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The LiHoxY1−xF4 Ising magnetic material subject to a magnetic field perpendicular to the Ho3+ Ising
direction has shown over the past 20 years to be a host of very interesting thermodynamic and magnetic
phenomena. Unfortunately, the availability of other magnetic materials other than LiHoxY1−xF4 that may be
described by a transverse-field Ising model remains very much limited. It is in this context that we use here a
mean-field theory to investigate the suitability of the Ho�OH�3, Dy�OH�3, and Tb�OH�3 insulating hexagonal
dipolar Ising-type ferromagnets for the study of the quantum phase transition induced by a magnetic field, Bx,
applied perpendicular to the Ising spin direction. Experimentally, the zero-field critical �Curie� temperatures are
known to be Tc�2.54, 3.48, and 3.72 K, for Ho�OH�3, Dy�OH�3, and Tb�OH�3, respectively. From our
calculations we estimate the critical transverse field, Bx

c, to destroy ferromagnetic order at zero temperature to
be Bx

c=4.35, 5.03, and 54.81 T for Ho�OH�3, Dy�OH�3, and Tb�OH�3, respectively. We find that Ho�OH�3,
similarly to LiHoF4, can be quantitatively described by an effective S=1 /2 transverse-field Ising model. This
is not the case for Dy�OH�3 due to the strong admixing between the ground doublet and first excited doublet
induced by the dipolar interactions. Furthermore, we find that the paramagnetic �PM� to ferromagnetic �FM�
transition in Dy�OH�3 becomes first order for strong Bx and low temperatures. Hence, the PM to FM zero-
temperature transition in Dy�OH�3 may be first order and not quantum critical. We investigate the effect of
competing antiferromagnetic nearest-neighbor exchange and applied magnetic field, Bz, along the Ising spin
direction ẑ on the first-order transition in Dy�OH�3. We conclude from these preliminary calculations that
Ho�OH�3 and Dy�OH�3 and their Y3+ diamagnetically diluted variants, HoxY1−x�OH�3 and DyxY1−x�OH�3, are
potentially interesting systems to study transverse-field-induced quantum fluctuations effects in hard axis
�Ising-type� magnetic materials.
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I. INTRODUCTION

A. Transverse-field Ising model

Quantum phase transitions occur near zero temperature
and are driven by quantum-mechanical fluctuations associ-
ated with the Heisenberg uncertainty principle and not by
thermal fluctuations as in the case of classical temperature-
driven phase transitions.1,2 There is accumulating evidence
that the exotic behavior exhibited by several metallic, mag-
netic, and superconducting materials may have its origin in
underlying large quantum fluctuations and proximity to a
quantum phase transition. For this reason, much effort is cur-
rently being devoted to understand quantum phase transitions
in a wide variety of condensed-matter systems.

Perhaps the simplest model that embodies the phenom-
enon of a quantum phase transition is the transverse-field
Ising model �TFIM�,3,4 first proposed by de Gennes5 to de-
scribe proton tunneling in ferroelectric materials. The spin
Hamiltonian for the TFIM reads

HTFIM = −
1

2 �
�ri,rj�

Jij��r j − ri��Si
z�ri�Sj

z�r j� − ��
�ri�

Si
x�ri� . �1�

The Si �S=1 /2� quantum spin operators reside on the lattice
sites, ri, of some d-dimensional lattice. The Si operators are
related to the Pauli spin matrices by Si=

1
2�i. �Here we set

�=1.� The components of Si obey the commutation relations

�Si
� ,Sj

��= i����Si
��ij, where �, �, and � indicate x, y, or z spin

components, and �ij and ���� are the Kronecker delta and
fully antisymmetric Levi-Cevita tensor, respectively. � is the
effective transverse field along the x direction, perpendicular
to the Ising z axis. As described below, � does not corre-
spond onto to one to the real applied physical transverse
field, Bx. Rather, � in Eq. �2� is a function of Bx. In fact, Jij
is also a function of Bx.

6–8 If the spin interactions, Jij, possess
translational invariance, the system displays for �=0 con-
ventional long-range magnetic order below some critical
temperature, Tc. In the simplest scenario, where Jij 	0, the
ordered phase is ferromagnetic �FM� and the order parameter
is the average magnetization per spin, mz= �1 /N��i�Si

z	,
where N is the number of spins. Since Si

x and Si
z do not

commute, nonzero � causes quantum tunneling between the
spin-up, �↑ 	, and spin-down, �↓ 	, eigenstates of Si

z. By in-
creasing �, Tc decreases until, ultimately, Tc��� vanishes at a
quantum critical point where �=�c. On the T=0 temperature
axis, the system is in a long-range ordered phase for �
�c,
while it is in a quantum paramagnetic �PM� phase for �
	�c. The phase transition between the paramagnetic and
long-range ordered phase at �c constitutes the quantum
phase transition.3,4

One can also consider generalizations of the HTFIM where
the Jij are quenched �frozen� random interactions. Of particu-
lar interest is the situation where there are as many ferromag-
netic Jij 	0 and antiferromagnetic Jij 
0 couplings. This
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causes a high level of random frustration, and the system,
provided it is three dimensional, freezes into a spin-glass
�SG� state via a true thermodynamic phase transition at a
spin-glass critical temperature Tg.9,10 Here as well, one can
investigate how the spin-glass transition is affected by a
transverse field �. As in the previous example, Tg��� de-
creases as � is increased from zero until, at �=�c, a quantum
phase transition between a quantum paramagnet and a spin-
glass phase ensues. Extensive numerical studies have found
the quantum phase transition between a quantum paramagnet
and a spin-glass phase11–13 to be quite interesting due to
the occurrence of Griffiths-McCoy singularities �GMS�.14,15

These GMS arise from rare spatial regions of disorder which
may, for example, resemble the otherwise nonrandom
�disorder-free� version of the system at stake. As a result,
GMS can lead to singularities in various thermodynamic
quantities away from the quantum critical point.

B. LiHoxY1−xF4

On the experimental side, most studies aiming at explor-
ing the phenomena associated with the TFIM have focused
on the insulating LiHoxY1−xF4 Ising magnetic material.16–32

In this system, the Ho3+ Ising spin direction is parallel to the
c axis of the body-centered tetragonal structure of
LiHoxY1−xF4. The random disorder is introduced by diluting
the magnetic Ho3+ ions by nonmagnetic Y3+. Crystal-field
effects lift the degeneracy of the 5I8 electronic manifold, giv-
ing an Ising ground doublet, ��0

�	, and a first excited singlet,
��e	, at approximately 11 K above the ground doublet.26

The remaining 14 crystal-field states lie at much higher
energies.26 Quantum spin-flip fluctuations are introduced by
the application of a magnetic field, Bx, perpendicular to the
Ising c axis. Bx admixes ��e	 with ��0

�	, splitting the latter
states and producing an effective TFIM with ��Bx�Bx

2 for
small Bx.

6–8

The properties of pure LiHoF4 in a transverse Bx are now
generally qualitatively well understood.6,7 Indeed, a recent
quantum Monte Carlo study6 found general agreement be-
tween experiments and a microscopic model of LiHoF4.
However, some quantitative discrepancies between Monte
Carlo and experimental data, even near the classical para-
magnetic to ferromagnetic transition where Bx /Tc is small,
do exist.6,7 One noteworthy effect at play in LiHoxY1−xF4 at
low temperatures is the significant enhancement of the zero-
temperature critical Bx, Bx

c, caused by strong hyperfine
nuclear interactions in Ho3+-based materials.6,20,25,26,33

LiHoxY1−xF4 in a transverse Bx and x
1 has long been
known to display paradoxical behaviors both in the FM
�0.25
x
1.0� and SG �x
0.25� regimes. In the FM re-
gime, a mean-field behavior, Tc�x�x, for the PM to FM
transition is observed when Bx=0.21,22 However, in nonzero
Bx, the rate at which Tc�Bx� is reduced by Bx	0 increases
faster than what mean-field theory �MFT� predicts as x is
reduced.22,27 In the high Ho3+ �SG� dilution regime �e.g.,
LiHo0.167Y0.833F4�, LiHoxY1−xF4 has long been17–19,30,32 ar-
gued to display a conventional SG transition for Bx=0 sig-
naled by a nonlinear magnetic susceptibility, �3, diverging at
Tg as �3�T� �T−Tg�−�.10 However, �3�T� becomes less sin-

gular as Bx is increased from Bx=0, suggesting that no quan-
tum phase transition between a PM and a SG states exists as
T→0.18,19 Recent theoretical studies8,34,35 suggest that for
dipole-coupled Ho3+ in a diluted sample, nonzero Bx gener-
ates longitudinal �along the Ising ẑ direction� random fields
that �i� lead to a faster decrease in Tc�Bx� in the FM
regime22,27,35 and �ii� destroy the PM to SG transition for
samples that otherwise show a SG transition when
Bx=0,8,18,19,29,31,32,34,35 or, at least, lead to a disappearance of
the �3 divergence as Bx is increased from zero.18,19,35

