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A mean-field approximation for quasi-one-dimensional �Q1D� quantum magnets is formulated. Our mean-
field approach is based on the Bethe-type effective-field theory, where thermal and quantum fluctuations
between the nearest-neighbor chains as well as those in each chain are taken into account exactly. The
self-consistent equation for the critical temperature contains the boundary-field magnetic susceptibilities of a
multichain cluster, which can be evaluated accurately by some analytic or numerical methods, such as the
powerful quantum Monte Carlo method. We show that the accuracy of the critical temperature of Q1D magnets
as a function of the strength of interchain coupling is significantly improved compared with the conventional
chain mean-field theory. It is also demonstrated that our approximation can predict nontrivial dependence of
critical temperature on the sign �i.e., ferromagnetic or antiferromagnetic� of interchain coupling as well as on
the impurity concentration in randomly diluted Q1D Heisenberg antiferromagnets.
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I. INTRODUCTION

Space dimensionality plays an essential role in phase tran-
sitions and critical phenomena of quantum magnets. As the
dimension is lowered, effects of thermal and quantum fluc-
tuations generally become stronger. As a result, the quantum
antiferromagnetic Heisenberg model in two dimensions, for
example, does not exhibit long-range order any more except
at the ground state,1 though a finite-temperature phase tran-
sition occurs in its three-dimensional �3D� counterpart. Fur-
thermore, there is no long-range order even at zero tempera-
ture in one dimension.2 Such one-dimensional magnets arose
great interests as many phenomena characteristic of systems
with strong quantum fluctuations, e.g., Tomonaga-Luttinger
liquid state or Haldane gap state, have been observed theo-
retically as well as in the experiments.3

Real materials, however, cannot be purely one dimen-
sional but three dimensional, i.e., there always exist interac-
tions between one-dimensional chains �interchain interac-
tions� albeit it is much weaker, often by orders of magnitude,
than the dominant interactions along the chains �intrachain
interactions�. Three-dimensional materials with strong spatial
anisotropy are often referred to as quasi-one-dimensional
�Q1D� systems. Indeed, in many Q1D materials a long-range
order emerges at low temperatures, which is a direct conse-
quence of three dimensionality of the system. In order to
explain low-energy behavior of such Q1D materials cor-
rectly, a theory which properly incorporates the effect of in-
terchain interaction is essential.

So far, effects of weak interchain interactions in Q1D
quantum magnets have been studied mainly by means of the
chain mean-field approximation, where interchain spin fluc-
tuations are ignored completely.4,5 Within the framework of
the chain mean-field approximation, a Q1D magnet is re-
duced to a single chain in an effective external field. For the
latter system, fortunately there exist a couple of exact solu-
tions; otherwise one can still use powerful analytic methods,
such as bosonization, as well as numerical simulations, such
as exact diagonalization or density-matrix renormalization-

group method, which are effective especially in one dimen-
sion.

Naively, one may expect that the chain mean-field ap-
proximation becomes more and more accurate not only
qualitatively but also quantitatively, as the interchain interac-
tions become weak enough compared to those along the
chains. The recent theoretical study6 as well as the sensitive
Monte Carlo simulations7,8 on Q1D spin models, however,
have revealed that this is not the case; there remains system-
atic error of the chain mean-field theory even in the weak
interchain coupling limit. Instead, the critical temperature as
a function of the interchain coupling is well described by a
chain mean-field formula with a renormalized effective co-
ordination number �or effective interchain coupling9�. Espe-
cially, in the Q1D classical Ising models, it is proved that the
renormalization factor is exactly given by the critical trans-
verse field of the quantum phase transition of a two-
dimensional quantum Ising model.8 This analytic result dem-
onstrates clearly that the weak interchain coupling limit of
the Q1D magnet is not the weak-coupling limit but is still the
strongly correlated regime.

The renormalization of effective interplane coupling is
also observed in weakly coupled two-dimensional planes.7

For this quasi-two-dimensional system, a scaling theory was
developed,10 in which it is expected different scaling behav-
ior depending on whether the purely two-dimensional system
is in a quantum critical regime or in a renormalized classical
regime. This prediction has been verified by a recent quan-
tum Monte Carlo �QMC� simulation.11

Thus it has become evident by the recent theoretical and
numerical studies that we need a theory beyond the conven-
tional chain mean-field approximation to describe the critical
temperature of the Q1D magnets in the weak interchain cou-
pling regime more accurately. Even worse, when the chain
mean-field theory is applied to a system with quenched dis-
order, the random average in each chain is taken before the
thermal average on the whole lattice. The adverse impact of
interchanging the average operations is further nontrivial. It
is naturally expected that some of these drawbacks of the
chain mean-field theory might be remedied by considering
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multiple chains, instead of a single chain, and taking the
interactions between those chains into account in a proper
way. Along this line, Sandvik12 proposed a multichain mean-
field theory and applied it successfully to the problem of
ground-state staggered magnetization in a two-dimensional
Heisenberg antiferromagnet.

