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The dynamical diffraction model has been developed for the quantitative description of rocking curves
�RCs� measured in the Bragg diffraction geometry from single crystals containing homogeneously distributed
microdefects of several types and with arbitrary sizes. The analytical expressions for coherent and diffuse RC
components, which take self-consistently multiple-scattering effects into account and depend explicitly on
microdefect characteristics �radius, concentration, strength, etc.�, have been derived with taking into account
the instrumental factors. The developed model has been applied to determine the characteristics of oxygen
precipitates and dislocation loops in silicon crystals grown by Czochralsky and float-zone methods using RCs
measured by the high-resolution double-crystal x-ray diffractometer. It has been shown, particularly, that
completely dynamical consideration of Huang as well as Stockes-Wilson diffuse scattering �DS� in both diffuse
RC component and coefficient of extinction of coherent RC component due to DS, together with taking
asymmetry and thermal DS effects into account, provides the possibility to distinguish contributions into RC
from defects of different types, which have equal or commensurable effective radii.
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I. INTRODUCTION

Investigations of the diffuse scattering �DS� intensity dis-
tributions in the reciprocal-lattice space are widely used for
the characterization of small defects �point defects and their
clusters with nanometer sizes� in metals and alloys1–10 and
microdefects �new phase particles, dislocation loops, etc.� in
semiconductors.11–19 If point defects and small clusters with
sizes of the order of lattice constant are investigated, the
characteristic half widths of DS intensity distributions are
comparable with distances between reciprocal-lattice points
and can make in angular units from several up to tens of
degrees. Therefore, the registration of corresponding rocking
curves �RCs� can be provided by the usual double-crystal
diffractometer �DCD� with resolution of few angular min-
utes. The interpretation of such measurements can success-
fully be carried out by using the kinematical diffraction
theory.20–23

However, in the case of large microdefects which sizes
are comparable with the extinction length �, the half widths
of corresponding DS intensity distributions are commensu-
rable with the half width of the Bragg peak, and then the
analysis of diffraction patterns becomes more complicated
because of the superposition of coherent and diffuse RC
components within the total reflection range. Thus, it be-
comes necessary to give the self-consistent description of the
behavior of coherent and diffuse components of the diffrac-
tion intensity and to account for dynamical scattering effects
in DS intensity distributions.24–28 It should be remarked, that
for real single-crystalline materials, both as-grown and after
various technological treatments, the problem appears often
jet more complicated because of the simultaneous presence
of microdefects of various types with wide spreads of
sizes.29,30

The characteristic feature of DS intensity distributions in
reciprocal-lattice space in the case of microdefects with an

effective radius Reff is the existence of two regions with the
boundary between them, which corresponds to a momentum
transfer k�km=1 /Reff.

20,21,27 The DS intensity decreases
with increasing k as IDS�1 /k2 at k�km �Huang scattering
region� and as IDS�1 /k4 at k�km �Stockes-Wilson scatter-
ing region�. Consequently, the DS intensity is concentrated
near a reciprocal-lattice point with increasing Reff. When dif-
fractometric investigations are carried out, the measured DS
intensity is integrated, as rule, over one component of a mo-
mentum transfer k �over the vertical divergence in triple-
crystal diffractometer� or over two components of k �over
vertical and horizontal divergences of diffracted x-ray beam
in DCD with widely open detector window�. In consequence
of such integrations, the dependence of the measured IDS on
k is changed, namely, exponents of k are decreased by inte-
gers 1 or 2, respectively. Nevertheless, the most important
information on sizes, concentrations, and strengths of defects
in measured angular DS intensity distributions is kept in both
cases. In particular, after the two-dimensional integration of
IDS, which is performed at measurements by DCD with
widely open detector window, the effective radius of defects
Reff can be determined from an intersection point of the lin-
ear segment of the integrated IDS dependence on ln k, which
is continued up to an abscissa axis.1,6,21 Practical realization
of this simple method often fails because of large spreads of
defect sizes and/or simultaneous presence of several defect
types in the crystal under investigation. Such method be-
comes completely inapplicable when Bragg peak and DS
intensity peak are superimposed, i.e., the Huang scattering
region is located within in the total reflection range what
takes place if the relation Reff�� holds.

The aim of the present paper is to develop the most com-
plete diffraction model for the adequate quantitative descrip-
tion of RCs measured at the Bragg diffraction geometry from
single crystals which contain simultaneously microdefects of
various types and arbitrary sizes. This model is based on the
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generalized dynamical theory of x-ray diffraction by single
crystals with randomly distributed microdefects26,27 and
takes self-consistently account for multiple-scattering pro-
cesses in both coherent �Sec. II� and diffuse �Sec. III� com-
ponents of the diffraction intensity measured by DCD with
widely open detector window. The obtained analytical ex-
pressions for these components include both static Debye-
Waller factor and absorption coefficients due to DS, which
can be calculated at the simultaneous presence of several
types of microdefects and possible existence of correlations
between them.

The developed model has been applied to characterize the
microdefect structures in silicon crystals grown by float-zone
�FZ� and Czochralsky �Cz� methods using RCs measured by
DCD with widely open detector window �see also Refs. 31
and 32�. Instrumental function of the DCD is analyzed in
Sec. IV, experimental details are described in Sec. V, and the
treatment procedure and characterization results are dis-
cussed in Sec. VI. Short resume and conclusions are given in
Sec. VII.