Perhaps the most interesting among the phenomena ex-
hibited by LiHoxY1−xF4 is the one referred to as antiglass
and which has been predominantly investigated in
LiHo0.045Y0.955F4.16,23,24,29,36–38 The reason for this name
comes from ac susceptibility data on LiHo0.045Y0.955F4 which
show that the distribution of relaxation times narrows upon
cooling below 300 mK.16,23,24 This behavior is quite different
from that observed in conventional spin glasses where the
distribution of relaxation times broadens upon approaching a
spin-glass transition at Tg	0.9,10 The antiglass behavior has
been interpreted as evidence that the spin-glass transition in
LiHoxY1−xF4 disappears at some nonzero xc	0. Results
from more recent experimental studies on LiHo0.165Y0.835F4
�x=16.5%� and LiHo0.045Y0.955F4 �x=4.5%� suggest an ab-
sence of a genuine spin-glass transition even for a concen-
tration of Ho as large as 16.5%.29,32 In particular, it is in stark
contrast with theoretical arguments39 which predict that be-
cause of the long-ranged 1 /r3 nature of dipolar interactions,
classical dipolar Ising spin glasses should have Tg�x�	0 for
all x	0. However, very recent work asserts that there is
indeed a thermodynamic SG transition for x=16.5% �Ref.
30� but that the behavior found in LiHo0.045Y0.955F4 is truly
unconventional.30,36–38

Two very different scenarios for the failure of
LiHo0.045Y0.955F4 to show a spin-glass transition have been
put forward.24,40–42 First, it has been suggested that the
�small� off-diagonal part of the dipolar interactions leads to
virtual crystal-field excitations that admix ��0

�	 with ��e	
and give rise to nonmagnetic singlets for spatially close pairs
of Ho3+ ions.24 The formation of these singlets would thwart
the development of a spin-glass state. This mechanism is
analogous to the one leading to the formation of the random
singlet state in dilute antiferromagnetically coupled S=1 /2
Heisenberg spins.43 However, a recent study44 shows that the
energy scale for this singlet formation is very low
�
100 mK� and that the random singlet mechanism24 may
not be very effective at destroying the spin-glass state in
LiHo0.045Y0.955F4. Hence the proposed formation of an en-
tangled state in LiHo0.045Y0.955F4 may, if it really exist, per-
haps proceed via a more complex scheme than that proposed
in Ref. 24. Also, the low-temperature features observed in
the specific heat in Ref. 24 have not been observed in a more
recent study.36 Second and from a completely different per-
spective, numerical simulations of classical Ising dipoles
found that the spin-glass transition temperature, Tg, appears
to vanish for a concentration of dipoles below approximately
20% of the sites occupied.40–42 However, even more recent
Monte Carlo simulations find that this conclusion may not be
that firmly established.45

As another possible and yet unexplored scenario, we note
here that since Ho3+ is an even electron system �i.e., a non-
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Kramers ion�, Kramers’ theorem is inoperative and the
ground-state doublet can be split by random �electrostatic�
crystal-field effects that compete with the collective spin-
glass behavior. For example, random strains, which may
come from the substitution of Ho3+→Y3+, break the local
tetragonal symmetry and introduces �random� crystal-field
operators �e.g., O2

�2� which have nonzero matrix elements
between the two states, ��0

+	 and ��0
−	, of the ground doublet,

splitting it, and possibly destroying the spin-glass phase at
low Ho3+ concentration. Indeed, such random transverse
fields have been identified in samples with very dilute Ho3+

in a LiYF4 matrix.46,47 Also, very weak random strains,
hence effective random transverse fields, arise from the dif-
ferent �random� anharmonic zero-point motions of 6Li and
7Li in Ho:LiYF4 samples with natural abundance of 6Li and
7Li.48 Finally, there may be intrinsic strains in the crystalline
samples that do not arise from the Ho3+ /Y3+ or 6Li / 7Li
admixture.46 However, using available estimates,46–48 calcu-
lations suggests that strain-induced random fields at play in
LiHo0.045Y0.955F4 may be too small �
O�101 mK�� to cause
the destruction of the spin-glass phase in this system.49 Nev-
ertheless, the point remains that, in principle, the non-
Kramers nature of Ho3+ does offer a route for the destruction
of the spin-glass phase in LiHoxY1−xF4 outside strictly pair-
wise, quantum,24,44 or classical40–42,45 magnetic interaction
mechanisms. At this stage, this is clearly a matter that needs
to be investigated experimentally further. One notes that be-
cause of Kramers’ theorem, the destruction of a SG phase via
strain-induced effective random transverse fields would not
occur for an odd-electron �Kramers� ion such as Dy3+ or
Er3+. In that context, one might think that a comparison of
the behavior of LiDyxY1−xF4 or LiErxY1−xF4 with that of
LiHoxY1−xF4 would be interesting. Unfortunately, while
LiHoxY1−xF4 is an Ising system, the Er3+ and Dy3+ moments
in LiErxY1−xF4 and LiDyxY1−xF4 are XY-like.50,51 Hence, one
cannot compare the LiErxY1−xF4 and LiDyxY1−xF4 XY com-
pounds with the LiHoxY1−xF4 Ising material on the same
footing.

From the above discussion, it is clear that there are num-
ber of fundamental questions raised by experimental studies
of LiHoxY1−xF4 both in zero and nonzero transverse fields
that warrant systematic experimental investigations in other
similar diamagnetically diluted dipolar Ising-type magnetic
materials. Specific questions are:

�1� How does the quantum criticality of a transverse-field
Ising material with much smaller hyperfine interactions than
Ho3+ in LiHoxY1−xF4 manifest itself?20,25,33

�2� Is the theoretical proposal of transverse-induced ran-
dom longitudinal fields in diluted dipolar Ising
materials8,34,35 valid and can it be explored and confirmed in
other materials other than LiHoxY1−xF4?27 In particular, can
the phenomena observed in Ref. 27 and ascribed to Griffiths
singularities be observed in other disordered dipolar Ising
systems subject to a transverse field?

�3� Does the antiglass phenomenon16,23,24,38 occur in other
diluted dipolar Ising materials? If yes, which, if any, of the
aforementioned theoretical proposals for the destruction of
the spin-glass state at small Ho3+ concentration is correct?

C. RE(OH)3 materials

As mentioned above, these questions cannot be investi-
gated with the LiErxY1−xF4 and LiDyxY1−xF4 materials iso-
structural to the LiHoxY1−xF4 Ising compound since they are
XY-like systems. However, we note in passing that it would
nevertheless be interesting to explore the topic of induced
random fields8,34,35 and the possible existence of a XY dipolar
spin-glass and/or antiglass state in LiErxY1−xF4 and
LiDyxY1−xF4. The LiTbxY1−xF4 material is of limited use in
such investigations since the single-ion ground state of Tb3+

in this compound consists of two separated singlets52 and
local moment magnetism on the Tb3+ site disappears at low
Tb concentration.53 In this paper, we propose that the
RE�OH�3 �RE=Ho,Dy� compounds may offer themselves as
an attractive class of materials to study the above questions.
Similarly to the LiHoF4, the RE�OH�3 materials possess the
following interesting properties:

�1� They are insulating rare-earth materials.
�2� Their main spin-spin couplings are magnetostatic

dipole-dipole interactions.
�3� The RE�OH�3 materials are stable at room tempera-

ture.
�4� Both pure RE�OH�3 and LiHoF4 are collinear �Ising-

type� dipolar ferromagnets with the Ising direction along the
c axis of a hexagonal unit cell �RE�OH�3� or body-centered
tetragonal unit cell �LiHoF4�. In both cases there are two
magnetically equivalent ions per unit cell.

�5� In RE�OH�3, the Kramers �Dy3+� and non-Kramers
�Ho3+� variants possess a common crystalline structure and
both have similar bulk magnetic properties in zero transverse
magnetic field, Bx.

�6� The critical temperature of the pure RE�OH�3 com-
pounds is relatively high, 
3 K. This would make possible
the study of Y-substituted Dy and Ho hydroxides down to
quite low concentration of rare earth while maintaining the
relevant magnetic temperature scale above the lowest attain-
able temperature with a commercial dilution refrigerator.

�7� Finally, and this is a key feature that motivated the
present study, the first excited crystal-field state in the
Ho�OH�3 and Dy�OH�3 compounds is low lying, hence al-
lowing a possible transverse-field-induced admixing and,
possibly, a transverse-field Ising model description.54

To the best of our knowledge, it appears that the RE�OH�3
materials have so far not been investigated as potential real-
ization of the TFIM. The purpose of this paper is to explore
�i� the possible description of these materials as a TFIM, �ii�
obtain an estimate of what the zero-temperature critical
transverse field, Bx

c, may be and, �iii� assess if any new in-
teresting phenomenology may occur, even in undiluted
RE�OH�3 compounds, in nonzero transverse field, Bx.

We note, however, that there are so far no very large
single crystals of RE�OH�3 available.55 For example, their
length typically varies between 3 and 17 mm and their diam-
eter between 0.2 and 0.6 mm. The lack of large single crys-
tals would make difficult neutron-scattering experiments.
However, possibly motivated by this work and by a first
generation of bulk measurements �e.g., susceptibility and
specific heat�, experimentalists and solid-state chemists may
be able to conceive ways to grow larger single crystals of
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RE�OH�3. Also, in light of the fact that most experiments on
LiHoxY1−xF4 that have revealed exotic behavior are bulk
measurements,16–18,21,23,24,36,37 we hope that at this time the
lack of availability of large single crystals of the RE�OH�3
series is not a strong impediment against pursuing a first
generation of bulk experiments on RE�OH�3.

