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The superfluid density near the superconducting transition is investigated in the presence of spatial inhomo-
geneity in the critical temperature. Disorder is accounted for by means of a random Tc term in the conventional
Ginzburg-Landau action for the superconducting order parameter. Focusing on the case where a low density of
randomly distributed planar defects is responsible for the variation in Tc, we derive the lowest-order correction
to the superfluid density in powers of the defect concentration. The correction is calculated assuming a broad
Gaussian distribution for the strengths of the defect potentials. Our results are in a qualitative agreement with
the superfluid density measurements in the underdoped regime of high-quality YBCO crystals by Broun and
co-workers.
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I. INTRODUCTION

The superconducting transition measured in real materials
is often smeared or broadened in temperature in a way that
correlates with sample quality or disorder. A sharper transi-
tion is taken as a signature of a higher quality sample. On the
other hand, a straightforward application of the Harris
criterion1 implies that uncorrelated disorder is irrelevant and
does not affect the nature of the superconducting transition.
The Harris criterion is modified for correlated disorder and
implies that the transition can be broadened, depending on
the nature or dimension of the correlation.

In addition to the situations considered by Harris, the ex-
istence of rare regions �analogous to Lifshitz tails2 in the
density of states of a disordered semiconductor� with higher
than average critical temperatures may also significantly af-
fect the properties close to Tc leading to a smeared behavior
of the order parameter as the transition is approached from
the ordered phases. Such rare regions can occur with or with-
out correlations of the disorder. This type of behavior is ex-
pected to be especially pronounced for cases in which the
bare superconducting correlation length �0 is short. High
temperature superconductors in the underdoped regime, hav-
ing a short coherence length at low temperatures, present a
good example of systems with increased sensitivity to vari-
ous types of correlated disorder. Furthermore, many of these
materials exhibit twin boundaries, grain boundaries and/or
disorder due to oxygen chains, all of which are examples of
correlated disorder. Therefore, the high-temperature super-
conductors present a good example of systems with in-
creased sensitivity to various types of disorder.

High-Tc superconductors, because they are unconven-
tional in the sense that the gap averages to zero over the
Fermi surface, are very sensitive to disorder, although the
sensitivity to uncorrelated random disorder is somewhat
mitigated by their short coherence lengths.3 The role of dis-
order in superconductors has been an important subject of
study for several decades.3–5 Imperfections in the lattice
structure are not only responsible for the diffusive motion of
charge carriers above Tc, but also lead to nonuniformity of
the attractive interaction between them, ultimately giving
rise to a spatial variation in the local critical temperature.6,7

In addition to structural irregularities, inhomogeneities in Tc
may be caused by the coexistence of superconductivity and

various density waves.8–10 Indeed, the simultaneous treat-
ment of several competing orders may be at the heart
of a complete description of high-temperature super-
conductors11,12 and other strongly correlated systems.

Thus, obtaining a comprehensive understanding of all as-
pects of the complicated interplay between superconductivity
and various types of inhomogeneities is definitely an impor-
tant goal. An experimentally relevant set of issues that one
can specifically address in this context would include the
influence of inhomogeneities on the critical temperature,
fluctuation corrections above the transition, as well as the
behavior of the order parameter just below Tc. It is clear that
if the characteristic length scale of the inhomogeneity is
large compared to the T=0 superconducting correlation
length, and the width of the distribution of critical tempera-
tures is small compared to some average Tc, the problem can
be studied within the framework of Ginzburg-Landau �GL�
theory with a space-dependent critical temperature Tc�r�. The
GL action is suitable for describing universal properties of a
system in the vicinity of the critical point which are insensi-
tive to the details of the microscopic Hamiltonian. However,
the functional form of Tc�r� is nonuniversal and is deter-
mined by the type of nonuniformity present in the system.

In this paper, we study the behavior of the superfluid den-
sity near the transition in the presence of one specific type of
randomness in Tc, caused by the presence of widely scattered
planar defects. The reason for this choice is twofold. First,
twinning planes, that may be present even in high-quality
crystals, can be regarded as planar defects locally increasing
the critical temperature. If a twinning plane is located at x
=0, the Ginzburg-Landau action will contain a �-function
term −u��x����r��2 with u�0.13 Second, to study the effect
of disorder in general, one needs to find stable solutions of
the GL equation for arbitrary Tc�r� and then average over
realizations of disorder in expressions for the physical quan-
tities of interest. This is difficult to accomplish because the
GL equation is nonlinear. The problem becomes more trac-
table, however, if the correction to the GL action responsible
for the change in Tc has the form mentioned above, with
u�0.

In this work, we consider a special case in which the
spatial variation in the critical temperature is modeled by
randomly located planar defects at points Xi, each contribut-
ing a term
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u�r����r��2 = − u��x − Xi����r��2 �1�

to the GL action. Assuming that these imperfections are di-
lute, we obtain a correction to the uniform superfluid density
that is proportional to the defect concentration ni. The calcu-
lations are performed at the simplest Gaussian level of GL
theory. The disorder potential u is taken to have a Gaussian
distribution with zero average value. The presence of defects
that locally enhance the critical temperature gives rise to a
spatially decaying solution for the order parameter around
them. This leads to a small but nonzero total transverse re-
sponse at temperatures greater than Tc

�0�, the critical tempera-
ture of the pure superconductor. The actual critical tempera-
ture corresponds to the region of strongest Tc enhancement
and enters as a nonuniversal parameter in our treatment.

Our work is motivated by recent experiments in the un-
derdoped regime of high-quality YBCO crystals.14 Experi-
ments, done using the cavity perturbation method, show that,
despite the high quality of the samples, vestiges of finite
superfluid density persist even for temperatures above Tc

�0�.
Our findings, based on the assumption of dilute planar inho-
mogeneities in the form of twin boundaries, qualitatively ex-
plain the results of measurements close to the critical tem-
perature.