II. COHERENT COMPONENT OF ROCKING CURVE
FROM AN IMPERFECT CRYSTAL

A. Coherent reflectivity

According to the generalized dynamical theory of x-ray
scattering by imperfect single crystals with randomly distrib-
uted microdefects,26,27 the coherent wave field in such crys-
tals for each polarization state �� and �� can be represented
in two-beam approximation as sum of transmitted and dif-
fracted waves,

D�r� = DT�r� + DS�r� , �1�

DT�r� = �
�

D0
�e−iK0

�r, DS�r� = �
�

DH
� e−iKH

� r, �2�

where r is the space coordinate and �=1,2. The amplitudes
of transmitted �D0

�� and diffracted �DH
� � coherent plane waves

are described by expressions

D0
� = �− 1��E0

B��

B1 − B2
, DH

� = c�D0
�,

B� = c�e−iK��t, c� = −
− 2	0�� + 
0 + �
00

�

CE
−H + �
0H
� , �3�

where E0 is the amplitude of an incident plane wave, t is the
crystal thickness, and ����. Amplitudes of coherent wave
fields are related with characteristics of the crystal defect
structure via the static Debye-Waller factor E=exp�−LH� and
complex dispersion corrections due to DS �
GG�

� �G and
G�=0 or H�. Accommodations of wave vectors of strong
Bragg waves KH

� =K0
�+H and K0

�=K+K��n in Eq. �2� are
described by the expression

�� =
1

2	0
�
0 + �
00

� � +
�

2�
�y + �− 1���y2 − 1� ,

y = �� − �0��b/�, �2 = �CE
H + �
H0
� ��CE
−H + �
H0

� � ,

� = − �
 sin 2
B, 2�0 = 
0 + �
HH
� + �
0 + �
00

� �/b ,

�4�

where H is the reciprocal-lattice vector, n is the inner normal
to the entrance crystal surface, �=��	0�	H� /� is a complex
extinction length, K=2� /� is the module of the wave vector
K of an incident plane wave, � is x-ray wavelength, C is the
polarization factor equal to 1 or cos 2
B for � and � polar-
izations, respectively, 
B is the Bragg angle, �
 is an angular
deviation of the investigated crystal from an exact Bragg
position, 
G are Fourier components of the perfect-crystal
polarizability �G=0, �H�, b=	0 / �	H� is the parameter of
diffraction asymmetry, and 	0 and 	H are direction cosines of
wave vectors of incident �K� and scattered �K�� plane waves,
respectively.

The amplitude of the diffracted plane wave in a vacuum
EH, which is generated by the superposition of diffracted
coherent plane waves in crystal DS�r�, is obtained from the
boundary condition on a crystal surface, and in the case of
Bragg diffraction geometry one obtains the following expres-
sion for the amplitude reflectivity:

r = ��b�−1/2EH

E0
= ��b�1/2 eiK�1t − eiK�2t

c2eiK�1t − c1eiK�2t , �5�

where �= �CE
H+�
H0��CE
−H+�
0H�−1 and E0 and EH
are amplitudes of the incident and coherently scattered plane
waves in a vacuum, respectively. The coherent component of
the crystal reflectivity can be described then as

RB�k� = Rcoh��
,�����
� − b�
����� − �� , �6�

Rcoh��
,�� = �r�2, �7�

where ��x� is Dirac’s � function, �
 and �
� are angular
deviations of wave vectors K and K� in the horizontal plane,
i.e., the diffraction plane �K ,H�, from corresponding exact
Bragg directions, and � and �� are angular deviations of the
same vectors in the vertical plane.

In x-ray diffraction investigations of structural imperfec-
tions of real single crystals by using measurements on DCD
with widely open detector window, the diffracted intensity is
integrated over an exit solid angle and the measured coherent
RC component is described by Eq. �7�. The information on
structural imperfections and statistical characteristics of de-
fects is involved in this component through the static Debye-
Waller factor E and dispersion corrections due to DS �
GG�.
These diffraction parameters of structural perfection are ob-
tained by statistical averaging of the functions dependent on
random fields of static atom displacements that are caused by
defects in a crystal lattice.26,27

B. Static Debye-Waller factor

The static Debye-Waller factor has the form

E = e−LH = 	e−iHu�r�
 . �8�

When microdefects of several types are present in a crystal,
the field of static atom displacements in Eq. �8� can be writ-
ten as20
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u�Rs� = �
�

�
t

�c�t − c��U��Rs − Rt� , �9�

where c�t=0 and 1 are occupation numbers for �-type de-
fects in a lattice point Rt, c�= 	c�t
 is the concentration of
�-type defects, and U��Rs−Rt� is the static displacement of
an atom in a lattice point Rs, which is caused by �-type
defect in a point Rt. Equation �9� holds if the principle of the
superposition of static atom displacements is valid, i.e., at
small defect concentrations c��1. In general, there exists a
correlation in relative positions of defects. It can be de-
scribed by the correlation parameters, which, if only pair
correlations are considered, are defined as

������� = 	�c�s − c���c��s� − c���
 , �10�

where �=Rs−Rs�. If the method of cumulant expansions is
used at averaging in Eq. �8�, then one can obtain �cf. Ref. 20�

LH = �
�

LH
� + �

���

LH
���, LH

� = c��
�

�1 − eiHU����� ,

LH
��� = −

1

2 �
����

������ − ����1 − eiHU������1 − eiHU������� .

�11�

The first sum in the exponent of static Debye-Waller factor
�11� contains contributions separately from each type of de-
fects, and the second one describes contributions from pair
correlations between defects of different types.