In the present paper, we propose a different type of chain
mean-field theory, i.e., the chain Bethe approximation. Actu-
ally, it is well known that there are two different formula-
tions in traditional mean-field theories for classical spin
models; that is, the Weiss13 approximation and the Bethe
approximation.14,15 In the former, the effective field is iden-
tified explicitly with the order parameter. In the latter, on the
other hand, the effective field is determined implicitly so that
the local order parameter at the central spin and that of spins
on the cluster boundary coincide with each other. In the Be-
the mean-field theory, therefore, spin fluctuations between
nearest-neighboring sites are taken into account even in the
lowest-order approximation. Furthermore, as the cluster size
increases, the critical temperature by the Bethe-type approxi-
mation converges to the exact value more rapidly being free
from logarithmic corrections which is observed in the Weiss-
type theory.16 By applying the idea of the Bethe-type
effective-field theory, we introduce a different chain mean-
field theory for Q1D quantum magnets.

The present paper is organized as follows. In Sec. II, after
a brief review of the conventional chain mean-field approxi-
mation, we formulate our Bethe-type chain mean-field
theory: the chain Bethe approximation. In Sec. III, the chain
Bethe approximation is applied to the Q1D Heisenberg anti-
ferromagnets, where we show that by using our approxima-
tion, the accuracy of the critical temperature is significantly
improved compared with the conventional chain mean-field
theory. In addition, we demonstrate that the present theory
can predict a lower critical temperature for the ferromagnetic
interchain coupling than in the antiferromagnetic case, which
is also confirmed by the QMC simulation. In Sec. IV, we
apply the chain Bethe theory to a random quantum magnet,
the site-diluted Q1D Heisenberg antiferromagnet, where the
existence of a finite critical impurity concentration, above
which the long-range order does not emerge even in the zero-
temperature limit, is predicted by using the chain Bethe ap-
proximation. Section V is for a summary and discussion.

II. CHAIN BETHE MEAN-FIELD THEORY

A. Conventional chain mean-field approximation

The Hamiltonian of spin-1/2 Heisenberg model on a Q1D
simple-cubic lattice is defined by

H = J�
i,j,k

Si,j,k · Si,j,k+1 + J��
i,j,k

Si,j,k · Si+1,j,k

+ J��
i,j,k

Si,j,k · Si,j+1,k − h�
i,j,k

�i+j�− 1�kSi,j,k
z , �1�

where Si,j,k= �Si,j,k
x ,Si,j,k

y ,Si,j,k
z � is an S=1 /2 quantum spin op-

erator at site �i , j ,k�. We take the lattice z axis as the chain
direction. The first term in Eq. �1� represents the intrachain
interactions �with coupling constant J�, while the second and

third terms denote the interchain interactions �J��. In the
present paper we consider only the case where the intrachain
coupling J is antiferromagnetic �J�0�, whereas the inter-
chain coupling J� is either antiferromagnetic �J��0� or fer-
romagnetic �J��0�. Generalization to the case with ferro-
magnetic intrachain coupling is also straightforward. The last
term in Eq. �1� represents an external magnetic field conju-
gate to the order parameter, where the phase factor � is
defined as �=−sgn�J��.

In the conventional chain mean-field approximation re-
ferred to as the chain Weiss theory hereafter, spin fluctuations
between the chains are ignored and replaced by an effective
field, i.e.,

J�Si,j,k · Si�,j�,k � J�Si,j,k · �Si�,j�,k� + J��Si,j,k� · Si�,j�,k + const,

�2�

where �i� , j��= �i�1, j� or �i , j�1�. As a result, the original
Hamiltonian �1� is decoupled into a set of independent chains
�Fig. 1�a��. The effective chain Hamiltonian for �i , j�= �0,0�
is written as

Hc = J�
k

Sk · Sk+1 + J��
k

Sk · Mk − h�
k

�− 1�kSk
z , �3�

with Sk	S0,0,k and

Mk 	 �S1,0,k� + �S−1,0,k� + �S0,1,k� + �S0,−1,k� . �4�

In the low-temperature-ordered phase, a finite magnetiza-
tion appears spontaneously even at h=0. We assume that the
magnetization is along the z direction in the spin space, i.e.,
�Si,j,k�= �0,0 ,�i+j�−1�km�T��. Chain Hamiltonian �3� with h
=0 is then reduced to