II. METHOD OF EXPANSION IN POWERS OF THE
DEFECT CONCENTRATION

The starting point of our calculations close to criticality is
the Ginzburg-Landau free energy in terms of the local super-
conducting order parameter ��r�:15

F = Fn +� dr� 1

2m
����r��2 + ��T����r��2

+ U�r����r��2 +
b

2
���r��4� . �2�

Here Fn is the free energy of the normal system and

��T� = a�T − Tc
�0�

Tc
�0� � �3�

is the distance from the critical temperature, Tc
�0�, of a homo-

geneous superconductor. We assume that the deviations of
Tc�r� from Tc

�0�, described by U�r�, occur in regions of a size
greater than or of order the T=0 correlation length, �0=��T
=0�, but small compared to the correlation length near Tc

�0�.
This assumption justifies the use of the GL formalism for
both conventional and short coherence length superconduct-
ors, provided that they are not too far from the critical tem-
perature. In this case, if the regions where the critical tem-
perature differs sufficiently from Tc

�0� are located around
points Ri, we can quite generally model the randomness in
Eq. �2� by

U�r� = 	
i

ui�r − Ri� . �4�

In the subsequent treatment, we will refer to these regions as
defects. The functions ui�r−Ri�, that we will henceforth call

the potentials, are presumed to be quickly decaying with
�r−Ri�. From the above considerations, the characteristic
lengths of this decay must exceed �0 but be small compared
to the correlation length ��T� close enough to the critical
temperature. In addition, it must be much smaller than the
average separation between the positions of the defects ni

−1/d.
In the Gaussian approximation of GL theory ��T�
=1 /
2m��T�.

The equilibrium distribution of the superconducting order
parameter, �0�r�, follows from the solution of the saddle-
point GL equation that is derived by varying Eq. �2� with
respect to ���r�:

�−
�2

2m
+ ��T� + U�r���0�r� + b��0�r��2�0�r� = 0. �5�

For a given disorder potential, the actual transition tempera-
ture, Tc, is determined from the value of ��Tc� for which a
nonzero solution of �0�r� first appears. This happens when
the eigenvalue spectrum of the operator

L̂0U� = −
�2

2m
+ ��T� + U�r� �6�

crosses zero. The ensuing distribution �0�r� can be chosen
real and positive everywhere in space and must be stable.
The stability conditions can be determined if one expands the
generally complex order parameter ��r� around �0�r� in
Eq. �2�,

��r� = �0�r� + ���r� + i���r� .

One can then easily infer that a non-negative eigenspectrum
for the operators

L̂�U� = −
�2

2m
+ ��T� + U�r� + b�0

2�r� , �7�

L̂�U� = −
�2

2m
+ ��T� + U�r� + 3b�0

2�r� , �8�

is a necessary condition for stability. The problem of deter-
mining the transition point and finding the stable solution
below the transition analytically for the general form, U�r�,
is a daunting task. However, one can simplify the problem if
the concentration of defects ni is small. If one assumes that
every defect potential, ui�r−Ri�, is characterized by the same
set of parameters �u�, one can employ the method of expan-
sion in powers of concentration ni.

16

Consider the function

FN��u1�R1, . . . ,�uN�RN;r�

that describes the spatial dependence of some quantity of
interest and is calculable based on the GL action in the pres-
ence of N defects. We presume also that every defect located
at point Ri has a potential characterized by the specific pa-
rameter set �ui�. The values of the parameters �u� are distrib-
uted according to the distribution P��u��, satisfying the nor-
malization condition
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� P��u��D�u� = 1. �9�

In Eq. �9�, D�u� formally means the integration over all vari-
ables in the set �u�. We are interested in the value of the
function FN��u1�R1 , . . . , �uN�RN ;r� that is an average over
positions Ri as well as parameters �ui�. If one denotes the
positional average by angular brackets, the full average can
be written in the form

FN��u1�R1 . . . �uN�RN;r�

=� P��u1�� . . . P��uN��D�u1� . . . D�uN�

��FN��u1�R1, . . . ,�uN�RN;r�� . �10�

Regarding the concentration of defects as small, one can for-
mally write the average Eq. �10� in the form of a series in
powers of ni. The details of the corresponding derivation are
presented in the Appendix. As follows from Eqs. �A2�–�A4�
up to the first order in ni,

�FN��u1�R1, . . . ,�uN�RN;r��

= F0�r� + ni� F1��u1�;R1;r� − F0�r��dR1, �11�

so that

FN��u1�R1 . . . �uN�RN;r�

= F0�r� + ni� P��u��D�u�� F1��u�;R;r� − F0�r��dR

�12�

Equation �12� contains the lowest-order correction to the
function F0�r�, the quantity of interest in the absence of any
defects. The calculation of this correction requires the
knowledge of function F1��u� ;R ;r�—the quantity of interest
in the presence of just one defect located at point R. We
should mention that the approach described in the Appendix
provides a way to reduce the level of complexity of the ini-
tial problem since it reduces to calculations in the presence
of just a finite number of defects. This task is simpler, al-
though in practice one has to limit the treatment to the level
of one or at most two lowest orders in ni. An important
assumption made in the development of this approach is that
all integrations in Eq. �A4�, in every term of expansion in ni,
do not lead to divergences. Convergence must be maintained

for all parameters in the set �u� and all values of ��T� espe-
cially the point ��T�=0. This property, ensuring that this
method of expansion is controlled, is far from being a for-
gone conclusion and must be carefully addressed once the
specific form of the defect potential is chosen. As will be
shown below, for the essentially one-dimensional potentials
such as those given by Eq. �1�, the convergence is main-
tained for all ��T� in the first order of expansion in ni. Al-
though we will be concerned below only with this lowest
order, we believe that the procedure is well behaved at all
orders, as long as defects are parallel to each other and the
one-dimensional character of the problem is maintained.

