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Using the coupled cluster method for high orders of approximation and complementary exact diagonaliza-
tion studies we investigate the ground state properties of the spin-1/2 J1–J2 frustrated Heisenberg antiferro-
magnet on the square lattice. We have calculated the ground state energy, the magnetic order parameter, the
spin stiffness, and several generalized susceptibilities to probe magnetically disordered quantum valence-bond
phases. We have found that the quantum critical points for both the Néel and collinear orders are
J2

c1��0.44�0.01�J1 and J2
c2��0.59�0.01�J1, respectively, which are in good agreement with the results

obtained by other approximations. In contrast to the recent study by �Sirker et al. Phys. Rev. B 73, 184420
�2006��, our data do not provide evidence for the transition from the Néel to the valence-bond solid state to be
first order. Moreover, our results are in favor of the deconfinement scenario for that phase transition. We also
discuss the nature of the magnetically disordered quantum phase.
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I. INTRODUCTION

Quantum phase transitions between semiclassical mag-
netically ordered phases and magnetically disordered quan-
tum phases which are driven by frustration attract much in-
terest; see, e.g., Ref. 1. A canonical model for studying such
transitions is the spin-1/2 Heisenberg antiferromagnet with
nearest-neighbor J1 and frustrating next-nearest-neighbor J2
coupling �J1–J2 model� on the square lattice. This model has
attracted a great deal of interest during the last 20 years �see,
e.g., Refs. 2–31 and references therein�. Recent interest in
this model comes also from the synthesis of layered mag-
netic materials Li2VOSiO4, Li2VOGeO4, VOMoO4, and
BaCdVO�PO4�2 �Refs. 32–35� that might be described by the
J1–J2 model. A new promising perspective is also opened by
the recently discovered layered Fe-based superconducting
materials36 which may have a magnetic phase that can be
described by a J1–J2 model with spin quantum number s
�1 /2.37–39

For the square-lattice spin-1/2 J1–J2 model it is well ac-
cepted that there are two magnetically long-range ordered
ground state �GS� phases at small and at large J2 separated
by an intermediate quantum paramagnetic phase without
magnetic long-range order �LRO� in the parameter region
J2

c1�J2�J2
c2, where J2

c1�0.4J1 and J2
c2�0.6J1. The mag-

netic phase at low J2�J2
c1 exhibits semiclassical Néel LRO

with a magnetic wave vector Q0= �� ,��. The magnetic
phase at large J2�J2

c2 shows so-called collinear LRO. It is
twofold degenerate and the corresponding magnetic wave
vectors are Q1= �� ,0� or Q2= �0,��. These two collinear
states are characterized by a parallel spin orientation of near-
est neighbors in vertical �horizontal� direction and an anti-
parallel spin orientation of nearest neighbors in horizontal
�vertical� direction.

The nature of the transition between the Néel and the
quantum paramagnetic phases, as well as the properties of

the quantum paramagnetic phase and the precise values of
the transition points, is still under debate.2–31 In particular,
stimulated by the recent discussion of deconfined quantum
criticality in two-dimensional spin systems,40,41 a renewed
interest in the nature of the phase transition between the
semiclassical Néel phase and the quantum paramagnetic
phase has emerged.27,30,42,43 However, in spite of numerous
intensive efforts focused on the transition between the Néel
and the quantum paramagnetic phases in the J1–J2 square-
lattice antiferromagnet and some other candidate
models,44–49 this field remains still highly controversial. For
completeness we mention that the classical square-lattice
J1–J2 model �s→�� exhibits a direct first-order transition
between Néel state and collinear state at J2 /J1=1 /2.

Recently, several extensions of J1–J2 model have been
studied. Interestingly, with increase in the space dimension
from D=2 to D=3 the intermediate quantum paramagnetic
phase disappears.29,50,51 Also spatial52–56 and spin
anisotropies26,57,58 as well as the spin quantum number s
�Refs. 2, 30, 59, and 60� have a great influence on the GS
phase diagram.