The rest of this paper is organized as follows. In Sec. II,
we review the main single-ion magnetic properties of
RE�OH�3 �RE=Dy,Ho,Tb�. In particular, we discuss the
crystal-field Hamiltonian of these materials and the depen-
dence of the low-lying crystal-field levels on an applied
transverse field, Bx. We present in Sec. III a mean-field cal-
culation to estimate the Bx vs temperature, T, phase diagram
of these materials. In Sec. IV, we show that Ho�OH�3 and
Tb�OH�3 can be described quantitatively well by a
transverse-field Ising model, while Dy�OH�3 cannot. Section
V A, uses a Ginzburg-Landau theory to explore the first-
order PM to FM transition that occurs in Dy�OH�3 at low
temperatures and strong Bx. Section V B discusses the effect
of nearest-neighbor antiferromagnetic exchange interaction
and applied longitudinal �i.e., along the ẑ axis� magnetic
field, Bz, on the first-order transition in Dy�OH�3. A brief
conclusion is presented in Sec. VI. The Appendix discusses
how the excited crystal-field states in Dy�OH�3 play an im-
portant quantitative role on the determination of Tc�Bx� in
this material.

II. RE(OH)3: MATERIAL PROPERTIES

A. Crystal properties

All the rare-earth hydroxides form hexagonal crystals that
that are isostructural with Y�OH�3. The lattice is described
by translation vectors a1= �0,0 ,0�, a2= �−a /2,a�3 /2,0�, and
a3= �0,0 ,c�. A unit cell consist of two Ho3+ ions at coordi-
nates �1/3,2/3,1/4� and �2/3,1/3,3/4� in the basis of lattice
vectors a1, a2, and a3. The coordinates of three O2− and H−

ions, relative to the position of Ho3+, are ��x ,y ,0�,
��−y ,x−y ,0�, and ��y−x ,−x ,0�, where � refers to the first
and second Ho3+ in the unit cell, respectively.56 The values
of the parameters x and y for Y�OH�3 are listed in Table I.
The lattice structure is depicted in Fig. 1. The lattice con-
stants for Tb�OH�3, Dy�OH�3, Ho�OH�3, and Y�OH�3 from
Beall et al.57 are collected in Table II. Each magnetic ion is
surrounded by nine oxygen atoms that create a crystalline
field characterized by the point-group symmetry C3h.56

B. Single-ion properties

The electronic configuration of the magnetic ions Tb3+,
Dy3+, and Ho3+ is, respectively, 4f8, 4f9, and 4f10. Magnetic

properties of the rare-earth ions can be described by the
states of the lowest-energy multiplet: the spin-obit splitting
between the ground-state J manifold and the first excited
states is of order of few thousand Kelvins. The ground-state
manifolds can be found from Hund’s rules and are 7F6,
6H15/2, and 5I8 for Tb3+, Dy3+, and Ho3+, respectively. The
Wigner-Eckart theorem gives the Landé g factor equal to 3

2 ,
4
3 , and 5

4 for Tb3+, Dy3+, and Ho3+, respectively.
In a crystalline environment, an ion is subject to the elec-

tric field and covalency effects from the surrounding ions.
This crystalline field effect partially lifts the degeneracy of
the ground-state multiplet. The low-energy levels of Tb3+ in
Tb�OH�3 are a pair of singlets that consist of the symmetric
combination of ��6	 states with a small admixture of the �0	
state and an antisymmetric combination 0.3 cm−1 above.59

The next excited state is well separated from the lowest-
energy pair by an energy of 118 cm−1 �Ref. 59� �1 cm−1

�1.44 K�. In the case of Dy3+ in Dy�OH�3, the spectrum
consist of eight Kramers doublets with the first excited state
7.8 cm−1 above the ground state.60 The low-energy spectrum
of Ho3+ in Ho�OH�3 is composed of a ground-state doublet
and an excited singlet state 11.1 cm−1 above.56

Due to the strong shielding of the 4f electrons by the
electrons of the filled outer electronic shells, the exchange
interactions for 4f electrons is weak and the crystal field can
be considered as a perturbation to the fixed J manifold. Fur-
thermore, because strong spin-orbit interaction yields a large
energy gap between the ground-state multiplet and the ex-
cited electronic levels, we neglect all the excited electronic
multiplets in the calculation.

According to arguments provided by Stevens,61 we ex-
press the matrix elements of the crystal-field Hamiltonian for

TABLE I. Position parameters of O2− and H− ions in rare-earth
hydroxides and Y�OH�3 from Refs. 57 and 58 �see text in Sec.
II A�.

O2−, x O2−, y H−, x H−, y

Tb�OH�3 0.3952�7� 0.3120�6� 0.276�1� 0.142�1�
Dy�OH�3 0.3947�6� 0.3109�6� 0.29�3� 0.15�2�
Ho�OH�3 0.3951�7� 0.3112�7� 0.30�3� 0.17�3�
Y�OH�3 0.3958�6� 0.3116�6� 0.28�1� 0.17�1�

RE

O
H

c

a

a2

a1

1/4

3/4

FIG. 1. �Color online� The lattice structure of rare-earth hydrox-
ides and Y�OH�3. The arrows indicate the six nearest neighbors of
the central ion in the lower prism. The lower left corner shows a
projection of the unit cell onto the plane given by lattice vectors a1

and a2.

TABLE II. Lattice constants for rare-earth hydroxides and
Y�OH�3 �from Ref. 57�.

a c c /a

Tb�OH�3 6.315�4� 3.603�2� 0.570�5�
Dy�OH�3 6.286�3� 3.577�1� 0.569�0�
Ho�OH�3 6.266�2� 3.553�1� 0.567�0�
Y�OH�3 6.261�2� 3.544�1� 0.566�0�
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the ground-state manifold in terms of operator equivalents.
The details of the method and conventions for expressing the
crystal-field Hamiltonian can be found in the paper of
Hutchings.62 On the basis of the Wigner-Eckart theorem, one
can write the crystal-field Hamiltonian in the form

Hcf = �
nm

�nBn
mOn

m, �2�

where On
m are Stevens’ “operator equivalents,” �n are con-

stants called Stevens’ multiplicative factors, and Bn
m are

crystal-field parameters �CFP�. The CFP are usually deter-
mined by fitting experimental �spectroscopic� data. From an-
gular momentum algebra, we know that in the case of f
electrons, we need to consider only n=0,2 ,4 ,6 in the sum,
Eq. �2�. The choice of Bn

m coefficients in Hamiltonian �2� that
do not vanish and have nonzero corresponding matrix ele-
ments is dictated by the point-symmetry group of the crys-
talline environment. The Stevens operators, On

m, are conve-
niently expressed in terms of vector components of the
angular momentum operator, J. In the case of the RE�OH�3
materials considered herein, the point-symmetry group is
C3h, and the crystal-field Hamiltonian is of the form

Hcf�Ji� = �JB2
0O2

0�Ji� + �JB4
0O4

0�Ji� + �JB6
0O6

0�Ji�

+ �JB6
6O6

6�Ji� . �3�

The Stevens multiplicative factors �J, �J, and �J ��2, �4, and
�6� are collected in Table III.

For the sake of conciseness and to illustrate the procedure,
most of our numerical results below are presented for one set
of CFP only. The qualitative picture that emerges from our
calculations does not depend on the specific choice of CFP.
Only quantitative differences are found using different sets
of CFP. Ultimately, a further experimental determination of
accurate Bn

m values would need to be carried out in order to

obtain more precise mean-field estimates as well as to per-
form quantum Monte Carlo simulations of the Re�OH�3 sys-
tems. According to our arbitrary choice,63 if not stated oth-
erwise, we use in the calculations the CFP provided by Scott
et al.56,59,60,64 For Ho�OH�3 and Dy�OH�3 different values of
CFP were proposed by Karmakar et al.65,66 As one can see in
Fig. 3, for Ho�OH�3, the latter set of CFP yields a somewhat
higher mean-field critical temperature and quite a bit higher
critical value of the transverse magnetic field Bx

c=7.35 T
compared with Bx

c=4.35 T obtained using the CFP of Scott
et al.56 �see lower inset of Fig. 3�. Similarly, the CFP of
Karmakar et al.66 for Dy�OH�3 give a much higher critical
field of Bx

c=9.12 T compared with Bx
c=5.03 T when the

CFP of Scott et al.56,60,64 are used. From the two sets of CFP
for Tb�OH�3 we choose the one obtained from measurements
on pure Tb�OH�3.56 Using the CFP obtained for the system
with a dilute concentration of Tb in a Y�OH�3 matrix,
Tb:Y�OH�3 �Ref. 56� makes only a small change in the
value of critical transverse field; we obtained Bx

c=50.0 and
54.8 T calculated using Tb:Y�OH�3 and Tb�OH�3 CFP, re-
spectively �see upper inset of Fig. 3�. Available values of the
CFP are given in Table IV.