C. Coefficient of absorption due to diffuse scattering

The dispersion corrections due to DS can be subdivided
into real and imaginary parts27

�
GG� = PGG�
� − i�GG�

� /K , �12�

The coefficients of absorption due to DS can be calculated in
the first approximation of the dynamical perturbation theory
developed in Refs. 26 and 27 as follows:

�GG�
� ��
� = C2K2 V

8�2 �
�=1,2

�− 1�� Re

��
K�=K0q

��
dSK�fGG��q���SGG��− q��� , �13�

where the integration at fixed � is performed over two sheets
of the dispersion surface for wave vectors K0q

�t of diffusely
scattered plane waves, and the following notation was used:

fGG��q��� = aGG�
� �4	H��2�

0 − �1�
0��−1,

aGG�
� = − 2�Gq

0� + 
0, a0H
� = CE
H, aH0

� = CE
−H.

�14�

The wave vectors of diffusely scattered waves are complex
due to complex momentum transfers q�� from wave vectors
of strong Bragg waves K0

�,

K0q
�� = K0

� + q��, q�� = k + K����
0 − ��

0�n . �15�

The accommodations of wave vectors of diffusely scattered
waves in Eq. �15� are described by the expression

���
0 =

x0

2	0
+

�

2�0
�y0� + �− 1���y0�

2 − 1� ,

y0� = ��� − �0
0��b/�0, �� = − �
� sin 2
B,

where �0
0= 1

2
0�1+b−1� and �0=C2E2
H
−H.
The correlation functions SGG��q� have appeared in Eq.

�13� in consequence of replacing the products of fluctuating
lattice sums by corresponding averages on the statistical en-
semble of defects in a crystal lattice �so-called self-
averaging�,

SGG��q� = 	�
q−H+2G�
−q+H−2G�
 , �16�

where G and G�=0 or H, q is a complex momentum trans-
fer, �
G+q is the Fourier component of the fluctuation part of
the crystal polarizability, and angular brackets denote aver-
aging on the statistical ensemble of defects.

As far as the behavior of the correlation functions in Eq.
�13� is weakly changed with different � and � indices, one
can approximately put

SGG��q��� � S�q� = Re	�
q−H+2G�
−q+H−2G�
 , �17�

where q=k+ i�in and �i is the limiting value of an interfer-
ence absorption coefficient �i

��=K Im����
0−��

0� at ��
� and
��
��→�. Then we can perform the approximate summation
in Eq. �13� by using relations �14�–�17�, and we can replace
the integration over sheets of the dispersion surface by the
integration over the plane tangent to Ewald sphere near the
reciprocal-lattice point considered �see Fig. 1�,

�00��
� � b
C2V

4�2� dk�S�q� , �18�

�HH��
� � b−1�00��
�, �0H��
� � �H0��
� � 0.

�19�

To calculate the correlation function S�q�, one can use the
method of fluctuation waves of the defect concentration,19

which provides at c��1 and q�km�=1 /Reff
� the approxi-

mate expression33

�
H+q � iE
H�
�

�HU�q�c�q, �20�

U�q =
1

vc
� drU��r�eiqr, c�q =

1

N
�

t

�c�t − c��eiqRt,

�21�

where vc is the unit-cell volume and N is the number of unit
cells in a crystal. If only pair correlations in defect distribu-
tions exist, the relation holds19

DYNAMICAL THEORETICAL MODEL OF THE HIGH-… PHYSICAL REVIEW B 78, 224109 �2008�

224109-3



	c�qc��q
� 
 =

1

N
����c��1 − c�� + �
��0

�������eiq�� , �22�

where ���� is Kronecker’s symbol and ������� are pair-
correlation parameters. Then for the correlation function we
obtain,

S�q� = �
�

S��q� + �
���

S����q� , �23�

S��q� =
c�

N
E2
H
−HF�

H�q�, F�
H�q� = �HU�q��HU�−q� ,

�24�

S����q� =
1

N
E2
H
−H �

��0
�������F���

H,H�q�eiq�,

F���
H,H�q� = �HU�q��HU��−q� . �25�

The second sum in Eq. �23� takes the influence of pair cor-
relations in defect distributions into account, and superscript
H in Eqs. �24� and �25� denotes that these equations are valid
only in the Huang scattering region, i.e., at k�km�. When
considering momentum transfers in the Stockes-Wilson scat-
tering region, i.e., the region of asymptotic DS at k�km�,
one has to multiply each term in Eq. �23� by km� /q �see Refs.
27 and 34� and, corresponding, to replace functions F�

H�q�
and F���

H,H�q� in Eqs. �24� and �25� by following ones:

F�
SW�q� = F�

H�q�km�
2 /q2 �26�

and

F���
SW �q� = F���

H �q�km�km��/q
2, �27�

if q�km� and q�km��, or by

F���
H,SW�q� = F���

H �q�km��/q , �28�

if q�km� and q�km��.
The derived expressions for coefficients of absorption due

to DS �Eqs. �18� and �19�� provide the possibility for per-
forming, with the use of relations �23�–�28�, the correct cal-
culations of angular dependencies of absorption effects be-
cause of DS for strong Bragg waves in crystals with
microdefects of arbitrary sizes. Real parts of the dispersion
corrections due to DS �12� are of the same order of magni-
tude as the imaginary parts of Eqs. �18� and �19�, and can be
calculated through these imaginary parts by using known
dispersion relations.35

III. DIFFUSE COMPONENT OF ROCKING CURVE
FROM AN IMPERFECT CRYSTAL

A. Differential diffuse reflectivity

In order to calculate the diffuse component of the differ-
ential reflection power of the crystal, one has to average the
absolute square of the DS amplitude over a random distribu-
tion of defects and to divide it by the incident intensity,

RDS�k� =
	�fH�K�,K��2


	0S�E0�2
, �29�

fH�K�,K� = �
�

�
G

DG
� ��
�FHG

� �k� , �30�

where the vector k=K�−K−H is the deviation of the wave
vector K� of diffusely scattered wave in a vacuum from the
reciprocal-lattice point H, �=1 and 2, G=0 and H, the cor-
ner brackets denote the averaging over a random distribution
of defects, and S is the entrance crystal surface area. The
partial amplitudes of the scattering of strong Bragg waves
into the diffuse ones in Eq. �30� have the form