The goal of this paper is to study the GS phase diagram
for spin-half J1–J2 model on the square lattice using a high-
order coupled cluster method �CCM�. We complement the
CCM treatment by exact diagonalization �ED� for finite lat-
tices for a qualitative check of our CCM data. By calculating
GS quantities such as the energy, the magnetic order param-
eter, the spin stiffness, and generalized susceptibilities we
will investigate the quantum phase transitions present in the
model as well as the properties of the quantum paramagnetic
phase. We will compare our results with the ones obtained
recently using series expansions.27

The CCM, introduced many years ago by Coester and
Kümmel,61 is one of the most universal and most powerful
methods of quantum many-body theory. For a review of the
CCM see, e.g., Ref. 62. Starting in 1990 it has been applied
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to quantum spin systems with much success.15,29,63–75 A main
advantage of this approach consists in its applicability to
strongly frustrated quantum spin systems in any dimension.
With the implementation of parallelization in the CCM
code72,76 high-order calculations are now possible �see Sec.
II�, improving significantly the accuracy in the investigation
of quantum phase transitions driven by
frustration.29,56,58,67,69,72,73,75

The Hamiltonian of the considered J1–J2 model reads

H = J1�
�ij�

sis j + J2�
�ij�

sis j , �1�

where J1 is the nearest-neighbor exchange coupling and J2 is
the next-nearest-neighbor exchange coupling. Both cou-
plings are antiferromagnetic, J1�0 and J2�0. In our CCM
and ED calculations we set J1=1. We consider spin quantum
number s=1 /2, i.e., si

2=3 /4.
The remainder of the paper is organized as follows. In

Sec. II we briefly discuss the CCM approach and illustrate
how to calculate GS quantities of spin model �1�. We present
our results for the GS energy, the magnetic order parameter,
and the spin stiffness in Sec. III A. In Sec. III B, we consider
in more detail the phase transition between the Néel state and
the quantum paramagnetic state as well as various suscepti-
bilities testing the nature of the nonmagnetic phase. Finally,
in Sec. IV we summarize our findings.

II. COUPLED CLUSTER METHOD

We start with a brief illustration of the main features of
the CCM. For a general overview on the CCM the interested
reader is referred, e.g., to Refs. 64, 66–68, 70, and 72–74.
The starting point for a CCM calculation is the choice of a
normalized model �or reference� state 	��, together with a set
of mutually commuting multispin creation operators CI

+

which are defined over a complete set of many-body con-
figurations I. The operators CI

− are the multispin destruction
operators and are defined to be the Hermitian adjoint of the
CI

+. We choose 
	�� ;CI
+� in such a way that we have ��	CI

+

=0=CI
−	��, ∀I�0. Note that the CCM formalism corre-

sponds to the thermodynamic limit N→�.
For the spin system considered, for 	�� we choose the

two-sublattice Néel state for small J2 but the collinear state
for large J2. To treat each site equivalently we perform a
rotation of the local axis of the spins such that all spins in the
reference state align along the negative z axis. In the rotated
coordinate frame then we have 	��= 	↓ �	↓ �	↓ �¯ and the
corresponding multispin creation operators then read CI

+

=si
+ ,si

+sj
+ ,si

+sj
+sk

+ , . . ., where the indices i , j ,k , . . . denote arbi-
trary lattice sites.

The CCM parameterizations of the ket- and bra-ground
states are given by

H	�� = E	��; ��̃	H = E��̃	 ,

	�� = eS	��, S = �
I�0

SICI
+,

��̃	 = ��	S̃e−S, S̃ = 1 + �
I�0

S̃ICI
−. �2�

The correlation operators S and S̃ contain the correlation co-

efficients SI and S̃I that have to be determined. Using the
Schrödinger equation, H	��=E	��, we can now write the
GS energy as E= ��	e−SHeS	��. The magnetic order param-
eter is given by

M = −
1

N
�
i=1

N

��̃	si
z	�� , �3�

where si
z is expressed in the rotated coordinate system. To

find the ket-state and bra-state correlation coefficients we

require that the expectation value H̄= ��̃	H	�� is a minimum
with respect to the bra-state and ket-state correlation coeffi-
cients, such that the CCM ket- and bra-state equations are
given by

