"} (o) o*} Gathering
all the symmetry constraints of the XXZ Ham1ltoman the
joint density matrix p;; reduces to

u 0 00
0w x O
Pij 0 x w 0]
00 0 u
with u+:u—-+@‘—02,w-1<%1>, x—w—;ﬁ and y=0.

The spin-spin correlation functions between nearest-
neighbor spin sites for —1 <A <1 are given by'3-20

cosm™@ ([© dx xcoshx
m ) _,, sinh x cosh?(dx)

1 “ dx sinh[(1 - ®)x]
7 sinh(77®) J _,, sinh x  cosh dx
where A=cos(7®), and
x cosh x
a5 =1-
(001 = 772 j sinh x coshZ(QJx)
.\ 2 cot(md) foc dx sinh[(1 — ®)x]
Lsinhx cosh ®x

Also for A>1 the correlation functions are given by?!-23

0+i/2 dx

X
—oopisy SINN(77X) ( sin(¢hx)

(oj071) =

t
cosh v— M),

sinh v

with A=cosh v, and
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FIG. 7. Concurrence for nearest-neighbor spin sites in the XXZ
spin S=1/2 one-dimensional model.

0+i/2 dx

wepisy SINN(77X)

i =1+2

=)

sin?(vx) /)
The concurrence for the XXZ spin-1/2 chain is given by
—|ul}. Figure 7 represents the dependence of
the concurrence with respect to the control parameter A and
shows that entanglement between the nearest-neighbor spin
sites is maximal at the critical point A,=1.

In parallel the quantum discord presents the maximum of
the quantum correlations at the critical point. The derivation
of the quantum discord for the XXZ model follows the same
scheme as for the Ising model and the details of the deriva-
tion are provided in the Appendix. Figure 8 depicts the de-
pendence of the quantum discord on the control parameter A.
The quantum discord is minimized with respect to the angles
¢ and 6 that control the axes of the projector Hf.

As depicted in Fig. 8 the quantum correlations are stron-
ger close to the QPT. On the opposite the classical correla-
tions are weaker close to the critical point A,.. Both classical
and quantum correlations measured by quantum discord and
the mutual information J(.A;B) behave accordingly to the
behavior of entanglement measured by the concurrence.

The cusps observed in Figs. 8 and 9 for both the classical
correlation and the quantum discord arise from a level cross-
ing between the ground-state energy and an excited-state en-

X (cot( vx)coth(v) —

0.4

035
03
025

0.15
0.1

0.05

FIG. 8. Quantum discord for nearest-neighbor spins in the XXZ
spin S=1/2 one-dimensional model. The quantum discord is mini-
mized for ¢=0 and 6 varying progressively from zero for A <1 to
/4 for A\>1 (see the Appendix for the details on the derivation).
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0.9

CcC

FIG. 9. Dependence of the classical correlation CC(A; B) on the
parameter A for the nearest-neighbor spin sites in the XXZ spin S
=1/2 chain.

ergy. This scheme explains the cusp observed in the concur-
rence measuring the entanglement of nearest-neighbor spin
in (d=2)-dimensional XXZ model.* A similar mechanism
explains also the fact that the concurrence is maximal at the
critical points for the one-dimensional XXZ model.?* Level
crossing induces a qualitative change in the ground states at
the critical point A,=1 and leads to the abrupt behavior of
the quantum discord and classical correlation at the quantum
phase transition. As depicted in Fig. 7 the concurrence is less
sensitive to the level crossing than the quantum discord and
the classical correlations since it does not present an abrupt
cusp at A,.

Remark that the quantum discord for the next-nearest-
neighbor spins &; ;,, is not presented for the 1D XXZ model.
The reason is that no more information can be gained by
6;.i+> than already furnished by the quantum discord for near-
est neighbors &; . Indeed the quantum discord &;,,, pre-
sents a similar dependence on the coupling parameter A as
shown by 6;;,, and its amplitude verifies &, ~20; 1,

V. CONCLUSION

Quantum phase transitions of the one-dimensional spin-
1/2 Ising and antiferromagnetic XXZ models have been stud-
ied using the quantum discord.'®!" Quantum discord is a
measure of the quantum correlation given by the difference
of two classically equivalent expressions of the mutual infor-
mation. Using quantum discord and mutual information we
showed that it is possible to discernate the quantum and the
classical nature of the correlations between two elements of a
quantum many-body system.

We demonstrated that the amount of quantum correlations
is larger close to the critical points for the quantum phase
transitions of the one-dimensional XXZ and Ising models.
For the XXZ model the amount of classical correlations de-
creases at the critical point while for the Ising model they are
simply monotonous with respect to the coupling parameter A.
The behaviors of the quantum and classical correlations mea-
sured by means of the quantum discord are in agreement
with the behavior of the entanglement computed by the con-
currence for both spin models.