III. SUPERFLUID DENSITY

In this section, we calculate the superfluid density in the
presence of randomly located planar defects based on the
expansion in powers of defect concentration ni. We will limit
ourselves to calculations up to first order in ni. It is useful,
however, to first discuss the qualitative behavior of the su-
perconducting order parameter in the presence of defects
without specifying the dimensionality of the problem or the
form of the potential u�r−Ri�. In the absence of randomness,
the superfluid density is15

	s
�0��T� = �0

�0��T��2 = �0, ��T� � 0

���T��/b , ��T� 
 0.
� �13�

To calculate the first-order correction in ni to this result, one
needs to solve the saddle-point equation for the order param-
eter �0

�1��Ri ;r� in the presence of one defect located at point
Ri:

�−
�2

2m
+ ��T� + u�r − Ri���0

�1��Ri;r�

+ b��0
�1��Ri;r��2�0

�1��Ri;r� = 0. �14�

It is clear that �0
�1��Ri ;r�=�0

�1��r−Ri�, and without loss of
generality we can consider the defect to be located at Ri=0.
The nonzero real and positive solution of this equation oc-
curs at the point where the eigenvalue spectrum of the op-

erator L̂0u�, containing a single-defect potential, reaches
zero. In analogy with Eq. �6�,

L̂0u� = −
�2

2m
+ ��T� + u�r� . �15�

Provided that the solution obtained from Eq. �14� is stable,
we can write down the general formula for the superfluid
density averaged over the randomness in u�r�

	s�T� = �ni�
C
P̃��u��D�u�� �0

�1��r��2dr , ��T� � 0;

���T��/b + ni�
C
P̃��u��D�u�� ��0

�1��r��2 − ���T��/b�dr , ��T� 
 0. � �16�
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Expression Eq. �16� follows straightforwardly from Eq. �12�,
applied to the square of the order parameter. But the same
result can be obtained using time-dependent Ginzburg-
Landau equation as a starting point.15 One needs to calculate
the transverse response and subsequently perform the aver-
age using the same method of expansion in powers of ni in
the long-wavelength limit.17 The meaning of notations �C
and P̃��u�� in Eq. �16� will be discussed below. We only
mention now that we must carefully integrate, not over all
possible values of parameters from the set �u�, but only over
those realizations that, first, give stable solutions for �0

�1��r�
and, second, result in a defect-affected critical temperature
not exceeding some fixed value Tc.

If the system contains defects that give rise to a stable
positive nonzero solution of Eq. �14� at T greater than Tc

�0�,
superconductivity must be presumed shifted to higher tem-
peratures. In this case, a finite transverse response will be
observed above the critical temperature of the homogeneous
sample. To first order in ni, the actual transition point will be
determined by the defect that leads to the strongest enhance-
ment of Tc in the sample. This means that in experiments, the
temperature Tc, at which the superconducting response is
first seen will be disorder-dependent and nonuniversal. Very
close to Tc, the superfluid density will be tiny, since the order
parameter will be determined by contributions coming from
a very small number of defects. But with decreasing tem-
perature, the fraction of defects giving rise to nonzero solu-
tions of Eq. �14� will increase, leading to an increase in the
superconducting response. At T�Tc

�0�, the solutions for the
order parameter, �0

�1��r−Ri�, will be localized around the
center of the defect at point Ri. Indeed, as long as �
���T��0, in the absence of any defects, the only stable
solution for the order parameter is zero. Hence, it follows
from Eq. �14� that for functions u�r� that vanish quickly
enough with distance,

�0
�1��r� =

g��r�

b

e−
2m�r, �17�

when the condition 
m�r�1 is satisfied. The function g��r�
which has a weaker than exponential dependence on r, is
determined by the effective dimensionality of the problem.
For instance, in two dimensions g��r�=1 /
r and does not
contain any variables related to the potential.18 For 
m�r
�1, however, the functional form of the decay of the order
parameter is no longer exponential and depends strongly on
the nonuniversal characteristics of the function u�r�. Equa-
tion �17� also describes the behavior of �0

�1��r� at all dis-
tances when �=0 exactly. The corresponding asymptotic
forms are in fact written out in Table I of Ref. 18 and we will
not discuss them further here.

When T
Tc
�0� and �
0, the stable solution for the clean

system is given by �0
�0��T�=
��� /b, and we expect from Eq.

�14� that finite values of u�r� will add some perturbation to
this solution that falls off at infinity. We look for solutions of
the form

�0
�1��r� =

1

b


��� + �r�� , �18�

where the real auxiliary function �r� satisfies the equation

�−
�2

2m
+ 2��� + u�r���r� + 
���u�r� + 3
����r��2

+ �r��3 = 0. �19�

By analogy to Eq. �17� and provided that 
m���r�1, we can
write

�1��r� = g
�r�e−2
m���r, �20�

with the function g
�r� having an asymptotic form similar to
that of g��r�. Again, closer to the defect when 
m���r�1,
the crossover to a different functional form, with stronger
dependence on characteristics of the potential, will take
place. Note also that the requirement for �0

�1��r� to be posi-
tive does not prevent the function g
�r� from having both
signs. This means that depending on the form and sign of
u�r�, the order parameter may be either enhanced or sup-
pressed in the vicinity of a defect for �
0. Thus we con-
clude that the spatial variation in the order parameter
changes qualitatively when � passes through zero, meaning
that the defects play a different role in the system above and
below Tc

�0�. Above Tc
�0�, only a portion of all defects will

perturb the zero value of �0
�0� and, though widely scattered,

they nevertheless ensure a small but finite superconducting
response. At the same time, below Tc

�0�, every defect will
affect the solution �0

�0�=
��� /b, but this just leads to a cor-
rection to the superfluid density that becomes more and more
innocuous with decreasing temperature. In some sense, we
can say that because of these qualitative differences, the
point T=Tc

�0� acts as a special kind of critical point. Indeed, a
simple inspection of Eq. �16� reveals that despite the conti-
nuity of the superfluid density at �=0, its derivative with
respect to temperature exhibits a jump.