��	CI
−e−SHeS	�� = 0, ∀ I � 0, �4�

��	S̃e−S�H,CI
+�eS	�� = 0, ∀ I � 0. �5�

Each ket- or bra-state �Eq. �4� and �5�� belongs to a particular
index I corresponding to a certain set �configuration� of lat-
tice sites i , j ,k , . . . in the multispin creation operator CI

+

=si
+ ,si

+sj
+ ,si

+sj
+sk

+ , . . .; see above.
Though we start our CCM calculation with a reference

state corresponding to semiclassical order, one can compute
the GS energy also in parameter regions where semiclassical
magnetic LRO is destroyed, and it is known15,29,56,58,67,72,73

that the CCM yields precise results for the GS energy beyond
the transition from the semiclassical magnetic phase to the
quantum paramagnetic phase. The necessary condition for
the convergence of the CCM equations is a sufficient overlap
between the reference state and the true ground state.

It has been recently demonstrated74 that the CCM can also
be used to calculate the spin stiffness 	s with high accuracy.
The stiffness measures the increase in the amount of energy
when we twist the magnetic order parameter of a magneti-
cally long-range ordered system along a given direction by a
small angle 
 per unit length, i.e.,

E�
�
N

=
E�
 = 0�

N
+

1

2
	s


2 + O�
4� , �6�

where E�
� is the GS energy as a function of the imposed
twist, and N is the number of sites. In the thermodynamic
limit, a positive value of 	s means that there is magnetic
LRO in the system, while a value of zero reveals that there is
no magnetic LRO. To calculate the spin stiffness within the
CCM using Eq. �6� we must modify the corresponding ref-
erence states �Néel or collinear� by introducing an appropri-
ate twist 
; see Fig. 1. Thus the ket-state correlation coeffi-
cients SI �after solving CCM equation �4�� depend on 
 and,
hence, the GS energy E is also dependent on 
.

To study the properties of the quantum paramagnetic
phase existing in the vicinity of J2=J1 /2 as well as the phase
transitions to that phase we will consider generalized suscep-
tibilities �F that describe the response of the system to cer-
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tain “field” operator F.17,18,20,22,23,27 To calculate such a sus-

ceptibility �F we add to Hamiltonian �1� a field term F=� Ô,

where Ô is an operator that breaks some symmetry of H and
the coefficient � determines the strength of the field. Using
the CCM with either the Néel or the collinear reference state
we calculate the energy per site, E��� /N=e���, for H+F, i.e.,
for the Hamiltonian of Eq. �1� perturbed by the additional

term �Ô. The susceptibility �F is then defined as

�F = − � �2e���
��2 �

�=0
. �7�

For the considered quantum spin model we have to use

approximations in order to truncate the expansion of S and S̃.
We use the well elaborated LSUBn scheme64,66,68,70,73 in

which in the correlation operators S and S̃ one takes into
account all multispin correlations over all distinct locales on
the lattice defined by n or fewer contiguous sites. For in-
stance, within the LSUB4 approximation one includes mul-
tispin creation operators of one, two, three, or four spins
distributed on arbitrary clusters of four contiguous lattice
sites. The number of these fundamental configurations can be
reduced exploiting lattice symmetry and conservation laws.
In the CCM-LSUB10 approximation we have finally 29 605
�45 825� fundamental configurations for the Néel �collinear�
reference state. Note, however, that for the calculation of the
stiffness �the susceptibilities� the twisted reference state �the
modified Hamiltonian H+F� is less symmetric, which leads
to more fundamental configurations. As a result we are then
limited to LSUB8 approximation.