Hc = J�
k

Sk · Sk+1 − 4
J�
m�T��
k

�− 1�kSk
z . �5�

Since the magnitude of the spontaneous magnetization does
not depend on the position of the spin, the self-consistent
condition

(a) (b)

FIG. 1. Clusters for �a� chain Weiss and �b� chain Bethe ap-
proximations. The solid and dashed lines denote the intrachain �J�
and interchain �J�� interactions, respectively. In the chain Weiss
approximation, an alternating effective field with the same ampli-
tude applies on all spins. In the chain Bethe approximation, on the
other hand, a staggered effective field applies only on the spins on
the side chains �filled symbols�.
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m�T� = mc�T,4
J�
m�T�� �6�

must be fulfilled, where

mc�T,h� 	
1

L
�

k

�− 1�k�Sk
z�c �7�

is the staggered magnetization density of genuinely one-
dimensional antiferromagnetic chain of length L. The aver-
age �¯�c in Eq. �7� means the expectation value of the one-
dimensional chain �i.e., Eq. �3� with J�=0�, while �¯� �e.g.,
in Eqs. �1� and �4�� denotes the average with respect to the
original �full-3D� Hamiltonian �1�.

At high temperatures, on the other hand, no spontaneous
magnetization appears. Under the presence of small external
magnetic field, however, a finite magnetization �Si,j,k�
= �0,0 ,�i+j�−1�km�T ,h�� is induced. In this case, the effec-
tive chain Hamiltonian �5� is modified as

Hc = J�
k

Sk · Sk+1 − �h + 4
J�
m�T,h���
k

�− 1�kSi
z. �8�

Since m�T ,h��1 for h�1 in the disordered phase, one can
consider only the lowest order in h,

m�T,h� � �h + 4
J�
m�T,h���c�T� , �9�

where �c�T� is the zero-field staggered susceptibility of one-
dimensional antiferromagnetic chain. Noticing that m�T ,h�
in the both sides can also be written as h��T� for h�1, we
obtain the following mean-field expression for the suscepti-
bility:

��T� =
�c�T�

1 − 4
J�
�c�T�
. �10�

In terms of the chain Weiss theory, the critical temperature is
thus given by the pole of the right-hand side of Eq. �10�. For
generic Q1D lattices the self-consistent equation is written as
follows:

1 − z
J�
�c�Tc� = 0, �11�

where z is the coordination number of the lattice, i.e., the
number of nearest-neighbor chains. Note that the self-
consistent equation depends not on the sign of J� but only on
its absolute magnitude. In other words, the conventional
chain Weiss theory does not distinguish between the antifer-
romagnetic and ferromagnetic interchain interactions. This is
one of the major drawbacks of the conventional chain mean-
field theory. Another problem is that most of physical quan-
tities, such as the energy, specific heat, correlation functions,
etc., are the same as those of the genuine one-dimensional
chain at temperatures higher than Tc, since the effective field
is proportional to the order parameter, which is zero at T
�Tc. We will see below that these disadvantages of the chain
Weiss approximation are solved in the chain Bethe mean-
field theory.

B. Bethe-type mean-field theory

In the chain Weiss approximation, the effect of interchain
interaction was replaced by an effective field. The effective

interchain interaction is directly related with the order pa-
rameter and interchain spin fluctuations are thus ignored
completely. The approximation can be improved by taking
interchain spin fluctuations into account systematically. In
the chain Bethe approximation introduced in this section, the
interaction between the nearest-neighbor chains is taken into
account exactly and those around the multichain cluster are
treated as effective fields. In the Bethe approximation,14,15

the effective field is determined so that the magnetization of
the central spin and that on the cluster boundary coincide
with each other. Contrary to the Weiss theory, the order pa-
rameter is not given explicitly by the effective field but is its
implicit function.

Let us consider the chain Bethe approximation for the
simple-cubic lattice. In this case we prepare a cluster of five
chains �Fig. 1�b��, where an effective field is applied only to
the spins on the side chains �black circles�. The effective
Hamiltonian is written as

H� = J�
	=0

4

�
k

S	,k · S	,k+1 + J��
	=1

4

�
k

S0,k · S	,k

− h�
k

�− 1�kS0,k
z − �h + heff��

	=1

4

�
k

��− 1�kS	,k
z ,

�12�

where 	=0 denotes the central chain ��i , j�= �0,0�� and 	
=1, . . . ,4 denotes the side chains ��i , j�= ��1,0� or �0, �1��.