FHG
� �K�,K� =

VK2

4��B1� − B2��
�

�

�− 1��MHG
�� e−iK���t, �31�

MHG
�� = c����M0G

�� , M0G
�� = ��X0G�q���/c���� + XHG�q��� ,

�32�

XGG��q� = CGG��
G−G�+q, B�� = c����e−iK���t, �33�

where ����=1,2, ��= �CE
H+�
H0�� ��CE
−H+�
0H�
� �−1,

CGG�=1 at G�=G, and CGG�=C at G��G, ��� are accom-
modations of wave vectors of diffusely scattered waves.

Expression �30� can be simplified substantially when the
approximation of the semi-infinite crystal is valid, i.e., at
�0t�1, where �0=K�
i0� is the photoelectric absorption co-
efficient. In such a case, only one quasi-Bloch wave is re-
mained in the wave fields of both strong Bragg and diffusely
scattered waves. It follows then approximately from Eqs.
�31�–�33� that

H

km

H

A

k

m0 kk �

k0

(а)

H

H

A

k

( )b
m0 kk �

k0

km

Bθ

Bθ

k�

k�

K�

K�

A�

A�

FIG. 1. Schematic plot of two cases of DS intensity integration
in a momentum space, where AA� line represents the intersection of
coherent scattering plane �K ,H� with integration plane tangent to
Ewald sphere: �a� �k0��km, the integration interval includes both
Huang �k�km� and Stockes-Wilson �k�km� scattering regions, �b�
�k0��km, the integration interval lies only in the Stockes-Wilson
scattering region.
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RDS�k� �
1

	0S
�CVK2

4�
�2

Fdyn	��
H+q�2
 , �34�

where Fdyn��
�= �1−c��2. Diffuse reflectivity �34� can be re-
written through the correlation function according to Eqs.
�17�–�19� using relations �20�–�22�,

RDS�k� �
1

	0S
�CVK2

4�
�2

Fdyn��
�S�q�p�t� , �35�

p�t� = �1 − e−2�it�/�2�it� � 1/�2�it� . �36�

The interference absorption coefficient �i can be estimated
as �i��1+b��0 / �2	0� at �y�, �y���1 and �i�� /� at �y�,
�y���1, i.e., it describes the extinction effect for diffusely
scattered waves. The factor Fdyn describes the angular modu-
lation of DS intensity, which is caused by the dynamical
interference of strong Bragg waves.

The integration of Eq. �35� over the Ewald sphere �K�
=K� near the reciprocal-lattice point H with account for Eqs.
�18� and �19� gives the “integral” diffuse component of the
reflection coefficient measured by DCD with widely open
detector window

Rdiff��
��
K�=K

RDS�k�d�K� = Fdyn��
��HH��
�p�t�t/	0,

�37�

where d�K� is a solid angle in K� direction and dSK�
=K2d�K� is an element of surface area in the reciprocal
space. It should be emphasized here that DS intensity inte-
grated over exit angles at fixed orientation �
 of the incident
wave vector K �Eq. �37�� appears to be proportional to the
coefficient of absorption of coherent waves due to DS �19� at
the same angular deviation. The index � in the factor Fdyn as
well as indices � and � in the coefficient �i are fixed numbers
of the remained wave fields, which values 1 or 2 depend on
signs of angular deviations �
 and �
�, respectively.

B. Microdefect models

To obtain the analytical expression for the “integral” dif-
fuse reflectivity �37� one should specify microdefect types
with corresponding Fourier components of static displace-
ment fields, which determine correlation functions in Eqs.
�24� and �25�. For two types of microdefects, namely, spheri-
cally symmetric clusters and randomly oriented prismatic
dislocation loops, the functions F�

H�q� in Huang scattering
region, if only the symmetrical part of DS intensity is con-
sidered, can be represented in a unified form as33

F�
H�q� = H2�B1

� + B2
��H0q

q
�2� 1

�q�2
, �38�

where H0=H /H is the unit vector.
For the most simple model of spherical clusters ��=1�

one should put in Eq. �38�

B1
1 = 0, B2

1 = �4�AC/vc�2,

AC = ��RC
3 , � =

1

3

�1 + ��
�1 − ��

, �39�

where AC is the cluster strength, � is the Poisson ratio, � is
the strain at the cluster interface, and RC is the cluster radius.
In the more complicated model of clusters with lower sym-
metry �e.g., platelike, ellipsoidal, or disk-shaped new phase
particles lying in �100� planes of a cubic crystal�, one can put
approximately B1

1�B2
1= �4�AC /�c�2 and AC= 3

4��VC /�,
where VC is a cluster volume.

For the model of randomly oriented prismatic dislocation
loops ��=2� one should put in Eq. �38� after averaging over
all continuous orientations of Burgers vectors

B1
2 =

4

15
��bRL

2/vc�2, B2
2 = �B1

2,

� =
1

4
�3�2 + 6� − 1�/�1 − ��2, �40�

where b is the modulus of Burgers vector and RL is the
dislocation loop radius. For the description of the antisym-
metrical part of DS intensity in Huang scattering region, the
corresponding term should be added to Eq. �38� �cf. Refs. 6,
20, and 21�, namely,

F̃�
H�q� = H

B3
�

q
, B3

� = 2LH
� �B�/c�, �41�

where one can put approximately B1=B2
1 for clusters, and

B2=B1
2 for dislocation loops.