Since the LSUBn approximation becomes exact for n
→�, it is useful to extrapolate the “raw” LSUBn data to n
→�. Meanwhile there is a great deal of experience how to
extrapolate the GS energy e and the magnetic order param-
eter M. Most successful are the parameter fits of the form
A�n�=A0+A1�1 /n�1 +A2�1 /n�2 where the fixed leading ex-
ponents 1 and 2 may be different for the different quanti-
ties to be extrapolated. For the GS energy per spin e�n�=a0
+a1�1 /n�2+a2�1 /n�4 is a reasonable well-tested extrapola-
tion ansatz.29,56,58,67,68,70,72,73 An appropriate extrapolation
rule for the magnetic order parameter for systems showing a
GS order-disorder transition is56,58,59,75 M�n�=b0
+b1�1 /n�1/2+b2�1 /n�3/2. For the spin stiffness the extrapola-
tion 	s�n�=c0+c1�1 /n�+c2�1 /n�2 has been found to be
reasonable.74 Finally, for the susceptibility we have tested

several fitting functions, and we have found that the best
extrapolation is obtained by the same fitting function �F�n�
=c0+c1�1 /n�+c2�1 /n�2 as for the stiffness. To check the re-
liability of this extrapolation scheme we have also performed
an extrapolation of the energy e��� to n→� by using the
extrapolation formula e�n�=a0+a1�1 /n�2+a2�1 /n�4 �see
above� and a subsequent calculation of �F according to Eq.
�7� using the extrapolated energy. We found that the devia-
tions between both schemes are very small.

In summary, the CCM approach automatically implies the
thermodynamic limit N→� �that is an obvious advantage in
comparison with ED�. However, we need to extrapolate to
the n→� limit in the truncation index n, which is an internal
parameter of the approach. Since no general theory is known
on how the physical quantities scale with n, we have to use
extrapolation formulas based on empirical experience. An-
other feature of many approximate techniques �but not of
ED� is that they are based on reference states explicitly
breaking some symmetry of the Hamiltonian. Although
CCM also starts from a reference state related to a particular
magnetic LRO, it has been demonstrated that the CCM pro-
vides precise results for the GS energy even in parameter
regions where the magnetic LRO �i.e., the magnetic
order parameter M calculated within CCM�
vanishes.15,29,56,58,67,72,73 This is again an advantage of the
CCM approach.

III. GROUND STATE PHASE DIAGRAM

A. Ground state energy, magnetic order parameter, and spin
stiffness

As already mentioned in Sec. I, the considered J1–J2
model has two semiclassical magnetic GS phases �small and
large J2� separated by nonmagnetic quantum phase �interme-
diate J2�. To detect the quantum critical points by the above
described CCM we discuss the magnetic order parameter M
�see Eq. �3�� and the spin stiffness 	s �see Eq. �6��. Both M
and 	s are finite in the magnetically ordered phases but van-
ish in the intermediate quantum paramagnetic phase.

For completeness, we show first the CCM and the ED GS
energies per spin, e=E /N, in Fig. 2. The CCM curve consists
of two parts corresponding to the Néel and collinear refer-
ence states, respectively. The dependence e�J2� for ED and
CCM is qualitatively the same; however, due to finite-size
effects, the ED curve is below the CCM curves. Let us men-
tion again that CCM GS energy corresponding to the Néel
�collinear� reference state is expected to be precise also in the
intermediate quantum paramagnetic phase if J2 is not too far
beyond the transition points.

Next we consider the magnetic order parameter in depen-
dence on J2; see Fig. 3. Note again that only for the magnetic
order parameter M and the GS energy we are able to solve
the CCM-LSUBn equations up to n=10, while for the stiff-
ness and the susceptibilities we are restricted to n�8. Hence
the extrapolation to the limit n→� is most reliable for M
and the estimation of the phase transition points by using the
data for M is most accurate. The extrapolation to n→�
shown in Fig. 3 is based the extrapolation scheme M�n�
=b0+b1�1 /n�1/2+b2�1 /n�3/2 and uses CCM-LSUBn data
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FIG. 1. Illustration of the twisted reference states used for the
calculation of the spin stiffness 	s. The angles at the lattice sites
indicate the twist of the spins with respect to the Néel or the col-
linear state. �a� Twisted Néel state; the twist is introduced along
rows in x direction. �b� Twisted collinear state; the twist is intro-
duced along rows in e�x+e�y direction.
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with n=4,6 ,8 ,10. We find for the phase transition points
between the semiclassical phases and the quantum paramag-
netic phase J2