It is then appropriate to ask what kind of a defect potential
u�r−Ri� leads to an increase in the critical temperature. To
answer this question, consider the eigenvalue problem for the

operator L̂0u�−�, where L̂0u� is given by Eq. �15�,

�−
�2

2m
+ u�r − Ri�����r − Ri� = ����r − Ri� . �21�

This equation is nothing other than the Schrödinger equation
determining the stationary states of a particle moving in the
presence of potential u�r−Ri�. For a potential which falls off
rapidly enough at infinity, the spectrum of positive eigenval-
ues � is continuous. It is describable by a number of quantum
variables, with k=
2m� being one of them. The spectrum of
negative eigenvalues En, if any exist, is discrete. All eigen-
values � are explicit functions of all parameters in the set �u�.
It is easy to see then that the transition point, in the presence
of one defect, is determined by the smallest eigenvalue, E0,

of the operator L̂0u�−�. From the condition �− �E0�=0 and
Eq. �3� it follows that, because of the defect, Tc=Tc

�0��1
+ �E0� /a�. If there are no discrete levels, E0=0 and no in-
crease in the critical temperature occurs. We note that the
points of instability coincide with the poles of the Green’s

function of the operator L̂0u�, obeying the following equa-
tion
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L̂0u�G�1��Ri;r,r�� = ��r − r�� . �22�

The superscript means that the Green’s function are calcu-
lated in the presence of only one defect located at Ri. Above
Tc,

G�1��Ri;r,r�� = 	
���

���r − Ri���
��r� − Ri�

� + �
, �23�

where 	��� formally denotes the summation and integration
over the discrete and continuous branches of the spectrum.
Since any defect breaks translational invariance,
G�1��Ri ;r ,r�� depends separately on r and r� rather than on
r−r�. The Green’s function in the momentum representation
G�1��Ri ;p ,p�� is the Fourier transform of Eq. �23�. It con-
tains two momenta, p and p�, and has the same pole structure
but may be more straightforward to calculate depending on
the form of potential.

Following the same strategy that led to Eq. �12�, it is
possible to write down the Green’s function averaged over
the positions of defects and parameters of their potentials. In
analogy with Eq. �12�, up to first order in ni,

G�N���u1�R1 . . . �uN�RN;r,r��

= G�0��r − r�� + ni� P��u��D�u�� G�1���u�;R;r,r��

− G�0��r − r���dR . �24�

An approximation that contains only the first power in ni is
known as a single-site approximation.19–21 If all defects have
one and the same potential, the system is considered to have
binary disorder, in which case the integration over D�u�
would be absent in Eqs. �12� and �24�. For this widely stud-
ied simplified type of randomness, the Green’s function Eq.
�24�� is obtainable as a result of resummation of a certain
class of diagrams.19,22 If the distribution of parameters char-
acterizing the potentials u�r−Ri� is broad enough, averaging
over them with the weight P��u�� plays an important role
introducing an additional complicating ingredient to the
problem. The critical value of ��T� for which the nonzero
solution of Eq. �14� first appears in this case will properly
coincide with the singularity in the disorder averaged
Green’s function as can be seen from Eqs. �23� and �24�. It
will be determined by the defect that induces the maximum
local Tc in the sample.

Next we address the question of the stability of possible
solutions of Eq. �14�. In the presence of one defect �pre-
sumed located at Ri=0�, the solution is stable if the

eigenspectrum of operators L̂�u� and L̂�u�, �� and ��, writ-
ten in analogy with Eqs. �7� and �8�, is non-negative. That is,
one needs to analyze two equations,

�−
�2

2m
+ � + u�r� + b�0

�1��r��2� f��r� = ��f��r� ,

�25�

�−
�2

2m
+ � + u�r� + 3b�0

�1��r��2� f ��r� = ��f ��r� . �26�

To do this, we employ the following general mathematical
result for the spectra of second-order differential operators.
The eigenvalues can be ordered in a sequence of increasing
values, and the eigenfunction corresponding to the lowest
eigenvalue �the ground-state eigenfunction� has no nodes as
a function of r.23 Eigenfunctions corresponding to higher
energies must change sign somewhere in space and are or-
thogonal to the ground-state eigenfunction. Comparing Eqs.
�14� and �25�, we see that the eigenfunction corresponding to
��=0 is given by �0

�1��r�. Hence if it is everywhere positive,

we can claim that it is the ground state of operator L̂�u�.
This result immediately implies the conclusion that the low-
est eigenvalue of Eq. �26�, ��0, cannot be negative. Indeed,
the ground-state eigenfunction f �0�r� must be bounded and
cannot change sign anywhere. Hence if we consider the
ground states of Eqs. �25� and �26�, multiply them, respec-
tively, by f �0�r� and �0

�1��r�, integrate over dr and then sub-
tract the first from the second, we find that

2b� �0
�1��r��3f �0�r�dr = ��0� �0

�1��r�f �0�r�dr .

This immediately implies that ��0�0 is the only possibility,
and hence that all other �� �0 as well. This result is just a
simple manifestation of the fact that, for predominantly posi-
tive potentials, the set of eigenvalues shifts up. We cannot
say, however, whether the ground state belongs to the dis-
crete spectrum or lies at the bottom edge of the continuous
one. From Eq. �26� it follows that for ��0, the continuous
spectrum starts at �� =�, while for �
0, �� =2��� is its low-
est possible eigenvalue. If 0
��0
� and ��0 �or 2��� for
�
0�, then the ground-state eigenfunction f �0�r� belongs to
the discrete branch of the spectrum and falls off exponen-
tially at infinity. But if ��0 is the lowest possible eigenvalue
of the continuous spectrum, f �0�r� tends to some nonzero
constant as �r�→�. Similar analysis of asymptotics follow-
ing from Eq. �25� leads to the result that for �
0, the spec-

trum of L̂�u� is purely continuous and starts right from the
ground-state zeroth eigenvalue. If ��0, however, one can-
not exclude the presence of some additional energy levels
belonging to the discrete spectrum in the segment 0
��


�. To conclude, if one finds a solution of Eq. �14� �0
�1��r�

positive for all r, it is guaranteed to be stable. We are not
aware of any general analytic methods that allow us to solve
Eq. �14� because of the cubic nonlinearity. But the possibility
that solutions may be found, depending on the relation be-
tween � and the parameters of u�r�, seems quite realistic for
smooth potentials of a given sign which decay monotonically
at infinity.