For each type of microdefects also the proper value of the
boundary between Huang and Stockes-Wilson scattering re-
gions km�=1 /Reff

� should be chosen. By putting effective ra-
dii to be equal Reff

1 =�H�AC�E for clusters and Reff
2

=RL
�HbE for dislocation loops we provide the correct de-

scription of asymptotic DS intensity with respect to both
momentum transfer q and such parameters as H, b, and AC.20

Due to this choice of km�, also the physically reasonable
matching of Eqs. �24� and �26� at k=km� is provided.

C. Thermal diffuse scattering

In general, the DS intensity from microdefects is localized
near reciprocal-lattice points where it is, as rule, significantly
larger in comparison with the contribution of thermal DS in
these regions, and for this reason the later one can be ne-
glected at the analysis of measured diffraction patterns.
However, at high reflection indices, the thermal DS intensity
can be comparable with DS intensity from small microde-
fects and, therefore, should be taken into account to provide
the correct quantitative interpretation of diffraction profiles.

In the case of thermal DS ��=3�, the Fourier component
of the field of dynamic atom displacements from an oscillat-
ing atom in a single atom crystal can be considered in a
harmonic approximation20 according to which the function
F3

H�q� has the form

F3
H�q� =

�H2

6m
�
�=1

3
2nq� + 1

 q�

,
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nq� = �exp�� q�/kBT� − 1�−1, �42�

where � is Planck’s constant, m is an atom mass,  q� is the
phonon frequency, and the summation is carried out over
phonon polarizations. When considering thermal DS inten-
sity in a close vicinity of a reciprocal-lattice point, the rela-
tion holds � q� /kBT�1, and therefore, one can put nq�

�kBT /� q� and, consequently,

F3
H�q� �

H2

m

kBT

 q
2 . �43�

Phonon frequency in Eq. �43� can be calculated as  q
=vSq, where vS is a phonon velocity which can be expressed
through elastic constants and crystal density as vS= � 1

3 �C11
+2C22+4C44� /��1/2.36 Expression �43� can be considered
then as a particular case of Eq. �38� with the coefficients
B1

3=kBT / �mvS
2�, B2

3=0, and B3
3=0.

It should be remarked here that the contribution from the
Compton scattering in a double-crystal diffraction geometry
with widely open detector window may be of the order of
magnitude as that from thermal DS and should be taken into
account as well. However, when performing the investiga-
tions of microdefect structures with atom clusters ranging in
sizes from ten nanometers to larger ones, the contribution of
the thermal DS in all the angular ranges measured is rather
negligible, as will be shown below �Sec. VI�, and, conse-
quently, both thermal DS and Compton scattering contribu-
tions can be ignored when fitting relevant experimental RCs.
For this reason, we do not consider here Compton scattering
but retain the thermal DS description to check contributions
of such kind processes.

D. “Integrated” diffuse reflectivity

The derivation of the analytical expression for the “inte-
gral” diffuse component of crystal reflectivity �37� is reduced
to the integration in Eq. �18� for the coefficient of absorption
due to DS. After the integration in Eq. �18� we obtain ac-
cording to Eqs. �19� and �24�–�28�

�HH��
� = �
�

�DS
� �k0� + �

���

�DS
����k0� . �44�

The absorption coefficient due to DS for microdefects of �
type is described in Eq. �44� by the expression

�DS
� �k0� = c�C2E2m0J��k0� , �45�

m0 =
1

4
�vcH�H�
rH���2, �46�

J��k0� =
1

�
� dk�F��q� . �47�

The correlation absorption coefficient due to DS in Eq. �44�
has the form

�DS
����k0� = C2E2m0�

�

�������J����k0�eik0�, �48�

J����k0� =
1

�
� dk�F����q�eik��, �49�

Functions F� and F��� in Eqs. �47� and �49� are described by
Eqs. �24�–�28�.

The further consideration will be restricted to the calcula-
tion of only absorption coefficients due to DS �45�–�47� and
corresponding integral diffuse reflectivity �37�. To perform
the integration in Eq. �47�, one should decompose a momen-
tum transfer k into the components parallel �k0� and perpen-
dicular �k�� to the wave vector K� �see Fig. 1�. Then rela-
tions k=k0+k� and �q�2=k�2+k0

2+�i
2 hold, and the

integration can be performed in the polar coordinate system
chosen in the plane tangent to the Ewald sphere near the
reciprocal-lattice point H, in which the vector k� can be rep-
resented as k�=k��cos � , sin ��. When integrating over k� in
Eq. �47�, expression �38� for F�

H�q� is used in the Huang
scattering region �0�k�2+k0

2�km
2 �, and this expression mul-

tiplied by km
2 / �q�2 is substituted as F�

SW�q� into Eq. �47� in the
Stockes-Wilson scattering region �k�2+k0

2�km
2 �. Also, the de-

pendence of the interference absorption coefficient �i on exit
angles �
� is neglected because its influence is smoothed
due to integration, and thus, �i in Eq. �47� can be replaced by
its limiting value at �y���1

�i → � =
�0

2	0

1 + b

2
�1 +

ri

�g�
E� , �50�

ri =�1

2
��u2 + v2 − u�, u = �z2 − g2�E−2 + æ2 − 1, v

= 2�zgE−2 − p� , �51�

z =
�
 sin 2
B

C�
rH�
�b, g = − �
i0�

1 + b−1

2C�
rH�
�b, æ =

�
iH�
�
rH�

,

�52�

where p= �æ for centrosymmetric crystals. The integration
in Eq. �47� then can easily be performed, and with account
for the angular aperture of the detector �
a we obtain

J��k0� = �JH
��k0� + JH-SW

� �k0� + J̃H
��k0� at �k0� � km�

JSW
� �k0� at �k0� � km�,

�
�53�

where k0=K�
 sin 2
B. The angular dependence of the inte-
gral DS intensity in the Huang scattering region is described

by symmetric and antisymmetric �J̃H
�� components in Eq.