We show in Table V the lowest eigenstates and eigenval-
ues of the crystal-field Hamiltonian �3�. The calculated ener-
gies are not in full agreement with the experimentally deter-
mined values because the CFP were fitted using all the
observed optical transitions, including transitions between
different J manifolds.56 Furthermore, the fitting procedure
used by Scott56 includes perturbative admixing between
manifolds with the admixing incorporated into effective
Stevens’ multiplicative factors �J, �J, and �J that slightly
differ from those given in Table III.

Given the uncertainty in the CFP, which ultimately lead to
an uncertainty of approximately 
40% on Bx

c for Ho�OH�3
and Dy�OH�3, as well as the nature of the mean-field calcu-
lations that we use, and which neglects thermal and
quantum-mechanical fluctuations, and as well as for simplic-
ity sake, we ignore here the effect of hyperfine coupling of
the electronic and nuclear magnetic moments. However, as
shown for LiHoxY1−xF4, the important role of hyperfine in-
teractions for Ho3+ on the precise determination of Bx

c must
eventually be considered.6,20,25,33 At this time, one must
await results from further experiments and a precise set of
CFP for Hcf in order to go beyond the mean-field calcula-
tions presented below or to pursue quantum Monte Carlo

TABLE III. Stevens’ multiplicative factors.

Ion �J �J �J

Tb3+ −1 / �32 ·11� 2 / �33 ·5 ·112� −1 / �34 ·7 ·112 ·13�
Dy3+ −2 / �32 ·5 ·7� −23 / �33 ·5 ·7 ·11·13� 22 / �33 ·7 ·112 ·132�
Ho3+ −1 / �2·32 ·52� −1 / �2·3 ·5 ·7 ·11·13� −5 / �33 ·7 ·112 ·132�

TABLE IV. Crystal-field parameters. Some of the calculations were performed with one set of crystal-
field parameters only. Crystal-field parameters arbitrary chosen �Ref. 63� to be used in these calculations are
marked with *.

Ref. Crystal B2
0 �cm−1� B4

0 �cm−1� B6
0 �cm−1� B6

6 �cm−1�

56 Tb�OH�3* 207.9�2.8 −69.0�1.6 −45.3�1.1 585�10

56 Tb:Y�OH�3 189.1�2.6 −69.1�1.5 −45.7�1.0 606�9

56 Dy�OH�3* 209.4�3.4 −75.5�3.5 −40.1�1.9 541.8�26.5

65 Ho�OH�3 200�2.0 −57�0.5 −40�0.5 400�5

56 Ho:Y�OH�3* 246.0�3.4 −56.7�1.2 −39.8�0.3 543.6�3.3

66 Dy�OH�3 215.9 −72.0 −42.0 515.3
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calculations as done for LiHoF4 in Refs. 6 and 7. As sug-
gested in Refs. 6, the accuracy of any future calculations
�mean field or quantum Monte Carlo� could be improved by
the use of directly measured accurate values of the
transverse-field splitting of the ground-state doublet instead
of the less certain values calculated from CFP.

Since our main goal in this exploratory work is to esti-
mate the critical transverse field, Bx

c, for the family of
RE�OH�3 compounds and to explore the possible validity of
a transverse-field Ising model description of these materials,
we henceforth restrict ourselves to the Hcf in Eq. �2� with
the CFP �Bn

m parameter values� given in Table IV. These
calculations could be revisited, and quantum Monte Carlo
simulations6,7 performed once experimental results reporting
on the effect of Bx on Dy�OH�3 and Ho�OH�3 become avail-
able.

C. Single-ion transverse-field spectrum

A magnetic field, Bx, applied in the direction transverse to
the easy axis splits the degeneracy of the ground-state dou-
blet in the case of Ho�OH�3 and Dy�OH�3 or increase the
separation of the ground levels in the case of the already

weakly separated singlets in Tb�OH�3. By diagonalizing the
single-ion Hamiltonian, H0, which consist of the crystal field
and Zeeman terms,

H0 = Hcf�Ji� − g�BBxJx, �4�

we obtain the transverse-field dependence of the single-ion
energy levels plotted in Fig. 2. In the case of Dy�OH�3, the
two lowest-energy levels splitting is too small to be clearly
visible in the main panel of Fig. 2. Hence, we show the
energy separation between the two lowest levels in the inset
of Fig. 2 for Dy�OH�3. Furthermore, the separation vanishes
at Bx=3.92 T indicating that the two lowest states for this
specific value of the transverse field, Bx, are degenerate.

To calculate the transverse-field dependence of the
lowest-energy levels up to the critical transverse field where
dipolar ferromagnetism is destroyed, we do not have to in-
clude all the crystal-field states since the Bx-induced admix-
ing among the states decreases with increasing energy sepa-
ration. In the case of Ho�OH�3 we can reproduce fairly
accurately the field dependence, Bx, of the energy, E, of the
lowest-energy levels in Fig. 2 using only the four lowest
levels. However, in order to achieve a similar level of agree-
ment for Dy�OH�3, we have to retain the ground doublet and
several of the lowest excited doublets.

III. NUMERICAL SOLUTION

The collective magnetic properties of the considered rare-
earth hydroxides are mainly controlled by a long-range dipo-
lar interaction between the magnetic moments carried by the
rare-earth ions. The dipolar interaction is complemented by a
short-range exchange interaction. Adding the interaction
terms to the single-ion Hamiltonian �4� gives a full Hamil-
tonian, H, of the form

TABLE V. Eigenstates and energy levels calculated with the
crystal-field parameters collected in Table IV.

Eigenstate
Energy
�cm−1�

Dy�OH�3

0.92��15 /2	−0.15��3 /2	+0.37��9 /2	
0.40��15 /2	+0.20��3 /2	−0.90��9 /2	 9.6

Dy�OH�3
a

0.98��15 /2	−0.09��3 /2	+0.15��9 /2	
0.17��15 /2	+0.22��3 /2	−0.96��9 /2	 19.3

Ho:Y�OH�3

0.94��7	+0.31��1	+0.15��5	
0.59�6	+0.55�0	+0.59�−6	 12.7

Ho�OH�3
a

0.97��7	+0.24��1	+0.09��5	
0.60�6	+0.52�0	+0.60�−6	 23.6

Tb�OH�3

0.71�6	+0.05�0	+0.71�−6	
0.71�6	−0.71�−6	 0.49

0.99��5	+0.13��1	 122.06

Tb:Y�OH�3

0.71�6	+0.06�0	+0.71�−6	
0.71�6	−0.71�−6	 0.58

0.99��5	+0.16��1	 115.33

aReference 65.
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FIG. 2. Energy levels as a function of applied transverse field
for Dy�OH�3 and Ho�OH�3. The inset shows the separation of the
lowest-energy levels in Dy�OH�3.
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H = �
i

Hcf�Ji� − g�B�
i

BxJi,x +
1

2�
ij

�
��

Lij
��Ji,�Jj,�

+
1

2
Jex�

i,nn
Ji · Jnn. �5�

Lij
�� are the anisotropic dipole-dipole interaction constants of

the form Lij
��=

�0�g�B�2

4�a3 Lij
��, where � ,�=x ,y ,z, a is a lattice

constant �see Table II�, and �0 is the permeability of vacuum.
Lij

�� are dimensionless dipolar interaction coefficients,

Lij
�� =

����rij�2 − 3�rij���rij��

�rij�5
, �6�

where rij =r j −ri, with ri the lattice position of magnetic mo-
ment Ji expressed in units of the lattice constant a. Jex is the
antiferromagnetic �Jex	0� exchange interaction constant,

which can be recast as Jex=
�0�g�B�2

4�a3 Jex, where Jex is now a
dimensionless exchange constant that, when multiplied by
the nearest-neighbor coordination number, z=6, can be used
to compare the relative strength of exchange vs the magnetic
dipolar lattice sum �energies� collected in Table VI. The label
nn in Eq. �5� denotes the nearest-neighbor sites of site i.

The exchange interaction is expected to be of somewhat
lower strength than the dipolar coupling.55,67 We therefore
neglect it in most of the calculations, but we discuss its effect
on the calculated Bx vs T phase diagram at the end of this
section as well as explore its influence on the occurrence of a
first-order phase transition in Dy�OH�3 in Sec. V B. Denot-

ing L��=� jLij
�� and L��=

�0�g�B�2

4�a3 L��, we write a mean-field
Hamiltonian in the form

HMF = Hc�J� − g�BBxJx + �
�=x,y,z

�L�� + zJex�

��J��J�	 −
1

2
�J�	2 , �7�

with z=6 the number of nearest neighbors. The last term in
Eq. �7�, − 1

2 �J�	2, has no effect on the calculated thermal ex-
pectation values of the x̂ and ẑ components of the magneti-
zation and can be dropped. The off-diagonal terms, L�� with
���, vanish due to the lattice symmetry. We employ the
Ewald technique68–72 to calculate the dipole-dipole interac-
tion, Lij

��, of Eq. �6�. By summing over all sites j coupled to
an arbitrary site i, we obtain the coefficients L�� listed in
Table VI. The considered Ewald sums ignore a demagneti-
zation term,72 and our calculations can therefore be inter-
preted as corresponding to a long needle-shape sample.