We are now in the position to discuss how to perform the
average over disorder realizations �C in Eq. �16�, and what
limitations one should impose on the distribution of random-
ness in order to obtain physically sensible results for the
superfluid density. As discussed earlier, our approach implies
that the actual critical temperature is determined by the de-
fect which gives the greatest increase in Tc

�0�. This approxi-
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mation is a consequence of considering the problem in the
lowest order in ni and suggests that, to compare the theoreti-
cally calculated disorder-smeared behavior with experimen-
tal data, the actual Tc should be introduced by hand. This can
be achieved if the integral �D�u� is performed, not over all
possible values from the set �u�, but rather over those of
them that do not allow for the defect-shifted critical tempera-
tures greater than the stipulated Tc. Subscript C in Eq. �16�
is used to indicate exactly that. Since in this case
�CP��u��D�u�
1, it is appropriate to introduce the normal-
ized distribution,

P̃��u�� =
1

A
P��u��, A = �

C
P��u��D�u� �27�

and employ it in the average over disorder potentials.
In addition, to eliminate the possibility of unphysical be-

havior of the superfluid density as a function of temperature,
the disorder distribution must be regarded as symmetric
about its average. Namely, we must require the fulfillment of
the constraint,

�
C
P��u��D�u�� u�r�dr = 0. �28�

To clarify its importance, we first note that the positive sign
of 	s does not follow automatically from Eq. �14� when �

0. Indeed, if we divide Eq. �14� by b�0

�1��r−Ri� and inte-
grate over space and D�u�, then using Eq. �16� for �
0, we
find that

	s =
���
b

+
ni

b
�

C
P��u��D�u�� � �2�0

�1��r�
2m�0

�1��r�
− u�r��dr .

�29�

We can then integrate by parts the term containing �0
�1��r�,

with the help of Eqs. �18� and �20�. Hence, if Eq. �28� is
satisfied, it follows that

	s =
���
b

+
ni

2mb
�

C
P��u��D�u�� ���0

�1��r�
�0

�1��r� �2

dr . �30�

The integrand in Eq. �30� is always positive, ensuring that
	s�0 everywhere below Tc

�0�. This could not be the case, had
the left-hand side of Eq. �28� been negative. Although noth-
ing wrong occurs if it is positive, it is convenient to ensure
that Eq. �28� is satisfied by adjusting Tc

�0� which so far has
been assumed to be the transition temperature of a disorder-
free sample.

We now apply this general formalism to the case in which
the defects are described by the potential,

u�r� = − u��x − Xi� . �31�

As mentioned in Sec. I, our model consists of a stack of
parallel planes that locally change the critical temperature.
The planes are infinite in y and z directions, resulting in an
essentially one-dimensional problem. Equation �31� also im-
plies that the planes are formally of zero thickness. Physi-
cally, this corresponds to a situation in which the actual
width of the planar defects is of order �0. The only new

parameter in the problem having dimensions of length is
1 / �m�u�� which, together with the correlation length �
=1 /
2m�, determines the character of the solution for the
order parameter. Comparing those two length scales one can
see that any shift to � should be proportional to mu2. The
order parameter �0

�1��r� depends only on x, and assuming,
again without loss of generality, that the defect is at the ori-
gin, we write the equation

�−
1

2m

d2

dx2 + � − u��x���0
�1��x� + b�0

�1��x��3 = 0. �32�

The corresponding solution �0
�1��x� must be continuous, but

its first derivative has a jump at x=0, meaning that

�d�0
�1��x�
dx

�
x=+0

�−
d�0

�1��x�
dx

�
x=−0

= − 2mu�0
�1��0� . �33�

As has been discussed above, two qualitatively different so-
lutions are possible depending on the sign of �, and we must
consider separately two cases.

A. Case ��0

In this case, the solution and its first derivative must de-
crease exponentially at infinity. Elementary integration then
leads to the result that22,24

�0
�1��x� =


2�


b sinh
2m��x� + �1�
, �34�

where the constant �1, determined from the condition of Eq.
�33�, is given by

�1 = arctanh
1

u

2�

m
. �35�

Note that the solution Eq. �34� makes sense only if u�0. At
large �x�,

�0
�1��x� �
8�

b
�
mu2 − 
2�


mu2 + 
2�
�1/2

· e−
2m��x�, �36�

in agreement with Eq. �17�, while at x=0,

�0
�1��0� =
mu2 − 2�

b
. �37�

This solution is possible only if 0
2�
mu2. If 2��mu2,
the only stable solution is �0

�1��x�=0. We conclude that the
amount by which u increases the critical temperature is con-
nected to � by

� =
mu2

2
. �38�

It is instructive to check this result by calculating explic-
itly the Green’s function form Eq. �22� and finding its poles.
It is convenient to work in the momentum representation.
Since the problem is translationally invariant in the y and z
directions, we seek solutions of the form
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G�1��Xi = 0;r,r��

=
1

�2��2�
−�

� �
−�

�

ei�qyy+qzz�dqydqz�
−�

� �
−�

�

ei�px+p�x��

�G�1���yz;p,p��dpdp�, �39�

where �yz���qy ,qz�=qy
2 / �2m�+qz

2 / �2m�. Substituting into
Eq. �22� and performing simple manipulations in the term

involving the � function, we obtain two equations to be
solved self-consistently

G�1���yz;p,p�� =
��p + p�� + uC1�p��
� + �yz + p2/�2m�

,

C�p�� = �
−�

�

G�1���yz;− p�,p��
dp�

2�
. �40�

The result for the full Green’s function is

G�1���yz;p,p�� =
��p + p��

� + �yz + p2/�2m�
+

u

2�1 − uK�
·

1

� + �yz + p2/�2m��� + �yz + �p��2/�2m��
, �41�

in terms of the integral

K � K��yz� = �
−�

� dp�

2�
·

1

� + �yz + �p��2/�2m�

=
m


2m�� + �yz�
. �42�

The first term in Eq. �41� is the Green’s function correspond-
ing to the absence of any potential, and has the simple pole at
�=0. The second term is the nontranslationally invariant
contribution due to the presence of the defect. For positive u
only, the factor containing K has an additional pole at �
=mu2 /2, implying an increase in the critical temperature in
agreement with Eq. �38�.