c1=0.447J1 and J2
c2=0.586J1. To check the ro-

bustness of this extrapolation we have also extrapolated M
using the data of n=2,4 ,6 ,8 ,10 which leads to J2

c1

=0.443J1 and J2
c2=0.586J1. Those values of J2

c1 and J2
c2 are in

agreement with CCM predictions of Refs. 56 and 58.
Although the behavior of the extrapolated values of the

magnetic order parameter around J2
c1 and J2

c2 presented in
Fig. 3 shows a continuous behavior near J2

c1 and near J2
c2, it is

obvious that the decay of the collinear order parameter to
zero at J2

c2 is much steeper than the decay of the Néel order
parameter at J2

c1. That might give some hint of a first-order
phase transition from the collinear to the paramagnetic
phase, in contrast to a continuous transition from the Néel to
the paramagnetic phase.6,16,20

In addition to the magnetic order parameter, another way
to find the phase transition points is to consider the spin
stiffness 	s which is nonzero in a magnetically long-range
ordered phase but vanishes in the magnetically disordered
quantum phase. The spin stiffness measures the distance of
the ground state from criticality,77 and constitutes together

with the spin-wave velocity the fundamental parameters that
determines the low-energy dynamics of magnetic
systems.78–80 In order to calculate the stiffness directly using
Eq. �6� we have to modify both the reference �Néel and
collinear� states by introducing an appropriate twist 
; see
Fig. 1. The CCM-LSUBn results for spin stiffness as well as
the extrapolated values for both reference states as a function
of J2 are given in Fig. 4. The results show that approaching
the magnetically disordered phase the stiffness is decreased
until it vanishes at J2=0.466J1 coming from the Néel phase
and at J2=0.578J1 coming from the collinear phase. These
values obtained by extrapolation including up to LSUB8 data
are in reasonable agreement with the critical points deter-
mined by extrapolating M. Note that our data for 	s are also
in good agreement with corresponding results of the other
methods �see Refs. 7, 12, 14, and 81�. Note further that simi-
larly for M we observe also for 	s that the curvature near the
critical points is different at J2

c1 and at J2
c2 that might be again

a hint of the different nature of both transitions.
To summarize, the CCM results for the GS energy, the

magnetic order parameter, and the spin stiffness support a
general physical picture known from earlier numerical stud-
ies �including ED,3,4,6,9,10 variational quantum Monte
Carlo,17,21 and series expansions22,27�. For intermediate val-
ues of J2, J2

c1�J2�J2
c2 with J2

c1��0.44�0.01�J1 and
J2

c2��0.59�0.01�J1 there is no magnetic order.

B. Order of the phase transition: Generalized susceptibilities

While the phase transition from the collinear to the para-
magnetic phase is most likely of first order,6,16,20 concerning
the nature of phase transition from the Néel to the paramag-
netic phase so far no conclusive answers are known. How-
ever, the question about the order of the phase transition
from the Néel to the paramagnetic phase is of great interest
in particular in connection with the validity of the Landau-
Ginzburg paradigm.40,41 Very recently a number of argu-
ments by Sirker et al.27 based on series expansions and spin-
wave theory were given that this transition is of first order.
We reconsider this issue below using CCM and complemen-
tary ED results.
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FIG. 2. �Color online� The GS energy per spin as function of J2

obtained by CCM-LSUBn with n=4,6 ,8 ,10 and its extrapolated
values to n→� using the extrapolation scheme e�n�=a0

+a1�1 /n�2+a2�1 /n�4. ED results for N=32 are shown by circles.
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FIG. 3. �Color online� Magnetic order parameter M versus J2

obtained by CCM-LSUBn with n=4,6 ,8 ,10 and its extrapolated
values to n→� using the extrapolation scheme M�n�=b0