In the chain Bethe approximation, we impose the condi-
tion that the absolute value of the local magnetization does
not depend on its position,

�− 1�k�S0,k�� = ��− 1�k��S	,k��� �13�

for any k, k�, and 	=1, . . . ,4, or equivalently

m�,0�T,h,heff� =
�

4 �
	=1

4

m�,	�T,h,heff� , �14�

where m�,	�T ,h ,heff� is the staggered magnetization density
of the 	th chain,

m�,	�T,h,heff� =
1

L
�

k

�− 1�k�S	,k��. �15�

Here �¯�� denotes the expectation value of the chain Bethe
cluster and L denotes the number of spins in the chain direc-
tion.

In Fig. 2, the heff dependence of both sides in Eq. �14� is
demonstrated for J�=0.1J and h=0, where the magnetization
is calculated by means of the QMC method for a L=64 chain
Bethe cluster �see Sec. III A for simulation details�. It is
clearly seen that Eq. �14� has only one trivial solution, heff
=0, at high temperatures. On the other hand, at low tempera-
tures two more nontrivial solutions �heff�0� appear, which
correspond to the the symmetry-broken phase.

The critical temperature in the framework of the chain
Bethe approximation is defined as the point where the three
solutions at low temperatures get degenerated with each
other �Fig. 2�. In practice, we set h=0 in Eq. �14� and expand

IMPROVED CHAIN MEAN-FIELD THEORY FOR QUASI-… PHYSICAL REVIEW B 78, 224411 �2008�

224411-3



both sides in terms of heff. The self-consistent equation for
the critical temperature is then written as


��Tc� 	 J���,0�Tc� −
�

4 �
	=1

4

��,	�Tc�� = 0 �16�

with the boundary-field susceptibilities

��,	�T� = 
 �m�,	�T,h,heff�
�heff



h=0,heff=0

=
�

L
�

	�=1

4

�
k,k�

�S	,k
z ;S	�,k�

z ��, �17�

where �A ;B�� denotes the canonical correlation,

�A;B�� =
1

�

Tr �
0

�

Ae−�H�Be−��−��H�d�

Tr e−�H�
�18�

of two operators A and B. In the inset of Fig. 2, we show the
temperature dependence of 
��T�. As the temperature in-
creases, 
��T� decreases monotonically. The critical tem-
perature, in terms of the chain Bethe approximation, is given
as the zero of 
��T�. For J� /J=0.1, we obtained Tc /J
=0.19084�5�.

III. CRITICAL TEMPERATURE OF Q1D QUANTUM
HEISENBERG MODELS

A. Numerical method

In this section, we discuss the interchain coupling depen-
dence of the critical temperature for the S=1 /2 Heisenberg
model on a Q1D simple-cubic lattice �Eq. �1�� in terms of the
chain Bethe approximation. Since the boundary-field suscep-
tibility of the chain Bethe cluster �Eq. �17�� cannot be evalu-

ated analytically, one needs to introduce some reasonable
approximation or some numerical method. In the present pa-
per, we adopt the continuous-time loop cluster QMC algo-
rithm, which is one of the most effective methods for simu-
lating unfrustrated quantum spin systems.17,18 It is a variant
of the world-line QMC method based on the Suzuki-Trotter
path-integral expansion. The continuous-time loop algo-
rithm, however, works directly in the imaginary-time con-
tinuum, and thus it is completely free from the time discreti-
zation error. Furthermore, the correlation between successive
spin configurations on the Markov chain is greatly reduced
often by several orders of magnitude. This is manifested by
the fact that clusters of spins called loops, whose linear size
corresponds directly to the length scale of relevant spin fluc-
tuations, are flipped at once in the loop algorithm.

The boundary-field susceptibilities in Eq. �17� are calcu-
lated by means of the improved estimator.17 The largest sys-
tem size in the chain direction is L=64 for 
J�
 /J
0.05. For
smaller 
J�
’s, longer systems �e.g., L=512 for 
J�
 /J=0.01�
are needed to obtain the susceptibilities in the thermody-
namic limit L→�, since the critical temperature decreases as

J�
 does. Periodic boundary conditions are imposed along
the chains. We interpolate the QMC results at various tem-
peratures by a polynomial and estimate the zero of 
��T�,
which gives the critical temperature. �See, e.g., the inset of
Fig. 2.�

B. Comparison of chain Bethe theory with other methods

The accuracy of the present chain Bethe approximation is
checked by comparing with the results of QMC simulations
of full-3D systems, i.e., simple-cubic lattice of Lx�Ly �Lz
sites with periodic boundary conditions along all the lattice
axes. For the antiferromagnetic interchain interactions J� /J
�0, we take the full-3D QMC results from Ref. 7. For
J� /J�0, the critical temperature is estimated from the cross-
ing point of the Binder cumulant,

Q =
�m2�2

�m4�
�19�

of the generalized magnetization density

m =
1

LxLyLz
�
i,j,k

�− 1�kSi,j,k
z �20�

for different system sizes. The largest system size we simu-
late is �Lx ,Ly ,Lz�= �40,40,40� and �12,12,264� for 
J�
 /J=1
and 0.01, respectively. The results of finite-size scaling are
summarized in Table I.

In Fig. 3, we show the J� dependence of the critical tem-
perature calculated in terms of the chain Bethe approxima-
tion both for antiferromagnetic �J��0� and ferromagnetic
�J��0� interchain interactions together with the full-3D
QMC results. The intrachain interaction is antiferromagnetic
�J�0� in either case. In Fig. 3, we also present the results of
the chain Weiss approximation and the Green’s function
method with Tyablikov decoupling.19,20 As for the chain
Weiss theory, we use the susceptibility of genuinely one-
dimensional antiferromagnetic chain calculated by the QMC
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FIG. 2. heff dependence of the local magnetization of the center
spins �open symbols� and the boundary spins �filled symbols� of
L=64 chain Bethe cluster with J� /J=0.1. At temperatures higher
than the critical temperature �squares� two curves intersect only at
heff=0, while at lower temperature �diamonds� nontrivial solutions
corresponding to the symmetry-broken phases appear. The dashed
lines denote the tangent of each curve at heff=0. In the inset, tem-
perature dependence of 
� �Eq. �16�� is also presented.
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method for the antiferromagnetic chain of 256 spins.
In both of antiferromagnetic and ferromagnetic interchain

coupling cases, the critical temperature decreases monotoni-
cally as 
J�
 /J does. For 
J�
�J, it is observed that the chain
Weiss theory overestimates the critical temperature greatly.
This is is because this approximation ignores the interchain
spin fluctuations completely. On the other hand, for 
J�
�J
the Tyablikov approximation gets worse. Indeed, it predicts
the critical temperature proportional to the square root of

J�
 /J, which does not agree with the correct asymptotic be-
havior Tc�
J�
 /J �with some logarithmic corrections�.4,5 It
should be noted that the chain Weiss theory and the Tyab-
likov approximation both give the identical critical tempera-
ture dependence regardless of the sign of the interchain cou-
pling.

The results of the chain Bethe approximation are fairy
well in the whole region �Fig. 3�. The relative errors from the
full-3D QMC values are about 7–10% at 
J�
 /J=1, which
should be compared with the conventional chain Weiss re-
sults �48–60 %�. Surprisingly, the present chain Bethe ap-
proximation predicts a lower critical temperature for the fer-
romagnetic interchain coupling than the antiferromagnetic
case, e.g., Tc /J=1.017 and 0.958 for J� /J=1 and −1, respec-
tively. This result is seemingly counterintuitive, since quan-
tum fluctuations, which is expected to suppress the classical
ordering, are generally much stronger in the antiferromag-
netic cases. However, it is not an artifact by our approxima-
tion. Indeed, a lower critical temperature for the ferromag-
netic interchain coupling is also confirmed by our full-3D
QMC calculation �Table I�. Thus, the chain Bethe approxi-
mation predicts not only quantitatively more accurate critical
temperatures, but also its nontrivial dependence on the sign
of the interchain coupling.

C. Effective interchain interaction

In order to evaluate the accuracy of the present theory for
small 
J�
 /J in a more systematic way, next we discuss the
effective interchain coupling Jeff� �J��. This quantity first in-
troduced in Ref. 7 is defined as the coupling constant which
predicts the true critical temperature if it is used in the self-
consistent equation instead of the original J�. For the chain
Weiss approximation, Jeff� is explicitly obtained from Eq. �11�
as

Jeff� �J�� =
sgn�J��

z�c�Tc�J���
, �21�

where we use the full-3D QMC results for Tc�J�� �Table I�,
which is considered to be exact within the error bar. On the
other hand, for the chain Bethe approximation, we obtained
Jeff� by solving Eq. �16� numerically. In Fig. 4, we plot the J�
dependence of the effective interchain coupling for chain Be-
the approximation �J��0 and S=1 /2� together with those of
the chain Weiss approximation �J��0 and S=1 /2, 3/2, and

TABLE I. J� dependence of the critical temperature for antifer-
romagnetic �J��0� and ferromagnetic �J��0� interchain interac-
tions obtained by the full-3D QMC calculation. The results for J�
�0 are from the previous QMC study �Ref. 7�. The figure in the
parenthesis denotes the error in the last digit.