We diagonalize numerically HMF in Eq. �7� and calculate
self-consistently the thermal averages of Jx and Jz operators
from the expression,

�J�	 =
Tr�J� exp�− HMF/T��

Tr�exp�− HMF/T��
, �8�

where � stands for x and z. �Jy	=0 due to the lattice mirror
symmetries and since B is applied along x̂.

For a given Bx, we find the value of the critical tempera-
ture, Tc�Bx�, at which the order parameter, �Jz	, vanishes. The
resulting Bx vs T phase diagrams, obtained that way using all
sets of CFP from Table IV, are shown in Fig. 3. In the main
panel, we plot the phase diagrams for Ho�OH�3 and
Dy�OH�3 using CFP of Scott et al.56,59,60,64 The top inset
shows the Bx vs T phase diagrams for Tb�OH�3 using two
available sets of CFP. These indicate that for Tb�OH�3, the
critical field, Bx�T�, reaches very quickly the upper limit of
magnetic fields attainable with commercial magnets. The
bottom inset shows the Bx vs T phase diagrams for Ho�OH�3
and Dy�OH�3 using CFP of Karmakar et al.65,66 Although the
diagrams differ quantitatively for the two sets of CFP, the
overall qualitative trend is the same for both sets. Table VII
lists the mean-field estimates of Tc and Bx

c together with the
experimental values of Tc.

55,67,73

There are two contributing factors behind the difference
between the experimental and mean-field values of Tc in
Table VII and, presumably, once they are experimentally de-
termined, those for Bx

c. First, in obtaining those mean-field
values from Eqs. �7� and �8�, we neglected the �presumably�
antiferromagnetic nearest-neighbor exchange, Jex, which

TABLE VI. Dimensionless lattice sums calculated with the val-
ues of c /a taken from Table II.

Lxx Lyy Lzz

Tb�OH�3 −11.43 −11.43 −28.01

Dy�OH�3 −11.40 −11.41 −28.20

Ho�OH�3 −11.38 −11.37 −28.45
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FIG. 3. �Color online� The main panel shows the phase dia-
grams for Dy�OH�3 and Ho:Y�OH�3 �crystal-field parameters of
Scott et al.�Refs. 56 and 60��. The dot indicates the location of the
tricritical point for Dy�OH�3. The transition is first order for tem-
peratures below the temperature location of the tricritical point. The
upper inset shows the phase diagram for Tb�OH�3 �crystal-field
parameters of Scott et al.�Refs. 56, 59, and 64��. The lower inset
shows the phase diagram for Ho�OH�3 and Dy�OH�3 calculated
with the crystal-field parameters of Karmakar et al. �Refs. 65 and
66�.
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would contribute to a depression of both the critical ferro-
magnetic temperature, Tc, and Bx

c. Second, mean-field theory
neglects correlations in the thermal and quantum fluctuations
which would also contribute in reducing Tc and Bx. From the
comparison of mean-field theory6 and quantum Monte
Carlo6,7 for LiHoF4, we would anticipate that our mean-field
estimates of Tc and Bx are accurate within 20%–40%, not
withstanding the uncertainty on the crystal-field parameters.

By seeking a self-consistent solution for �Jz	, starting
from either the fully polarized or weakly polarized state, two
branches of solutions are obtained at low temperature and
large Bx for Dy�OH�3. This suggests a first-order PM to FM
transition when using either set of CFP for this material. This
result was confirmed by a more thorough investigation �see
Sec. V below�. The top right inset of Fig. 7 shows the be-
havior of the �Jz	 as a function of Bx for T=0.3 K illustrating
the transition field and the limits for the superheating and
supercooling regime. The black dot in the main panel and
inset of Fig. 3 shows the location of the tricritical point
�TCP� �see Sec. V�. Note that the Bx value at the tricritical
point is 
4.85 T using the CFP of Scott et al.56,59,60,64 �main
panel of Fig. 3�. Hence, the occurrence of a first-order tran-
sition here is not directly connected to the degeneracy occur-
ring between the two lowest-energy levels at Bx=3.92 T us-
ing the same set of CFP �see inset of Fig. 2 for Dy�OH�3�. A
zoom on the low-temperature regime and the vicinity of the
tricritical point for Dy�OH�3 are shown in Fig. 7. The calcu-
lation details needed to obtain the phase diagram of Fig. 7
are described in Sec. V A. The existence of a first-order tran-
sition at strong Bx in Dy�OH�3 depends on the details of the
chosen Hamiltonian in Eq. �5�. For example, as discussed in
Sec. V B, a sufficiently strong nearest-neighbor antiferro-
magnetic exchange, Jex, eliminates the first-order transition.
We also discuss in Sec. V B the role of a longitudinal field,
Bz, �along the c axis� on the first-order transition. At this
time, one must await experimental results to ascertain the
specific low-temperature behavior that is at play for strong
Bx in Dy�OH�3.

We now briefly analyze the effect of a nonzero exchange
interaction. The dependence of the critical temperature, Tc,
and the critical transverse field, Bx

c, on the exchange constant,
Jex, is plotted in Fig. 4. The dot on the Bx vs Jex plot for
Dy�OH�3 indicates the threshold value of Jex, Jex

2nd=0.995,
above which the first-order transition ceases to exist. The
dependence of the existence of the first-order transition on
Jex is discussed in some detail in Sec. V B. For Jex
Jex

2nd, the
thinner lines correspond to the boundary of the supercooling
and superheating regimes. In the mean-field theory presented
here, Jex simply adds to the interaction constant L�� with

�=x ,y ,z in Eq. �7� �see Table VI�. Hence, beyond a thresh-
old value of Jex, the system no longer admits a long-range
ordered ferromagnetic phase. In the case of Dy�OH�3, Bx

c

stays almost unchanged as a function of Jex until it drops
very sharply when Lzz+zJex=0 �z=6�. In the inset of Fig. 4,
we focus on the regime where Bx

c vs Jex plot sharply drops.
The cusp at Bx=3.92 T is a consequence of the degeneracy
of the lowest-energy eigenstates �see Fig. 2�. The reentrance
from FM to PM seen in the inset of the right panel of Fig. 4
as Bx is varied for Jex
4.7 can be understood as follows. At
constant Jex
4.7, with increasing Bx, the splitting of the
ground doublet, which is at the origin of the quantum fluc-
tuations, increases and at, let’s say Bx
2 T, there is a tran-
sition to quantum paramagnet. When Bx approaches the de-
generacy point at 
3.92 T, the gap then decreases, as
illustrated in the inset of the left panel of Fig. 2, and there is
a transition back to the FM phase. Beyond the energy level
crossing �Bx	3.92 T�, the energy gap increases again and a
final transition to a quantum paramagnet occurs. This phe-
nomenology is only possible when the nearest-neighbor an-
tiferromagnetic exchange almost cancels the dipolar interac-
tions. It would therefore appear very unlikely that the real
Dy�OH�3 material would display this effect. As will be
shown in Sec. IV for the Ho�OH�3 system, the energy gap
separating the transverse-field-splitted levels of the ground-
state doublet plays the role of an effective transverse field,
��Bx�, acting on effective Ising spins.

IV. EFFECTIVE S=1 Õ2 HAMILTONIAN

In this section we show that Ho�OH�3 and Tb�OH�3 can
be described with good accuracy by an effective TFIM

TABLE VII. Experimental values of critical temperatures Tc

�Refs. 55 and 67� and MFT estimates for Tc and Bx
c.

Crystal
Experimental Tc

�K�
MFT Tc

�K�
MFT Bx

c

�T�

Ho�OH�3 2.54 4.28 4.35

Dy�OH�3 3.48 5.31 5.03

Tb�OH�3 3.72 5.59 54.81
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FIG. 4. �Color online� The effect of the value of the exchange
constant on the phase boundary, Tc vs Jex at Bx=0 �left� and Bx

c vs
Jex at T=0 �right�. Solid and dashed lines are used for Dy�OH�3 and
Ho�OH�3, respectively. The inset of the right graph shows a focus
on the features of the high Jex regime in the Dy�OH�3 plot. The dot
in the right panel indicates the tricritical point. The two additional
lines at the left side of the tricritical point mark the limits of super-
heating and supercooling regimes. In the calculations, the CFP of
Ref. 56 were used.
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Hamiltonian. On the other hand, although Dy�OH�3 has been
referred in the literature as an Ising material,67,74 we find that
it is not possible to describe the magnetic properties of this
material within the framework of an effective microscopic
Ising Hamiltonian that neglects the effect of the excited
crystal-field states.

To be able to identify a material as a realization of an
effective microscopic Ising model, the following conditions
should apply:75

�i� There has to be a ground-state doublet or a close pair
of singlets that are separated from the next energy level by
an energy gap that is large in comparison with the critical
temperature. This ensures that at the temperatures of interest
only the two lowest levels are significantly populated.

�ii� To first order, there has to be no transverse suscepti-
bility. It means that there should be no matrix elements of the
�Jx ,Jy� operators between the two states of the ground dou-
blet.