B. Case �
0

In this case, as �x�→�, �0
�1��x�→
��� /b. It is easy to

complete the integration to obtain22,24

�0
�1��x� = �
���/b coth
m����x� + �2� , u � 0,


���/b tanh
m����x� + �2� , u 
 0,
�

�43�

�2 =
1

2
arcsinh

1

�u�

4���

m
. �44�

For �
0, potentials with both signs of u lead to physically
sensible positive solutions. At large distances, 
m����x��1,

�0
�1��x� �
���

b
�1 +

mu · e−2
m����x�


��� + 
��� + mu2/4
� , �45�

which has the asymptotic form discussed in Sec. II. Full
expressions for �0

�1��0� can be derived in a straight forward
manner, but here we only present the less cumbersome ones
in the limit of large and small �with respect to mu2� ���,

�0
�1��0� �
���

b
�1 +

u

2

 m

���
�, mu2 � ���; �46�

�0
�1��0� � �


m

b
·

���
m�u�

, u 
 0,


m

b
u , u � 0,� mu2 � ��� . �47�

Depending on the sign of u, the order parameter is either
greater or smaller than �0

�0��x�=
��� /b. Thus, if � tends to
zero from below, the solution for the order parameter van-
ishes if u
0, but transforms into

�0
�1��x� =
m

b

u

mu�x� + 1
, � = 0, �48�

for positive u. The dependence on x becomes a power law,
meaning that the influence of the defect is long range at the
special point �=0. To illustrate the spatial dependence of the
order parameter, we plot �0

�1� as a function of x for several
values of � in Figs. 1 and 2.

We can now substitute the solutions given by Eqs. �34�
and �43� into Eq. �16� and calculate the average superfluid
density 	s�T�. u is taken to obey the symmetric Gaussian
distribution,

-6 -4 -2 0 2 4 6
0

0.2

0.4

x

Ψ0
(1)

α=0.2

α=0.245

FIG. 1. �Color online� Order parameter �0
�1� plotted as a func-

tion of x using Eq. �34� for m=2.0, b=1.0, and u=0.5 and two
values of � shown in the figure.
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Pu� =
1


2�W
exp�−

u2

2W2� , �49�

with mean W. This form of distribution implies an exponen-
tially rare probability of occurrence for defects with poten-
tials with strength much greater than average. However,
since u can, in principle, take any value in the distribution
Eq. �49�, the defect-induced enhancement of the critical tem-
perature is formally unbounded. We must then impose an

upper limit um on possible values of u, which will define the
actual critical temperature

Tc = Tc
�0��1 +

mum
2

2a
� . �50�

The renormalized distribution to be used in Eq. �16� is

P̃��u�� = Pu�/A, A = �
−um

um

Pu�du , �51�

and it is simple to integrate over x and obtain

	s�T� = �
2ni

b
�


2�/m

um Pu�
A �u −
2�

m
�du , � � 0,

���
b

+
2ni

b

���

m
�

0

um Pu�
A ·

�coth �2 − 1�2

coth �2
du , � 
 0. � �52�

In deriving the result for �
0, we explicitly used the sym-
metry, P−u�= Pu�. Noting that, from Eq. �44�,

coth �2 = �
4��� + mu2 + 
m�u�

4��� + mu2 − 
m�u�

�1/2

, �53�

we see that for �=0 the two expressions in Eq. �52� become
identical. The presence of the Tc

�0�-enhancing defects makes
the superfluid density finite at that point. Estimating its order
of magnitude, we can write

	s�Tc
�0�� �

niW

b
. �54�

The value in the right-hand side of Eq. �54� contains the first
power of ni and is presumed small enough so that the whole
approach based on the Ginzburg-Landau expansion remains
valid.

For convenience, we introduce the rescaled parameters


m

2
u → u, 
m

2
W → W, 
 2

m
ni → ni

and plot b	s�T� as a function of ��T�=a�T−Tc
�0�� /Tc

�0�, as-
suming a=1. The results for several values of disorder dis-
tribution width W �W=0.0, W=0.1, and W=0.2� and um
=3W on all plots are presented in Fig. 3.

From the plots it follows that, if the values of u are
broadly distributed and um�W belongs to the Lifshitz tail,
the superfluid density for larger � is exponentially small.
Under the same circumstances, the behavior near the point
T=Tc

�0� is not sensitive to the exact value of um. We note also
that for um�W, A�1 and is not of much importance. Below
Tc

�0�, however, the behavior asymptotically approaches that of
the disorder-free system. These results are in qualitative
agreement with the solution for the order parameter pre-
sented in Ref. 22, having a small but finite value going to
zero at some weakly ni-dependent value Tc�Tc

�0�.
In Fig. 4, we present data for experimental measurements

of the superfluid density taken from Ref. 14. Figure 4�a�

-6 -4 -2 0 2 4 6
0

0.5

1

Ψ0
(1)

x

α=−0.3

α=−0.05

-6 -4 -2 0 2 4 6
0

0.5

1

x

Ψ (1)
0

α=−0.3

α=−0.05

(b)(a)

FIG. 2. �Color online� Order parameter �0
�1� plotted as a function of x using Eq. �43� for m=2.0, b=1.0, and u=0.5 �a�, u=−0.5 �b�. The

values of � corresponding to each curve are displayed in the figures.
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shows the results for the superfluid density of an
YBa2Cu3O6.333 ellipsoid, measured as a function of tempera-
ture for different values of doping starting from the most
ordered sample with Tc=17 K. Figure 4�b� describes the be-
havior of 	s�T� very close to the critical temperature for two
levels of doping that lead to the highest Tc’s ��17 and
�15 K� as shown in Fig. 4�a�. In experiments described in
Ref. 14, the superfluid density was determined from the pen-
etration depth measurements done on the high-quality crys-
tals. Highly ordered samples were prepared by extended an-
nealing under pure oxygen gas flow, as well as high
hydrostatic pressure at room temperature to enhance CuO-
chain ordering.25,26 This procedure removes randomness in
the spatial distribution of isolated oxygen vacancies that
could act as pinning and scattering centers. However, planar-
type inhomogeneities are present as twin boundaries as these
materials are not detwinned. In conventional superconduct-
ors, the twin boundaries are well known to increase locally
the critical temperature.13 In YBa2Cu3O6.333, the twin bound-
aries parallel to the c axis are envisioned as the planes sepa-
rating two regions in which the CuO chains are oriented
perpendicular to each other, and are likely to serve as a
source of Tc enhancement as well. The reason for this is that