J�
 /J

Tc /J

J��0 J��0

1 0.94416�9� 0.87330�2�
0.5 0.59248�6� 0.55419�3�
0.3 0.4151�2�
0.2 0.30202�5� 0.28685�2�
0.1 0.16917�2� 0.16295�2�
0.05 0.09129�4� 0.08900�3�
0.02 0.039432�7� 0.03899�2�
0.01 0.020763�8� 0.02080�2�
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FIG. 3. J� dependence of the critical temperature calculated by
chain Bethe theory �diamonds�, chain Weiss theory �dashed lines�,
Tyablikov approximation �dotted lines�, and full-3D QMC �filled
squares�, for antiferromagnetic �right� and ferromagnetic �left� in-
terchain couplings. The QMC results for the antiferromagnetic in-
terchain coupling are taken from Ref. 7. The chain Weiss and Ty-
ablikov approximations both produce the identical results for the
antiferromagnetic and ferromagnetic cases. The solid lines are
guides for the eyes. The error bar of each data is much smaller than
the symbol size. The results of modified chain Bethe approximation
with Jeff� =0.872J� �see the text� are also presented as open circles.
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FIG. 4. J� dependence of the renormalization factor Jeff� /J� for
chain Bethe �filled diamonds� and chain Weiss �S=1 /2 open dia-
monds, S=3 /2 circles, and S=� squares� approximations. The hori-
zontal dashed lines denote their limiting values �0.872 and 0.695,
respectively� for J� /J→0.
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��.7 In both cases, Jeff� /J� converges to a finite value for
J� /J�1. The limiting values are 0.872 and 0.695 for the
chain Bethe and Weiss approximations, respectively. The
larger �or closer to unity� value of Jeff� /J� in the former sup-
ports that it is indeed a better approximation compared with
the latter. Interestingly, the chain Bethe approximation has
the largest Jeff� /J� at J� /J=1; in other words, one may say
that it becomes the most accurate in the isotropic limit from
the viewpoint of the renormalized factor of interchain cou-
pling.

One should note that in the chain Bethe approximation,
not only the renormalization factor Jeff� /J� is improved very
much but also it converges to its limiting value quite rapidly
�already converged at J� /J=0.5�. This result suggests that
the critical temperature might be well described for any val-
ues of J� /J by the chain Bethe approximation using the
renormalized interchain coupling constant 0.872J� instead of
the bare interchain coupling J� �modified chain Bethe ap-
proximation�. In Fig. 3, we also plot the result of the modi-
fied chain Bethe theory by open circles, which satisfactorily
agrees with the true critical temperature in the whole range
of 
J�
 /J. Note that in this plot we use the same renormaliza-
tion factor 0.872 for both the antiferromagnetic and ferro-
magnetic interchain coupling cases.

IV. SITE-DILUTED Q1D HEISENBERG
ANTIFERROMAGNET

In Sec. III C, we see that the critical temperature of Q1D
system is quantitatively improved greatly by the chain Bethe
approximation. In this section, we discuss a more nontrivial
example, the site-diluted Q1D Heisenberg antiferromagnet,
where the chain Weiss approximation fails even qualitatively.

The Hamiltonian of the site-diluted Heisenberg antiferro-
magnet is defined as follows:

H = J�
i,j,k

�i,j,k�i,j,k+1Si,j,k · Si,j,k+1

+ J��
i,j,k

�i,j,k�i+1,j,kSi,j,k · Si+1,j,k

+ J��
i,j,k

�i,j,k�i,j+1,kSi,j,k · Si,j+1,k, �22�

where ��i,j,k� are the quenched dilution factors. They take
either 1 �occupied� or 0 �vacant� independently with prob-
ability �1−x� and x, respectively, with x �0�x�1� being the
concentration of vacancies or nonmagnetic impurities.