�iii� Furthermore, the longitudinal �in the easy axis direc-
tion� susceptibility has to be predominantly controlled by the
two lowest levels. In other words, there has to be no signifi-
cant mixing of the states of the lowest doublet with the
higher levels via the internal mean field along the Ising di-
rection. In more technical terms, the van Vleck susceptibility
should play a negligible role to the noninteracting �free ion�
susceptibility near the critical temperature.76

�iv� In setting up the above conditions, one is in effect
requesting that a material be describable as a TFIM from a
microscopic point of view. However, one can, alternatively,
ask whether the quantum critical point of a given material is
in the same universality class as the relevant transverse-field
Ising model. In such a case, as long as transition is second
order, sufficiently close to the quantum critical point, a map-
ping to an effective TFIM is always in principle possible.
However, it can be difficult to estimate the pertinent param-
eters entering the Ginzburg-Landau-Wilson theory describ-
ing the transition.

The first condition �i� above is not satisfied in the case of
Dy�OH�3. The energy gap of 7.8 cm−1�11.2 K is not much
larger than the mean-field critical temperature Tc
5.31 K.
Hence, at temperatures close to Tc, the first excited doublet
state is also significantly populated. Furthermore and most
importantly in the context of a field-induced quantum phase
transition, the third condition �iii� above is also not satisfied.
Hence, even at low temperatures, because of the admixing of
the two lowest-energy states with the higher-energy levels
that is induced via the internal �mean� field from the sur-
rounding ions, Dy�OH�3 cannot be described by an effective
microscopic Ising model that solely considers the ground
doublet and ignores the excited crystal-field states. This ef-
fect and the associated role of nonzero Jz matrix elements
between the ground-state and higher crystal-field levels are
discussed in more detail in the Appendix. As an interesting
consequence of this participation of the higher-energy levels,
we predict that unlike in the TFIM of Eq. �1�, a first-order
phase transition may occur at high transverse field in
Dy�OH�3 �see Sec. V A�.

For Ho�OH�3 and Tb�OH�3 we construct an effective
Ising Hamiltonian, following the method of Refs. 6–8. We
diagonalize exactly the noninteracting Hamiltonian, H0 of

Eq. �4�, for each value of the transverse field, Bx. We denote
the two lowest states by ���Bx�	 and ���Bx�	 and their ener-
gies by E��Bx� and E��Bx�, respectively. A transverse field
introduces a natural basis choice where the states can be
interpreted as �→ 	 and �← 	 in the Ising subspace. We intro-
duce the �↑ 	 and �↓ 	 basis, in which the Jz matrix elements
are diagonal, by performing a rotation,

�↑	 =
1
�2

����Bx�	 + exp�i�����Bx�	� ,

�↓	 =
1
�2

����Bx�	 − exp�i�����Bx�	� . �9�

In this basis, the effective single-ion Hamiltonian describing
the two lowest states is of the form

HT = E�Bx� −
1

2
��Bx��x, �10�

where E�Bx�=
1
2 �E��Bx�+E��Bx�� and ��Bx�=E��Bx�−E��Bx�.

Thus, the splitting of the ground-state doublet plays the role
of a transverse magnetic field, �� 1

2��Bx� in Eq. �1�. In the
case of Tb�OH�3, after performing rotation �9�, even at Bx

=0, a small transverse-field term ��= 1
2��0�	0� is present in

Hamiltonian �10�. For Dy�OH�3 and Ho�OH�3, the splitting
of the energy levels obtained via exact diagonalization was
already discussed at the end of Sec. II and is shown in Fig. 2.
To include the interaction terms in our Ising Hamiltonian, we
expand the matrix elements of Jx, Jy, and Jz operators in
terms of the �� ��=x ,y ,z� Pauli matrices and a unit matrix,
�0�1,

Ji,� = C�1 + �
�=x,y,z

C���Bx��i
�. �11�

By replacing all Ji,� operators in the interaction term of
Hamiltonian �5� by the two-dimensional representation of
Eq. �11�, one obtains in general a lengthy Hamiltonian con-
taining all possible combinations of spin-1/2 interactions.7,8

In the present case, the resulting Hamiltonian is considerably
simplified by the crystal symmetries and the consequential
vanishing of off-diagonal elements of the interaction matrix
L��. This would not be the case for diluted LiHoxY1−xF4 �see
Ref. 8�. After performing the transformation in Eq. �11�, we
have Ji

z=Czz�i
z, Ji

y =Cyy�i
y, and Ji

x=Cxx�i
x+Cx1. Hence, we

can rewrite the mean-field Hamiltonian �7� in the form

HMF = �Lzz + zJex�Czz
2 mz�

z + �LxxCxCxx −
1

2
��Bx��x

+ �Lxx + zJex�Cxx
2 mx�

x + �Lyy + zJex�Cyy
2 my�

y ,

�12�

where m�����	 and �¯	 denotes a Boltzmann thermal av-
erage. Here we have dropped terms proportional to mx

2 and
mz

2.
The Czz, Cxx, and Cx coefficients for Ho�OH�3 are plotted

in Fig. 5. The inset shows a comparison of the terms in HMF.
In Ho�OH�3, the coefficient LxxCxx

2 �the fourth term of Hmf
for Jex=0� does not exceed 1.5% of the effective transverse
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field, �=LxxCxCxx− 1
2��Bx�. In Tb�OH�3, this ratio is even

smaller, and we thus neglect it, further motivated by the fact
that doing so decouples mz from mx, making the problem
simpler. The term LyyCyy

2 my�
y in Eq. �12� can be omitted

since, due to symmetry, my ���y	=0. The interaction correc-
tion, LxxCxCxx, to the effective transverse field, �, is of order
of 3% of �, and we retain it in our calculations. Thus, we
finally write,

HMF = P�z + ��x, �13�

where P= �Lzz+zJex�Czz
2 mz and �=LxxCxCxx− 1

2��Bx�.
Diagonalizing Hamiltonian �13� allows us to evaluate mz

and mx���x	, giving well-known formulas,4

mx =
�

�P2 + �2
tanh��P2 + �2/T� ,

mz =
P

�P2 + �2
tanh��P2 + �2/T� , �14�

and the phase boundary,

Tc�Bx� =
��Bx�

arctanh� ��Bx�
�Lzz + zJex�Czz

2  . �15�

In Fig. 6, we show that Eq. �15� yields a phase diagram
that only insignificantly differs from the one obtained from
the full diagonalization of HMF in Eq. �7�, shown in Fig. 3, in
the case of Ho�OH�3. In the case of Tb�OH�3, the discrep-
ancy is even smaller because the energy gap to the third
crystal-field state, 118 cm−1�170 K, is very large com-
pared to Tc

MF=5.59 K.
As alluded above, in the case of Dy�OH�3, a description in

terms of an effective Ising Hamiltonian method does not
work because of the admixing between states of the two
lowest doublets induced by the local mean-field that is pro-
portional to �Jz	 �see Appendix�. The dashed line in the bot-
tom right panel of Fig. 6 shows the incorrect phase diagram

obtained for Dy�OH�3 using an effective spin-1/2 Hamil-
tonian constructed only from the ground doublet. It turns out
that a form of the method of Sec. IV can still be used. How-
ever, instead of keeping only two levels in the interaction
Hamiltonian, one needs to retain at least four states. In anal-
ogy with the procedure in Sec. IV, we diagonalize the single-
ion Hamiltonian H0 of Eq. �4�, which consists of the crystal-
field Hamiltonian and the transverse-field term. Next, we
write an effective interaction Hamiltonian using the four �or
six� lowest eigenstates of H0. The resulting effective Hamil-
tonian is then used in the self-consistent Eq. �8�. For ex-
ample, for Bx=4.8 T, proceeding by keeping only the four
lowest eigenstates of H0 to construct the effective Hamil-
tonian, one finds a critical temperature that is only about 3%
off compared to a calculation that keeps all 16 eigenstates of
H0. This difference drops below 1% when keeping the six
lowest eigenstates of H0.

Having explored the quantitative validity of the spin-1/2
TFIM description of Ho�OH�3 and Tb�OH�3 in nonzero Bx,
we now turn to the problem of the first-order PM to FM
transition at large Bx and low temperature in Dy�OH�3 ex-
posed in the numerical solution of the self-consistent equa-
tions comprised by Eqs. �7� and �8� �with �=x ,z�.

V. FIRST-ORDER TRANSITION

The first-order transition in Dy�OH�3 takes its origin in
the sizeable admixing among the four lowest levels that is
induced by the local mean-field that is proportional to �Jz	.
Under the right temperature and field conditions, two free-
energy equivalent configurations can exist: an ordered state
with some not infinitesimally small magnetization, �Jz		0,
and a state with zero magnetic moment, �Jz	=0. To simplify
the argument, we consider how this occurs at T=0. First, let
us look at the situation when the longitudinal internal mean
field induces an admixing of the ground state with the first
excited state only �as in the TFIM�. In such a case, there is
only a quadratic dependence of the ground-state energy on
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the longitudinal mean field, Bz
MF, and consequently, only one

energy minimum is possible. Now, if there is an admixing of
the ground state and at least three higher levels, the depen-
dency of the ground-state energy on Bz

MF is of fourth order
and two energy minima are, in principle, possible. Thus, at a
certain value of external parameters the system can acquire
two energetically equivalent states, one with zero and the
other with a nonzero magnetization. When passing through
this point, either by varying the transverse field, Bx, or the
temperature, a first-order phase transition characterized by a
magnetization discontinuity occurs. To make this discussion
more formal, we proceed with a construction of the
Ginzburg-Landau theory for Dy�OH�3 for arbitrary Bx, in the
regime of Bx and T values where the paramagnetic to ferro-
magnetic transition is second order. This allows us to deter-
mine the tricritical transverse-field value above which the
transition becomes first order.