Quantum discord is a good way to discernate the nature of
the correlations between the components of a quantum sys-
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tem, and it is a good qualitative indicator of the existence of
quantum phase transition. However depending on the model
studied the maximum of the quantum discord is not neces-
sarily located at the critical points as shown for the Ising
model. The quantum discord can only be used for qualitative
detection of quantum phase transitions. On the contrary the
derivatives of the quantum discord provide precise informa-
tion on the location and on the order of the quantum phase
transitions. Quantum discord'®!'! and concurrence*~ are two
useful tools to detect quantum phase transitions. Despite the
fact that implementation of concurrence is more easy and/or
rapid than for quantum discord, concurrence measures only
the nonlocal quantumness of the correlations between two
systems .4 and B. Quantum discord measures the total
amount of quantum correlations between .4 and B including
entanglement.

We showed that quantum discord agrees with the predic-
tions provided by the concurrence for the behavior of the
quantum correlations close to quantum phase transitions for
one-dimensional quantum systems. It would be interesting to
confirm this observation in future investigation of quantum
systems with higher dimensionality.
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APPENDIX: DERIVATION OF THE QUANTUM DISCORD
FOR SPIN CHAINS

The quantum discord for two systems reads &(A:B)
:min{nﬁ}{H(A)—H(A,B)+H(A|{H§3 B} for which the three
von Neumann entropies are computed over, respectively, the
reduced density matrix p4, the joint state p 4 5, and the con-
ditional density matrix p 4;2.

The reduced density matrix p 4 is given by

pa=Trigpap= (u,+w)|g)egl s+ (u_+w)le)e| 4

which leads to the von Neumann entropy of the reduced
density matrix

H(A)=~Tryp,log py

= %(1 +<0'Z>)log[%(1 +<01>)]

-a —<w>>log[§<1 —<az>)]. (A1)

The joint density matrix is equal to the density matrix
given in Eq. (4) p4=p;;» and the von Neumann entropy is
given by the sum of the Shannon entropy over the eigenval-
ues of the density matrix p;; and reads
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H(A,B)=~Trappa10g pas

=—(w+x)log(w +x) — (w—x)log(w — x)

Il e
- E e log =5

e=*

(A2)
where

%{(Lh_ + u_) * [(u+ - u_)2 + 4)72]1/2}.

The conditional density matrix p 48 is given by projec-
. . . i
tion on the arbitrary basis

|g)5="cos()]j1)5+ €' sin()]j2) 5,

le)s=e7'? sin(6)|j,)5 — cos(6)]j2) 5.

The angles ¢ and 6 control the projectors direction and the
quantum discord is minimized with respect to these angles.
The conditional entropy is then given by

B B
pans =11 p 4 511 p;,
J

. B L\ L\

with IT7 =1,® JaXials and p; =Try gl a®@lja)alspas:
For the projection onto the state |j,) where a=1,2, one

gets

pan? = lia)als @ 1)l aX;, . +le)XelaX; ~ +|g)elaY;,
+leXglaY; }p;, (A3)
where for a=1,

Xj .= [u, cos*(6) +w sin®(6)],
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X; = [u_ sin®(6) + w cos*(0)],

Y; = (e7%x + ye'®)sin(H)cos(6),

and with pjlzé[l +{0%)c0s(26)]. For the projection onto the
state |j,) the elements X j,,+ are given by

Xj, = [u, sin*(6) + w cos?(6)],
X, = [u_ cos®(0) + w sin*(0)],

Y, =- (e7%x + ye'?)sin(H)cos(0),

and with pj2=%[1—<oz)cos(20)]. The eigenvalues W; . of
conditional density matrix (A3) reads W, J_,=2’+{(Xj +
@ e @

j
+Xja,—) * RXja**_X/'w—)2+4Y./‘ana]”2}-
Finally the conditional von Neumann entropy reads

H(AHH,L?}): > —PJ‘TTAPA|HJL? log pan?
=12

== E 2 qurj,e((rb’ 0)10g \Irj,e((yb’ 0)

e=* j=1,2

(Ad)

The quantum discord is minimized with respect to the
angles ¢ and 6 that control the direction of the projector H].B
in the Hilbert space of the subsystem 3. The minimization
must be achieved for each ensemble of values of the magne-
tization and the spin-spin correlations function which defines
the joint density matrix. It can be shown numerically that for
the one-dimensional Ising and antiferromagnetic XXZ mod-
els, the set of angles {¢, 6} that minimize the quantum dis-
cord belong to the ranges ¢=0, 6 [0, 7/4].
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