The ground state of the classical site-diluted spin model is
equivalent to the site-percolation problem.21 The system un-
dergoes a second-order phase transition at the percolation
threshold xp, above which there exist no infinite-size clusters.
For the simple-cubic lattice, the percolation threshold is de-
termined as

xp = 0.688 392 3�4� �23�

by the most recent simulation.22 In the quantum spin cases,
whether a long-range order exists or not near the percolation
threshold is a nontrivial problem due to the presence of
quantum fluctuations. However, it has been established by

the extensive QMC simulation that the staggered magnetiza-
tion persists up to the percolation threshold on the two-
dimensional square lattice.23 We expect that this is also the
case for the present anisotropic simple-cubic lattice.

In Fig. 5, we show the x dependence of the critical tem-
perature for J� /J=0.5 �antiferromagnetic interchain interac-
tion� obtained by the chain Weiss and chain Bethe approxi-
mations together with the results of the full-3D QMC
simulation. The largest system size used in the full-3D QMC
simulation is �Lx ,Ly ,Lz�= �16,16,64�. The Néel temperature
is estimated from the crossing point of Binder cumulant �19�
of the staggered magnetization for different system sizes.
From the full-3D QMC calculations, we thus confirm that the
Néel temperature remains finite at least up to x=0.6. For
larger impurity concentration, it is not very easy to estimate
the critical temperature with satisfactory accuracy in the
present scale of simulation. The staggered susceptibility of
one-dimensional chain used in the chain Weiss approxima-
tion is also evaluated by means of the QMC method. We
simulate chains with spins L=128 and 256 for various impu-
rity concentrations and confirm that there is no significant
systematic difference in the results for those two system
sizes. The Néel temperature is then estimated by solving the
self-consistent Eq. �11� numerically. Since the staggered sus-
ceptibility of one-dimensional chain diverges monotonically
as the temperature decreases irrespective of impurity concen-
tration, the self-consistent equation always has a solution
�see the discussion below�.

For the chain Bethe approximation, we evaluate 
��T�
�Eq. �16�� by calculating the boundary-field susceptibilities
of five-chain clusters with L=32 and 64 by means of the
QMC method. We observe any significant differences be-
tween the L=32 and 64 results for 0�x�0.6 in the tempera-
ture range we simulate �T /J
0.01�. We find that the func-
tion 
��T� tends to positively or negatively diverge
depending on the impurity concentration. To see the ten-
dency at low temperatures more clearly, we plot T
��T� /J,
instead of 
��T� itself, as a function of temperature in Fig. 6.
At low enough temperatures the quantity tends to converge
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FIG. 5. x dependence of the Néel temperature of the S=1 /2
diluted Heisenberg antiferromagnet with J� /J=0.5 obtained by the
full-3D QMC calculation �open circles�, the chain Weiss approxi-
mation �open diamonds�, and the chain Bethe approximation �solid
squares�. The percolation threshold of the simple-cubic lattice xp

�0.688 is indicated by the arrow.
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to a finite value, which gives the coefficient of Curie-type
behavior of 
��T�. It is clearly seen that for x�0.57, the
coefficient is positive, and thus the self-consistent Eq. �16�
has a solution, while the coefficient is negative and 
��T�
has no zero for x�0.57.

In all the cases, the Néel temperature decreases monotoni-
cally as x increases, as shown in Fig. 5. However, we em-
phasize that the result of the chain Weiss approximation is
qualitatively different from the others for large x; it predicts
nonvanishing Néel temperature for any x�1, though the oth-
ers has a finite critical concentration of impurities �xc�xp
and xc�0.57 for QMC and the chain Bethe approximation,
respectively�. Since no long-range order can persist for x
�xp, the result of the chain Weiss theory in this regime is
unphysical at all.

Indeed, the asymptotic behavior of Tc near x=1 can be
discussed more precisely as follows. In the chain Weiss
theory, the staggered susceptibility of the purely one-
dimensional chain appears in the self-consistent Eq. �11�.
The percolation threshold of a single chain is unity, i.e., the
chain is decoupled into a set of finite-length segments imme-
diately by an infinitesimal impurity density. Thus the stag-
gered susceptibility can be expressed as a weighted average
of contributions from finite-length segments,

�c�T� = �
�=1

p����T� , �24�

where ���T� is the staggered susceptibility of a finite seg-
ment of length � and p�	�1−x��x2 is the average number of
segment of length � per site. For �1−x��1, only single-site
clusters ��=1� contribute to the susceptibility,

�c�T� = �1 − x�
1

4T
+ O��1 − x�2� . �25�

By solving the self-consistent Eq. �11�, the critical tempera-
ture is then obtained as

Tc = �1 − x�
zJ�

4
+ O��1 − x�2� . �26�

This expression gives the exact asymptotic behavior of Tc of
the chain Weiss theory in the vicinity of x=1. For J� /J
=0.5 and x=0.9, Eq. �26� gives Tc /J=0.05, which agrees
fairly well with the result of the chain Weiss approximation
Tc /J=0.043.