�53� as follows:

JH
��k0� =

1

2�
�

0

2�

d��
0

km�
2 −k0

2

dk�2F�
H�q� = b2 In

km�
2 + �2

k0
2 + �2

+ �b3k0
2 + b4�2�� 1

km�
2 + �2 −

1

k0
2 + �2� , �54�
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JH-SW
� �k0� =

1

2�
�

0

2�

d��
km�

2 −k0
2

ka
2

dk�2F�
SW�q�

=
km�

2 �ka
2 + k0

2 − km�
2 �

�km�
2 + �2��ka

2 + k0
2 + �2�

�b2 +
1

2

�
�b3k0

2 + b4�2���km�
2 + �2�2 − �ka

2 + k0
2 + �2�2�

�km�
2 + �2��ka

2 + k0
2 + �2��ka

2 + k0
2 − km�

2 �
� ,

�55�

J̃H
��k0� =

1

2�
�

0

2�

d��
0

km�
2 −k0

2

dk�2F̃�
H�q� = b1��km�

2 + �2

− �k0
2 + �2� , �56�

where ka=K�
a was supposed to be always larger in com-
parison with km�. In the Stockes-Wilson scattering region the
DS intensity profile is described by the expression

JSW
� �k0� =

1

2�
�

0

2�

d��
0

ka
2

dk�2F�
SW�q�

=
km�

2 ka
2

�k0
2 + �2��ka

2 + k0
2 + �2��b2 +

1

2

�
�b3k0

2 + b4�2���k0
2 + �2�2 − �ka

2 + k0
2 + �2�2�

ka
2�k0

2 + �2��ka
2 + k0

2 + �2� � .

�57�

The coefficients bi�i=1,4� in Eqs. �54�–�57� are connected
with characteristics of microdefects by relations

b1 =
4LH

� �B2�

c�H
, b2 = B1� +

1

2
B2� cos2 
B,

b3 = B2��1

2
cos2 
B − sin2 
B�,

b4 = B2��1

2
cos2 
B − cos2 !� ,

where ! is an angle of deviation of the diffraction plane from
the crystal surface. If the inequality ka�km� holds, we can

put ka→� in Eqs. �55� and �57�, which are simplified then as
follows:

JH-SW
� �k0� =

km�
2

km�
2 + �2�b2 −

1

2

b3k0
2 + b4�2

km�
2 + �2 � , �58�

JSW
� �k0� =

km�
2

k0
2 + �2�b2 −

1

2

b3k0
2 + b4�2

k0
2 + �2 � . �59�

Thus, we obtain in the approximation of semi-infinite
crystal ��0t�1� according to Eq. �37� the following expres-
sion for the diffuse component of RC measured by DCD
with widely open detector window:

Rdiff��
� � Fdyn��
�
�HH��
�
2	0���
�

. �60�

Expression �60� is very similar to the kinematical one,6 and
can be reduced to that by putting Fdyn=1, �=�0 /	0 in de-
nominator, and �=0 in �HH in nominator of Eq. �60�,

Rdiff
kin ��
� �

�HH
kin ��
�
2�0

. �61�

Kinematical formula �61� is significantly simpler for per-
forming numerical calculations as compared with Eq. �60�
but has some serious limitations in the practical usage. Par-
ticularly, the logarithmic divergence exists in Eq. �61� at an-
gular deviations �
→0 and, consequently, at k0→0. To
avoid this divergence, the cut-off parameter kc�1 /� in a
momentum space, � being an extinction length, has been
introduced artificially.21 In dynamical expression �60� this
divergence is removed in a natural way due to the interfer-
ence absorption parameter �, which has the order of magni-
tude of kc within the total reflection range.

Also the restriction on the maximal allowable effective
radius of microdefects Reff��, which was imposed implic-
itly in the derivation of the kinematical formula, is absent in
Eq. �60�, thus, providing the possibility to describe quantita-
tively in explicit analytical terms the Huang DS intensity
also in the total reflection range at Reff exceeding an extinc-
tion length. Besides, it should be remarked the importance of
taking into account the detector entrance aperture to perform
the correct quantitative characterization of crystal imperfec-
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FIG. 2. Diffuse component of the reflectivity of Si crystal for �111� reflection of Cu K�1 radiation near the total reflection range in the
cases of �a� small and �b� large dislocation loops with radii RL=0.1 and 10 �m, respectively. The calculations according to dynamical and
kinematical theories are shown by solid and dashed lines, respectively.
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tions, especially, when effective radii of microdefects are so
small that the relation km��ka holds.

The lower limit of the angular region, where a much more
simple kinematical theory is sufficient for the adequate DS
intensity analysis, is determined by the width of the total
reflection range �nearly 1 /� in a momentum space, � being
an extinction length� and should be of the order of 10 /�. For
this reason, of outstanding importance in the analysis is the
value of the half width of DS intensity distribution for mi-
crodefects in the crystal under investigation, which is deter-
mined by the largest effective radius Reff of the microdefects.
If Reff is significantly smaller in comparison with �, the ki-
nematical approach will be sufficient for the correct descrip-
tion of the diffuse component, but for Reff of the order of �
or larger the account for dynamical effects becomes neces-
sary �see Fig. 2�. Particularly, the only dynamical approach
can give the correct quantitative description of DS intensity
distribution from microdefects with Reff significantly larger
than � �Fig. 2�c��.