A. Ginzburg-Landau theory

To locate the tricritical point for Dy�OH�3, we perform a
Landau expansion of the mean-field free energy,
FMF��Jx	 , �Jz	�. Next, we minimize FMF with respect to �Jx	
leaving �Jz	 as the only free parameter. The mean-field free
energy can be written in the form

FMF��Jx	,�Jz	� = − T log Z��Jx	,�Jz	� −
1

2
�Lxx�Jx	2 + Lzz�Jz	2� ,

�16�

where Z��Jx	 , �Jz	� is the partition function.
Just below the transition, in the part of the phase diagram

where the transition is second order, �Jz	 is a small parameter
�i.e., has a small dimensionless numerical value�. We there-
fore make an expansion for �Jx	 as a function of �Jz	, which
we write in the form

�Jx	 = �Jx	0 + ���Jz	� . �17�

�Jx	0 is the value of �Jx	 that extremizes FMF when �Jz	=0.
���Jz	� is a perturbatively small function of �Jz	, which we
henceforth simply denote as � and which is our small param-
eter series expansion for �Jx	. Substituting expression �17�
into HMF of Eq. �7� and setting Jex=0 for the time being, we
have

H = Hcf�Ji� − g�BBxJx + LxxJx��Jx	0 + �� + LzzJz�Jz	 ,

�18�

or

H = H0�Bx,�Jx	0� + LxxJx� + LzzJz�Jz	 , �19�

where for brevity, as in Eq. �7�, the constant term propor-
tional to �Jx	2 has been dropped because, again, it does not
affect the expectation values needed for the calculation.

The power-series expansion of the partition function, and
then of the free energy, Eq. �16�, can be calculated from the
eigenvalues of Hamiltonian �19�. Instead of applying stan-
dard quantum-mechanical perturbation methods to Eq. �19�,
we obtain the expansion of energy levels as a perturbative,

“seminumerical,” solution to the characteristic polynomial
equation,

det�H0 + LxxJx� + LzzJz�Jz	 − En� = 0. �20�

We can easily implement this procedure by using a computer
algebra method �e.g., MAPLE™ or MATHEMATICA™�. To pro-
ceed, we substitute a formal power-series expansion of the
solution,

En = En
�0,0� + En

�0,1�� + En
�2,0��Jz	2 + En

�2,1��Jz	2� + ¯ ,

�21�

into Eq. �20�, containing all the terms of the form
En

��,���Jz	���, where �+2��6, as will be justified below Eq.
�24�. To impose consistency of the resulting equation ob-
tained from Eqs. �20� and �21�, up to sixth order of the ex-
pansion in �Jz	, we need to equate to zero all the coefficients
with the required order of �Jz	 and �, i.e., �+2��6. This
gives a system of equations that can be numerically solved
for the coefficients En

�k,l�, where k , l	0. By En
�0,0� we denote

the eigenvalues of the Hamiltonian H0�Bx , �Jx	0�.
We use the perturbed energies, En, of Eq. �21� to calculate

the partition function,

Z��,�Jz	� = �
n

e−En/T, �22�

and substitute it in Eq. �16�. We Taylor expand the resulting
expression to obtain the numerical values of the expansion
coefficients in the form,

FMF = A�0,0� + A�2,0��Jz	2 + A�0,1�� + A�2,1��Jz	2� + ¯ .

�23�

The free energy FMF is a symmetric function of �Jz	, so
expansion �23� contains only even powers of �Jz	. We mini-
mize FMF in Eq. �23� with respect to �. To achieve this, we
have to solve a high-order polynomial equation dFMF /d�
=0. Again, we do it by substituting to the equation a formal
power-series solution,

���Jz	� = D2�Jz	2 + D4�Jz	4 + ¯ , �24�

and then solve it for the values of the expansion parameters
Dn. Due to symmetry, only even powers of �Jz	 are present,
and from the definition of �, the constant �Jz	-independent
term is equal to zero. From the form of the expansion in Eq.
�24�, we see that to finally obtain the free-energy expansion
in powers of �Jz	, up to nth order, we need to consider only
the terms �Jz	���, where �+2��n. Finally, by substituting �
from Eq. �24� into Eq. �23�, we obtain the power-series ex-
pansion of the free energy in the form,

FMF = C0 + C2�Jz	2 + C4�Jz	4 + C6�Jz	6. �25�

In the second-order transition region, the condition C2
=0 with C4	0 parametrizes the phase boundary. The equa-
tion C2=C4=0 gives the condition for the location of the
tricritical point. In the regime where C4
0, the condition
C2=0 gives the supercooling limit. The first-order phase
transition boundary is located where the free energy has the
same value at both local minima. Increasing the value of the
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control parameters, T and Bx, above the critical value until
the second �nontrivial� local minimum of FMF vanishes,
gives the superheating limit.

The location of the tricritical point is Tc
TCP�0.75 K and

Bx
TCP�4.85 T. We show in Fig. 7 the first-order and the

second-order transition phase boundaries; the tricritical point
is marked with a dot. In the first-order transition regime, the
superheating and supercooling limits are also plotted. �Jz	
ceases to be a small parameter for values of T and Bx “away”
from the tricritical point. Thus, the two upper curves in the
phase diagram of Fig. 7 are determined from a numerical
search for both local minima of the exact mean-field free
energy in Eq. �16� without relying on a small �Jz	 and ���Jz	�
expansions. The supercooling limit is calculated from the
series expansion �25� and determined by the condition
C2=0.

In the inset of Fig. 7, we show the average magnetic mo-
ment, �Jz	, as a function of the transverse field at the tem-
perature of 0.3 K. The solid dots and the dashed lines mark
the supercooling limit, first-order phase boundary, and the
superheating limit in order of increasing Bx. The free energy
at these three characteristic values of the magnetic field, Bx,
at temperature of 0.3 K is shown in Fig. 8.

In Fig. 8, we plot the free energy as a function of �Jz	,
where �Jx	 is minimizing FMF as a function of �Jz	 at
T=0.3 K. Free energy at the phase transition �Bx
�4.977 T� is plotted with a continuous line. The dashed and
dot-dashed plots show free energy at the superheating and
supercooling limits at Bx�4.995 and 4.940 T, respectively.
The free energy clearly shows the characteristic structure
�e.g., barrier� of a system with a first-order transition. It
would be interesting to investigate whether the real Dy�OH�3
material exhibits such a Bx-induced first-order PM to FM
transition at strong Bx. In the event that the transition is sec-
ond order down to T=0 and Bx=Bx

c, Dy�OH�3 would offer

itself as another material to investigate transverse-field-
induced quantum criticality �see fourth item of the list at the
beginning of Sec. IV�. However, a quantitative microscopic
description at strong Bx would nevertheless require that the
contribution of the lowest pairs of excited crystal-field states
be taken into account.

One may be tempted to relate the existence of a first-order
transition in Dy�OH�3, on the basis of Eq. �23� with two
expansion parameters �Jz	 and �, to the familiar problem
where a free-energy function, F�m ,��, of two order param-
eters m and �,

F�m,�� =
a

2
m2 +

�b�
4

m4 +
�c�
6

m6 +
K

2
�2 − g�m2,

displays a first-order transition when g2 /K	b /2. However,
we have found that this analogy is not useful, and the mecha-
nism for the first-order transition is not trivially due to the
presence of two expansion parameters, �Jz	 and �, in expan-
sion �23�. It is rather the complex specific details of the
crystal-field Hamiltonian for Dy�OH�3 that are responsible
for the first-order transition. For example, at a qualitative
level, a first-order transition still occurs even if the small
���Jz	� parameter in Eq. �17� is taken to be zero at the outset
for all values of �Jz	.

B. Effect of longitudinal magnetic field and exchange
interaction on the existence of first-order transition in Dy(OH)3

Having found that the PM to FM transition may be first
order in Dy�OH�3 at large Bx �low T�, it is of interest to
investigate briefly two effects of physical relevance on the
predicted first-order transition. First, since the transition is
first order from 0�T�TTCP, one may ask what is the critical
longitudinal field, Bz, required to push the tricritical point
from finite temperature down to zero temperature. Focusing
on the CFP of Scott et al.,56,59,60,64 we find that a sufficiently
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strong magnetic field, Bz, applied along the longitudinal z
direction destroys the first-order transition giving rise to an
end critical point. We plot in Fig. 9 the magnetization, �Jz	,
as a function of Bx for different values of Bz at T=0. We see
that a critical value of Bz is reached between 1 and 2 T,
where the first-order transition disappears giving rise to an
end critical point at T=0. Hence, assuming that the low-
temperature Bx-driven PM to FM transition is indeed first
order in Dy�OH�3, the results of Fig. 9 indicate that the criti-
cal longitudinal field for a quantum critical end point should
be easily accessible using a so-called vector magnet �i.e.,
with tunable horizontal, Bx, and vertical, Bz, magnetic
fields�.77

It was discussed in Sec. III �Fig. 4� that the �yet undeter-
mined� nearest-neighbor exchange interaction, Jex in Eq. �5�,
affects the zero Bx critical temperature, Tc, and the zero-
temperature critical transverse field, Bx

c. It is also of interest

to explore what is the role of Jex=
�0�g�B�2

4� Jex on the location
�temperature and transverse field� of the tricritical point in
Dy�OH�3.