it is advantageous for the oxygen vacancies to be located
near the twin boundaries.27 Moreover, the presence of narrow
regions with surplus of these vacancies means the enhance-
ment of superconductivity, and as a consequence higher criti-
cal temperature in the vicinity. For each plane, this is effec-
tively modeled by adding the potential Eq. �31� to the
conventional GL action. Randomness of u is likely to come
from variation in the in-plane concentration of vacancies,
stemming in its turn from the nonuniformity of the initial
density of the twin boundaries. Since, in our case all such
planar defects appear to increase the critical temperature, the
values of u are determined relative to some average value,
hence having both signs. Tc

�0� defined previously as the criti-
cal temperature of completely disorder-free sample must thus
be regarded shifted up so that Eq. �28� is satisfied. We should
mention also that the issue of local superconductivity en-
hancement due to the twin-boundaries themselves has been
considered previously in Ref. 28. The twinning planes were
assumed to form a periodic array and be described in the GL
functional by the sum of terms of the form Eq. �1� all having
the same u. In our approach, we specifically highlight the
importance of randomness in potentials for the purpose of
the qualitative interpretation of the measured superfluid
density.

-0.1 0 0.1
0

0.05

0.1

α

bρs

-0.1 0 0.1
0

0.05

0.1

bρ
s

α(b)(a)

FIG. 3. �Color online� The figures show the dependence of b	s�T� as a function of ��T�=a�T−Tc
�0�� /Tc

�0� �a=1� calculated from Eq. �52�
for the rescaled by means of Eq. �55� parameters ni=0.1, um=3W for figure �a� and ni=0.1, um=5W for figure �b�, respectively. The widths
of the disorder distribution W=0.0, W=0.1, and W=0.2 in both figures are represented by the solid, dashed, and dashed-dotted lines,
respectively.

(b)(a)

FIG. 4. �Color online� Measured superfluid density in the underdoped regime of YBa2Cu3O6.333 taken from Ref. 14. The data suggest the
presence of decreasing superconducting response above some temperature. The meaning of the curves is explained in the text.
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It is seen from the data in Fig. 4 that a small but finite
superfluidity persists above some temperature obtained by
extrapolating the straight lines, describing the behavior at
lower T down to zero. If we associate this value with Tc

�0� in
our approach, we can claim that the simple model of planar
disorder reproduces qualitatively the experimentally ob-
served temperature dependence of 	s. From the data, though,
it is difficult to infer the precise value of the actual critical
temperature Tc. Since the aim of this calculation is mainly to
illustrate the generic features resulting from randomness in
Tc’s, we have not attempted to determine the choices of pa-
rameters W, um, and a required for a precise match between
the theoretical and experimental curves. Already this quali-
tative agreement suggests that even in experiments done on
high-quality samples, there are local regions with critical
temperatures significantly above the average Tc. The small-
ness of superfluid density in the tails suggests that such re-
gions are rare and have broadly distributed local critical tem-
peratures.

IV. DISCUSSION AND CONCLUSIONS

In this section, we discuss the relevance of the simple
model of random planar defects to the experimentally ob-
served behavior of the superfluid density as a function of
temperature close to Tc.

First, it is appropriate to ask what changes to the behavior
of 	s are expected if we go to the next orders of expansion in
defect concentration. To examine this, consider how one pro-
ceeds to obtain the correction to the superfluid density that is
of second order in ni. According to the general strategy, it is
necessary to solve the equation for the order parameter in the
presence of two defects located at points X1 and X2. The
distance L= �X2−X1� emerges as a new parameter for the
problem, and together with the strengths of the potentials
will determine the point at which the real positive solution
�0

�2��L ;x� first obtains. To find it, one can easily solve the
corresponding generalization of Eq. �22� for the Green’s

function G�2��X1=0 ,X2=L ;r ,r�� of the operator L̂0u� with
the potential

u�r� = − u1��x� − u2��x − L� . �55�

The subscript �2� means now that we do all calculations in
the presence of exactly two defects. The solution has the
form

G�2���yz;p,p�� =
��p + p�� + u1C1�p�� + u2C2�p��e−ipL

� + �yz + p2/�2m�
,

�56�

C1�p�� = �
−�

�

G�2���yz;− p�,p��
dp�

2�
, �57�

C2�p�� = �
−�

�

e−ip�LG�2���yz;− p�,p��
dp�

2�
. �58�

We will not write out in full the cumbersome expression for
the Green’s function and state only that the poles of

G�2���yz ; p , p��, indicating the occurrence of a transition at
some T�Tc

�0�, are determined from the equation

�1 − u1
 m

2�
��1 − u2
 m

2�
� −

mu1u2

2�
· e−2
2m��L� = 0.

�59�

The left-hand side of Eq. �59� is just the corresponding de-
terminant �taken at �yz=0� which arises in the process of
solving the system of two coupled linear equations for
C1�p�� and C2�p��. If u1=u2, Eq. �59� reduces �upon the
proper rescaling� to the known result.24 It is clear from Eq.
�59�, that for positive u1 and u2, the critical value of �
= �m /2�max�u1

2 ,u2
2� if �L�=�, implying a complete indepen-

dence of the defects. But for �L�=0, the pole occurs at �
= �m /2��u1+u2�2, in agreement with the fact that if both de-
fects are located at one point, their strengths simply add. It
follows then that placing the second defect with positive u at
any finite distance L, in addition to the one already present,
increases the critical �. This means that if there are two
defects located not too far from each other in the sample,
with strengths close to um, the actual critical temperature, as
a result of going to the second order in ni, will be higher than
that given by Eq. �50�. However, this circumstance does not
affect the qualitative interpretation of the data since, as was
mentioned before, the presumed exponential smallness of
	s�T� at temperatures considerably higher than Tc

�0�, renders
the actual Tc difficult to determine from Fig. 4. Thus we will
not discuss further all the calculations to second and higher
orders in ni, but rather note the following. Once the potential
strengths are broadly distributed, the value of b	s�T� at T
=Tc

�0� is not sensitive to the actual Tc. To calculate it one can
safely set um=�. However, the calculated b	s�T� using Eq.
�52� has a peak at �=0 as seen in Fig. 3. We believe that this
nonmonotonic behavior in the vicinity of Tc

�0�, is an artifact
of the mean-field approximation used in our treatment from
the very beginning. Thermal fluctuations when � is small are
expected to renormalize down the values of the superfluid
density, but consideration of this question is beyond the
scope of this paper.