On the other hand, it should be remarked that in the cases
where dynamical effects are small, i.e., the scattering is pre-
dominantly kinematical, the use of the dynamical formulas
remains useful as they automatically give a correct descrip-
tion of the kinematical scattering patterns. Moreover, if the
dynamical approach is applied, it is not necessary to analyze
and justify its validity for each specific experimental situa-
tion, what is required for the application of the kinematical
theory.

IV. INSTRUMENTAL FUNCTION OF DOUBLE-CRYSTAL
DIFFRACTOMETER

The dynamical theory of the integral DS measured by
DCD, which has been stated above, provides the possibility
for x-ray diffractometric characterization of complicated de-
fect structures in real crystals including those with microde-
fects commensurable with an extinction length. In such
cases, however, both coherent component of RC and instru-
mental resolution function of DCD should be taken into ac-
count to perform correct quantitative characterization of
whole defect size spectrum.

X-ray intensity reflected by the investigated sample in the
high-resolution DCD with parallel �+� or antiparallel �−� set-
tings of the investigated sample with respect to the last re-
flection in the monochromator system can be represented as
the convolution of reflection coefficients of all the crystals in
the x-ray optical scheme,37–39

P���
� = �
�0−��

�0+��

d�I����
−�m

�m

d��
−xm

xm

dxG�x,��R1
n1�x − "1�

� R2
n2�− x − "2�RS����
 − x� − "3� , �62�

where 2��, 2�m, and 2xm are intervals of the integration
over wavelength, vertical, and horizontal divergences, re-
spectively, the function G�x ,�� describes the angular distri-
bution of incident x-ray beam, n1 and n2 are reflection mul-
tiplicities at first and second monochromator crystals with
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FIG. 3. RC of FZ Si sample for �111� reflection of Cu K�1 radiation �a� in the whole angular range measured and �b� in the total
reflection range. The calculated total RC and its coherent component are shown by thick and thin solid lines, respectively. The contributions
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reflectivities R1 and R2, respectively, and RS is the reflectivity
of the sample. The function I��� in Eq. �62� describes the
line shape of characteristic x-ray radiation with wavelength
�0 and line half width w�

I��� = I0/�1 + 4�� − �0�/w�
2� , �63�

where I0 is the incidence intensity, and also the notation was
used

"i = �1

2
�2 +

� − �0

�0
�tg
B

i �64�

with 
B
i being the Bragg angle of іth crystal.

After introducing the integration variable u= #x−"3 in-
tegral �62� can be reduced to the one fold convolution if the
condition max "3�� ,���xm holds,

P���
� = �
#xm

�xm

duV��u�RS�u � �
� , �65�

where the instrumental function of DCD has the form

V��u� = �
�0−��

�0+��

d�I����
−�m

�m

d�R1
n1�#�u + "3�

− "1�R2
n2���u + "3� − "2� , �66�

and it was supposed that G�x ,���1. Then we have for RC
of the sample under investigation, which was measured using
nonpolarized radiation,

R��
� =
P�����
� + P�����
�

P0
��� + P0

� , �67�

where P0
�,�=�−�

� duV�,��u� for � and � components of the
radiation.

The comparative calculations, which have been carried
out by using exact formula �62� and approximate one �Eq.
�65�� for the measurement scheme used, have shown that
discrepancies between them do not exceed 3% in central part
and 5% at “tails” of RC. Consequently, the simplified Eqs.
�65� and �66� can be used in fitting procedures to decrease
the calculation time.

V. EXPERIMENTAL SETUP AND SAMPLES

Experimental RCs of investigated silicon samples have
been measured by using the high-resolution four-circle x-ray

DCD with Cu tube and two flat Ge monochromators in the
antiparallel setting. The symmetric �111� and �333� reflec-
tions were used at the samples under investigation, which
were in the parallel setting relatively to the last reflection of
the collimator, and the symmetric �333� reflection was used
in both monochromators. The samples were rotated around a
vertical axis by a step motor controlled by computer in steps
of 1.0 and 0.6 arc sec for �111� and �333� reflections, respec-
tively.

The investigated FZ Si sample having sizes 3�2 cm2 has
been cut from the central part of silicon single-crystal plate
with a diameter 10 cm, which has been grown by a float-
zone method. The sample thickness after lapping and chemo-
mechanical polishing was about 525 �m, and then the
sample was etched additionally to the depth about 10 �m.
The conventional x-ray topography and scanning electron
microscopy have not revealed any defects in the sample.

The Cz Si sample has been prepared by using wafer cut
from the central part of Czochralsky-grown silicon ingot
with growth axis �111�. The material was of p-type conduc-
tivity, its resistivity was 10.5 � cm. Concentrations of oxy-
gen and carbon impurities were nearly 1.1�1018 and
�1017 cm−3, respectively. The sample cut from the wafer
perpendicularly to the growth axis was polished chemody-
namically and then etched to the depth of 10 �m on both
sides. Thermal annealing of the sample was performed at
750 °C for 30 h in a sealed-off quartz tube in the argon
atmosphere at a pressure of 150 kPa to exclude possible oxy-
gen “depletion” of the near-surface layer.