A similar discussion applies also to the chain Bethe ap-
proximation. For x�1, only single-site clusters contribute to
the susceptibility. Since in the chain Bethe approximation the
effective field is applied only on the side chains, a single-site
cluster on the central chain does not feel the effective field,
and thus the boundary-field susceptibility vanishes in the
lowest order,

��,0 = O��1 − x�2� . �27�

On the other hand, the susceptibility of boundary spins is
given by the same expression as in the chain Weiss approxi-
mation,

��,	 = �1 − x�
1

4T
+ O��1 − x�2� for 	 = 1, . . . ,4. �28�

If these two expressions are substituted into the self-
consistent Eq. �16�, one immediately finds that it has no so-
lution for 0�x�1. If one further considers contribution
from dimers �i.e., clusters consist of two sites� the boundary-
field susceptibilities are calculated as

��,0 = �1 − x�2 1

2J�
+ O��1 − x�3� �29�

��,	 = �1 − x�
1

4T
+ �1 − x�2 1

2J�
+ 2�1 − x�21

J

+ O��1 − x�3� for 	 = 1, . . . ,4. �30�

Again the self-consistent equation has no solution for J� /J

3 /4. On the other hand, for a smaller J� �J� /J�3 /4�, there
exists a solution

Tc �
1

2�1 − x��3

4
−

J�

J
� . �31�

However, this solution is unphysical, since it diverges as x
→1. We infer that even how one takes higher-order contri-
bution from large clusters into account, there exists no physi-
cal solution of the self-consistent equation. This implies that
the chain Bethe approximation has a finite critical threshold
xc�1, above which no long-range order appears at finite
temperatures.

Before closing this section, we briefly mention the initial
reduction rate in the critical temperature

R = − 
d log Tc�x�
dx



x=0

. �32�

From the present QMC results, this quantity is estimated as
R=1.61 for J� /J=0.5, which is significantly larger than that
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FIG. 6. Temperature dependence of T
� /J �Eq. �16�� of the S
=1 /2 diluted Heisenberg antiferromagnet with J� /J=0.5 at x
=0.40 �squares�, 0.57 �circles�, and 0.70 �diamonds� obtained by the
QMC method for the five-chain cluster of length L=32. The error
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of the isotropic cubic lattice �R=1.22 and 1.36 from
renormalization-group24 and series25 studies, respectively�.
Accordingly, the critical temperature is a convex function of
the impurity concentration, which is in a sharp contrast to the
linear behavior observed in the isotropic cubic lattice.24 Such
a large initial reduction rate is also observed experimentally
in quasi-two-dimensional Heisenberg antiferromagnet.26 The
enhancement in the initial reduction rate and the convexity
might be attributed to the spatial anisotropy of the lattice.

V. SUMMARY

In this paper, we proposed a chain Bethe theory for Q1D
quantum magnets. In the present approximation, the self-
consistent equation is written in terms of the boundary-field
magnetic susceptibilities of a multichain cluster instead of a
single chain. Not only the correlations along the chains but
also those between the nearest-neighboring chains are taken
into account exactly. As a result, the accuracy of the critical
temperature of the Q1D Heisenberg models is improved
greatly compared with the conventional chain Weiss theory.
It is also demonstrated that our approximation can predict
nontrivial dependence of critical temperature on the sign of
interchain coupling as well as on the impurity concentration
in randomly diluted Q1D Heisenberg magnets. The conven-
tional chain Weiss approximation takes the random average
in each chain before the thermal average on the whole lattice;
whereas the present theory can take fluctuations due to the
randomness between the neighboring chains effectively. This
difference in the order of thermal and random averaging has

a great impact especially in the system with strong quenched
disorder.

In the present study, we restricted ourselves to the nearest-
neighbor spin models on the simple-cubic lattice. This is
because unbiased high-precision full-3D data, by which
the accuracy of the theory has been checked quantitatively,
are available only for such unfrustrated models. It should
be emphasized that however with the help of other
numerical methods specialized to one-dimensional systems,
such as the exact diagonalization and the density-matrix
renormalization-group method, the present chain Bethe
theory itself can be applied straightforwardly to spin models
with strong frustration or even to fermionic models. In such
models, effects of correlations between neighboring chains
are much more important, and thus the improved chain
mean-field approach formulated in the present paper could
be an essential tool to investigate exotic phase transitions as
well as anomalous low-energy properties.
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