We plot in Fig. 10 the temperature corresponding to the
TCP as a function of antiferromagnetic exchange, and in the
upper inset, the location of the TCP on the phase diagram is
presented. The location of the TCP was calculated using the
semianalytical expansion described in Sec. V A. We found
that the system ceases to exhibit a first-order transition at
nonzero temperature when the value of nearest-neighbor ex-
change constant, Jex, exceeds Jex

2nd=0.995. At Bx=0, the criti-
cal temperature calculated with the value of exchange con-
stant Jex=0.995 is 4.09 K. In the lower inset of Fig. 10 we
plot the average magnetic moment, �Jz	, as a function of Bx
at zero temperature for different values of Jex. The top inset
shows a parametric plot of the position of the TCP in the
�T ,Bx� plane as Jex is varied.

VI. CONCLUSION

We have presented a simple mean-field theory aimed at
motivating an experimental study of transverse-field-induced
phase transitions in the insulating rare-earth Ising RE�OH�3
�RE=Dy,Ho� uniaxial dipolar ferromagnetic materials.

In setting out to perform the above calculations, we were
mostly motivated in identifying a class of materials as analo-
gous as possible to LiHoxY1−xF4 where interesting phenom-
ena both in zero and nonzero applied transverse field, Bx,
have been observed. In particular, we were interested in find-
ing compounds where a systematic comparison between a
non-Kramers �e.g., Ho3+� and a Kramers �e.g., Dy3+� variants
could be investigated. From our study, we are led to suggest
that an experimental study of the DyxY1−x�OH�3 and
HoxY1−x�OH�3 materials could bring new pieces of informa-
tion on the physics that may be at play in LiHoxY1−xF4 and to
ascertain if that physics is unique to LiHoxY1−xF4 or if it also
arises in other diluted dipolar Ising ferromagnets.

Depending on the details of the Hamiltonian characteriz-
ing Dy�OH�3, it may be that a first-order transition occurs at
low temperature �large Bx� due to the admixing between the
ground doublet and the low-lying crystal-field states that is
induced by the spin-spin interactions. Upon substitution of
Dy3+ by Y3+, the first order paramagnetic to ferromagnetic
transition would likely disappear and become second order
before a dipolar spin glass phase may be reached at suffi-
ciently high Y3+ concentration. For the same reason, we find
that Dy�OH�3 is not well described by an effective micro-
scopic transverse-field Ising model �TFIM�. On the other
hand, Ho�OH�3 appears to be very well characterized by a
TFIM and, therefore, constitutes a highly analogous variant
of LiHoF4. Tb�OH�3 is also very well described by a TFIM.
Unfortunately, in that case, the critical Bx, Bx

c, appears pro-
hibitively large to be accessed via in-house commercial mag-
nets.

We hope that our work will stimulate future systematic
experimental investigations of these materials and, possibly,
help shed some light on the rather interesting problems that
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pertain to the fundamental nature of classical and quantum
critical phenomena in disordered dipolar systems and which
have been raised by nearly 20 years of study of LiHoxY1−xF4.
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APPENDIX: PERTURBATIVE CALCULATION OF THE
PHASE DIAGRAM IN Dy(OH)3

To investigate the role of the Jz matrix elements between
the two lowest states and the first excited levels on the mag-
netic behavior of Dy�OH�3, we calculate the critical tempera-
ture for a second-order transition using second-order pertur-
bation theory. This method is exact in the second-order phase
transition regime, where Bx is less than the tricritical field
value, Bx

TCP �Bx
TCP�4.85 T when using the CFP of Scott et

al. from Refs. 56 and 60�.
For a given value of the transverse field, Bx, and the cor-

responding value of average magnetization in the transverse
direction, �Jx	, we consider LzzJz�Jz	 term as a perturbation
to the reference mean-field Hamiltonian,

H0 = Hcf�Ji� − g�BBxJx + LxxJx�Jx	 , �A1�

describing the PM phase at a temperature T	Tc�Bx� as in
Eq. �7�. Here too, we have dropped the constant terms. The
eigenvalues, Ep, and eigenstates, �p	, of the perturbed Hamil-
tonian,

H = H0 + LzzJz�Jz	 , �A2�

are written in terms of eigenvalues, Ep
�0�, and eigenstates,

�p�0�	, of the unperturbed Hamiltonian, H0, of Eq. �A1�,

Ep = Ep
�0� + �Jz	Ep

�1� + �Jz	2Ep
�2�, �A3�

�p	 = �p�0�	 + �Jz	�
k�p

cp,k
�1��k�0�	 . �A4�

The coefficients of the perturbative expansion are given by

Ep
�1� = LzzJpp

z , �A5�

Ep
�2� = �

k�p

Lzz
2 �Jkp

z �2

Ep
�0� − Ek

�0� , �A6�

and

cpk
�1� =

LzzJkp
z

Ep
�0� − Ek

�0� , �A7�

where Jkp
z = �k�0��Jz�p�0�	 are the matrix elements of the Jz op-

erator in the basis of eigenvectors of the unperturbed Hamil-
tonian, H0. The applied magnetic field, Bx, lifts the degen-
eracy of the Kramers doublets; thus we can use the
nondegenerate perturbation method. The diagonal elements
of the Jz operator vanish; hence, the first-order correction to
energy vanishes, Ep

�1�=Jpp
z =0.

We calculate the thermal average of the Jz operator,

�Jz	 =
1

Z
�

p

�p�Jz�p	e−Ep/T, �A8�

using the perturbed eigenstates, �p	, and eigenvalues, Ep,
where Z=�pe−Ep/T. Keeping only terms up to third order in
�Jz	 in the expansion of Eq. �A8�, we find

1

Z
e−Ep/T = np

�0��1 + Kp�Jz	2� �A9�

and

�p�Jz�p	 = 2Lzz�Jz	�
k�p

�Jpk
z �2

Ep
�0� − Ek

�0� , �A10�

where, for convenience, we write np
�0�=e−Ep

�0�/T /Z�0�, Z�0�

=�pe−Ep
�0�/T, and Kp= 1

T ��knk
�0�Ek

�2�−Ep
�2��. Thus, we can write

�Jz	 = 2�Jz	�
p

np
�0��1 + Kp�Jz	2��

k�p

Lzz�Jpk
z �2

Ep
�0� − Ek

�0� , �A11�

and finally, we get

�Jz	2 =

1 − 2 �
p,k�p

np
�0� Lzz�Jpk

z �2

Ep
�0� − Ek

�0�

2 �
p,k�p

np
�0�Kp

Lzz�Jpk
z �2

Ep
�0� − Ek

�0�

. �A12�

Putting �Jz	=0 into Eq. �A12�, we obtain the condition for
the critical temperature, Tc, for the regime where the PM to
FM transition is second order,

2 �
p,k�p

Lzz�Jpk
z �2

Ep
�0� − Ek

�0�e
−Ep

�0�/Tc = 1. �A13�

In solving Eq. �A13� for Tc, we have to self-consistently
update the value of �Jx	 in order to diagonalize H0 in Eq.
�A1� and to find Ep

�0�. Solving Eq. �A13� with only the four
lowest-energy eigenstates �after diagonalizing the full
transverse-field Hamiltonian of Eq. �4�� yields a phase dia-
gram that is in good agreement for Bx
Bx

TCP with the phase
boundary obtained with all crystal-field eigenstates �or
equivalently from Eq. �8��.

By estimating the values of the elements of the sum in Eq.
�A13�, one finds that the matrix elements of the Jz operator,
mixing the two lowest states with the excited states, may
bring a substantial correction to the value of the critical tem-
perature obtained when only the two lowest eigenstates are
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considered. In the low-temperature regime, one could omit
the matrix elements between the states of the excited dou-
blet, but we have to keep the matrix elements between the
states of the ground doublet and first excited doublet. The
contribution from the further exited states is quite small be-
cause of the increasing value of the energy gap present in the
denominator of Eq. �A13�.

At T=0, the equation for the critical transverse field, Bx
c, is

2�
k�1

Lzz�J1k
z �Bx

c��2

E1
�0��Bx

c� − Ek
�0��Bx

c�
= 1. �A14�

Again, we see that the matrix elements of Jz operator, admix-
ing the ground state with the excited levels, have to be con-
sidered. Note that since Eq. �A14� pertains to the case of zero
temperature, this equation is only valid in a regime where the
transition is second order �i.e., when Jex	Jex
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