The planar defects considered in this paper may not be the
only ones present despite the high quality of the samples.
Isolated and rare point defects due to oxygen disorder, other
lattice defects such as dislocations29 are, in principle, not
excluded.30 It is important, however, that among all possible
types of defects, the planelike ones ensure the broadest pos-
sible distribution of the local critical temperatures. This fol-
lows from the generalized Harris criterion,1,31 arguing that
whenever 2−d���0, with � being the correlation length
critical exponent and d� the number of dimensions in which
the system is random, disorder is relevant near the critical
point. For point and columnar disorder, d� is equal to 3 and
2, respectively, whereas in the case of stacked planar defects
d�=1. Obviously, the greater 2−d�� is, the wider the distri-
bution of local Tc’s is due to randomness in parameters char-
acterizing the defect potential.32 One should remember,
though, that not all defects, but only the extended ones of
sizes greater than �0, can be satisfactorily accounted for
within the framework of GL theory. Others should be treated
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using a suitable microscopic model. If necessary, possibly in
lower quality samples, defects with spherical and cylindrical
shapes must be considered as well, but these are likely to
affect the superfluid density in a much narrower region
around Tc

�0�. Investigation of such defects is left for future
work.
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APPENDIX: EXPANSION IN POWERS OF ni

In this appendix, we obtain the average of the function
FN��u1�R1 , . . . , �uN�RN ;r� given by Eq. �10� in the form of a

series in powers of defect concentration ni. The correspond-
ing derivation is straightforward and follows the lines of Ref.
16. We should notice first, however, that the function
in angular brackets in Eq. �10� is not symmetric, but
the final result will not change if we replace
FN��u1�R1 , . . . , �uN�RN ;r� with the function

FsN��u1�, . . . ,�uN�;R1, . . . ,RN;r�

=
1

N!
P̂�u1�, . . . ,�uN��FN��u1�R1, . . . ,�uN�RN;r� ,

�A1�

symmetrized over all sets �ui� for a particular location of the

defect. �P̂ is the symmetrization operator.� This creates func-
tions symmetric with respect to permutations of coordinates
R1 , . . . ,RN. It is possible to verify then that for any finite
number of such functions Fsm��u1� , . . . , �um� ;R1 , . . . ,Rm ;r�,
�m�0�

FsN��u1�, . . . ,�uN�;R1, . . . ,RN;r� = F0�r� + 	
i

�1��ui�;Ri;r� + 	
i
j

�s2��ui�,�uj�;Ri,R j;r� − �1��ui�;Ri;r� − �1��uj�;R j;r��

+ 	
i
j
k

�s3��ui�,�uj�,�uk�;Ri,R j,Rk;r� − �s2��ui�,�uj�;Ri,R j;r� − �s2��ui�,�uk�;Ri,Rk;r�

− �s2��uj�,�uk�;R j,Rk;r� + �1��ui�;Ri;r� + �1��uj�;R j;r� + �1��uk�;Rk;r�� + ¯ . �A2�

In Eq. �A2� �m�2�,

�sm��u1�, . . . ,�um�;R1, . . . ,Rm;r� = Fsm��u1�, . . . ,�um�;R1, . . . ,Rm;r� − F0�r� , �A3�

and these �sm��u1� , . . . , �um� ;R1 , . . . ,Rm ;r� are also symmetric. F0�r� is a function of r only, and it, as well as �1��ui� ;Ri ;r�,
does not require symmetrization. Assuming that all defects are located at points Ri, and that F0�r� is the value in the absence
of defects, we can take the thermodynamic limit N→�, V→�, ni=N /V in Eq. �A2� to get

�FN��u1�R1, . . . ,�uN�RN;r�� = F0�r� + ni� �1��u1�;R1;r�dR1 +
ni

2

2!
� � �s2��u1�,�u2�;R1,R2;r� − �1��u1�;R1;r�

− �1��u2�;R2;r��w2��u1�,�u2�;R2 − R1�dR1dR2 +
ni

3

3!
� � � �s3��u1�,�u2�,�u3�;R1,R2,R3;r�

− �s2��u1�,�u2�;R1,R2;r� − �s2��u2�,�u3�;R2,R3;r� − �s2��u3�,�u1�;R3,R1;r� + �1��u1�;R1;r�

+ �1��u2�;R2;r� + �1��u3�;R3;r�� · w3��u1�,�u2�,�u3�;R2 − R1,R3 − R2�dR1dR2dR3 + ¯ .

�A4�

The full average then follows in a straightforward way by substituting this average over positions into Eq. �10�. In Eq. �A4�,
w2��u1� , �u2� ;R2−R1� is the probability of the simultaneous occurrence of two defects at points R1 and R2 characterized by the
sets �u1� and �u2�, respectively. Obviously, w2��u1� , �u2� ;R2−R1�=w2��u1� , �u2� ;R1−R2�. Probabilities w3 ,w4 , . . . in higher
order terms have analogous meaning, and in general depend on �ui�. However, this dependence is likely to be noticeable only
if defects are close to each other. All functions wm will depend on concentration ni, but in the limit all �Ri−Rk��1 / �ni�1/d, they
quickly tend to unity. Those functions must also factorize if one of the coordinates tends to infinity, meaning, for example, that
w3��u1� , �u2� , �u3� ;R2−R1 ,R3−R2�→w2��u1� , �u3� ;R3−R1�, if �R2�→�.
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