TABLE I. Radii RL and number densities nL=cL /vc of perfect dislocation loops in FZ Si sample.

hkl i a
RL

�nm�
nL

�cm−3�
R

�%�
Rw

�%�

111 1 1 3.0�1017 7 15

2 5�102 1.0�1010

3 1�104 4.0�103

333 1 1 1.0�1017 10 13

2 5�102 1.5�1010

3 1�104 4.0�103

ai numerates populations of dislocation loops with different sizes.
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VI. ANALYSIS OF MEASURED ROCKING CURVES

The statistical treatment of RCs measured from FZ Si
sample �Figs. 3 and 4� was carried out independently for
�111� and �333� reflections of the characteristic Cu K� radia-
tion. It was supposed in the defect model chosen that only
perfect dislocation loops of the interstitial type are present in
the investigated crystal.40–44 However, all the attempts to de-
scribe the measured RCs in the whole angular range by vary-
ing only one dislocation loop radius and number density
have appeared unsuccessful because the attempts allowed the
acceptable fit only in local angular ranges of the RCs. The
most probable cause of such difficulties may be the wide
spread of dislocation loop radii, which leads to correspond-
ing different DS intensity dependencies in different angular
ranges.

Indeed, already by varying two sufficiently distinct dislo-
cation loop radii and their concentrations the good fit of both
RCs in the whole measured angular ranges including the
total reflection ranges has been obtained. However, the sets
of dislocation loop characteristics determined for two reflec-
tions independently were remarkably different. After intro-
ducing third radius and concentration of dislocation loops as
fit parameters, the practically full coincidence of the sets of
the characteristics has been achieved for two reflections with
good values of normal �R� and weighted �Rw� reliability fac-
tors �see Table I and Fig. 5�.

The important factor for the successful fit procedure was
the self-consistency of the RC description in the total reflec-
tion range �at the Bragg peak� and at RC tails. Particularly, as
can be seen in Figs. 3�b� and 4�b�, the contribution of DS
intensity from dislocation loops is suppressed due to extinc-
tion effect in the total reflection range for �111� reflection
�Fig. 3�b�� and its influence here is small, whereas for �333�
reflection the contributions of diffuse and coherent compo-
nents are comparable in this region despite the extinction
effect �Fig. 4�b��. It should be emphasized that the disloca-
tion loop characteristics determined for two reflections inde-
pendently are quite close, which can be considered as the
evidence for the reliability of the performed x-ray character-
ization.

On the other hand, the high sensitivity of RC diffuse com-
ponents to effective radii of microdefects provides the possi-
bility to characterize the complicated defect structures con-
sisting of several microdefect types. Such kind complicated
defect structures are often encountered in thermally treated
Cz Si crystals.45 The reliable characterization of various-type
microdefects present in a single crystal simultaneously can
be achieved due to qualitatively different behavior of DS
intensity profiles in different angular intervals for microde-
fects with significantly different effective radii, which cause
mutual shifts of corresponding boundaries between Huang
and Stockes-Wilson scattering regions.
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For the detailed quantitative characterization of microde-
fects in Cz Si crystal, one should choose the appropriate
model of defect structure. It is well known that in the Cz Si
crystal oxygen precipitates grow during anneals at elevated
temperatures.45 The high stress at the interface between the
silicon matrix and new phase particles SiOx is released via
emission of interstitial silicon atoms, which agglomerate into
dislocation loops and stacking faults.46–49 For this reason, in
the defect model which was used to treat the measured RCs
from Cz Si sample �Figs. 6 and 7�, the simultaneous presence
of two types of microdefects was supposed, namely, ellipsoi-
dal and spherical oxygen precipitates50 with a radius RC and
thickness hC, and circular dislocation loops 	110
 with a ra-
dius RL, both randomly distributed without mutual correla-
tion.

As can be seen from fitted RCs in Figs. 6 and 7 with all
the DS intensity components shown, indeed the significant
shift of boundaries between Huang and Stockes-Wilson scat-
tering regions for oxygen precipitates and dislocation loops
exists for both reflections measured, and these boundaries are
defined sufficiently well, thus, providing the reliable quanti-
tative determination of defect characteristics. Similarly to the
previous case considered, also here an additional factor pro-
viding the unambiguity of the defect characterization was the
self-consistency of the description of RC components at tails
and in the total reflection range �Figs. 6�b� and 7�b��. The
obtained characterization results are given in Table II and are
close for two reflections as well.

In conclusion, it should be emphasized that the additional
important factor for the reliability of defect characterization
in both FZ Si and Cz Si samples, besides the differences in
effective radii of microdefects, was the self-consistent ac-
count for the absorption due to DS in the coherent compo-
nents of RCs. The importance of accounting for both contri-
bution of thermal DS and influence of the instrumental

factors of DCD to avoid systematical errors when determin-
ing microdefect characteristics by using measured RCs
should be noted as well.

VII. RESUME AND CONCLUSIONS

The theoretical diffraction model has been proposed for
the self-consistent description of coherent and diffuse com-
ponents of RCs measured by DCD with widely open detector
window from crystals, which contain randomly distributed
microdefects of several types simultaneously. The model is
based on the generalized dynamical theory of x-ray scatter-
ing by imperfect single crystals with microdefects of arbi-
trary sizes, and the derived analytical expressions for coher-
ent and DS intensities take account for both contribution of
thermal DS and influence of instrumental factors of DCD,
including the acceptance aperture of detector window.

The diagnostic possibilities of the developed model have
been demonstrated as applied to the quantitative character-
ization of complicated defect structures in the silicon single
crystals grown by floating zone and Czochralsky methods. In
the investigated FZ Si single crystal, the number densities of
dislocation loops with a wide spread of sizes ranged from
nanometers to micrometers have been determined by using
RCs measured for two reflections of the characteristic Cu K�

radiation. The characterization results of the annealed Cz Si
single crystal include concentrations and radii of oxygen pre-
cipitates and dislocation loops present in the crystal simulta-
neously.

In whole, the obtained characterization results show that
the developed analytic diffractometric model allows, at the
proper choice of microdefect models, to perform reliable de-
termination of the quantitative statistical characteristics of
complicated microdefect structures in real single crystals by
using high-resolution DCD measurements.
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