+b1�1 /n�1/2+b2�1 /n�3/2.
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FIG. 4. �Color online� The spin stiffness 	s versus J2 obtained
by CCM-LSUBn with n=4,6 ,8 and its extrapolated values to
n→� using the extrapolation scheme 	s�n�=c0+c1�1 /n�
+c2�1 /n�2.
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The first type of arguments in favor of the first-order
phase transition from the Néel to the paramagnetic phase
presented in Ref. 27 was based on the combination of field
theory with series-expansion data. In what follows we use
the same approach as that of Sirker et al.;27 however, instead
of series-expansion data we use CCM and ED data. Interest-
ingly, we will arrive at a different conclusion concerning the
nature of the phase transition.

The second type of arguments supporting the first-order
phase transition from the Néel to the paramagnetic phase was
based on series-expansion data for several susceptibilities
that test a possible valence-bond solid �VBS� order in the
paramagnetic phase. In what follows we use the CCM and
ED to compute four different susceptibilities � j defined in
Eq. �7� for the J1–J2 model. The corresponding perturbations

�fields� Fj =�Ôj, j=1, . . . ,4, are given by

F1 = ��
i,j

�− 1�isi,jsi+1,j , �8�

F2 = ��
i,j

�si,jsi+1,j − si,jsi,j+1� , �9�

F3 = ��
i,j

�− 1�i+j�si,j
x si+1,j+1

x + si,j
y si+1,j+1

y � , �10�

F4 = ��
i,j

��− 1�isi,jsi+1,j + �− 1� jsi,jsi,j+1� , �11�

where i , j are components �integer numbers� of the lattice
vectors of the square lattice �see Fig. 5, where we visualize
perturbation terms �8�–�11��. The above definitions, Eqs.
�8�–�11�, are in accordance with previous
discussions17,20,22,23,27 of possible valence-bond states or bro-
ken symmetries in the magnetically disordered quantum
phase. Previous results for �1 can be found in Refs. 17, 20,

22, 23, and 27, for �2 in Refs. 17 and 27, and for �3 in Refs.
22 and 27. Note that in Refs. 22 and 27 the results for the

perpendicular �3 �i.e., the field F3=�Ô3 contains only x and
y components; see Eq. �10�� were reported only. For reasons
of comparison with the available series-expansion data we
consider in the present study also the perpendicular �3. To
our best knowledge so far no data for the susceptibility �4
are published.82

Note that all susceptibilities defined by Eqs. �8�–�11�
break the symmetry of the initial square lattice; for details,
see Refs. 17, 20, 22, 23, and 27. The susceptibilities �1 and
�4 are most interesting since they belong to order-parameter

operators Ô1 and Ô4 probing directly possible valence-bond
ordering. As discussed in Ref. 41 they can also be interpreted
as a single complex order parameter with a different phase
for the two patterns. Note that for the field F1 we have cho-
sen the x axis for the alignment of modified nearest-neighbor
bonds; see Fig. 5�a�. Alternatively, the y axis can be chosen.
It is worth mentioning that the field F4 �Eq. �11�� is a sum of
fields F1 aligned along x and y axes, i.e., F4=F1

�x�+F1
�y�, and

hence �4=�1
�x�+�1

�y�. If, in addition, a symmetry with respect
to a � /2 rotation in the square-lattice plane holds �that is,
however, not the case, e.g., for the CCM calculations for
large J2�, one has �1

�x�=�1
�y� and �4=2�1.

Analyzing the behavior of the susceptibilities as J2 ap-
proaches the critical value J2

c1 we will again arrive at a dif-
ferent conclusion in comparison to that in Ref. 27. We begin
with the examination of the order of the phase transition
from the Néel to the VBS state. In contrast to the transition
from the VBS to the collinear state where an energy level
crossing indicates a first-order transition,16,27,56 the energy
behaves smoothly as J2 varies around J2

c1 and a more sensi-
tive method for distinguishing between first- and second-
order transitions has to be applied.27 For that we consider the
GS energy e��� for Hamiltonian �1� perturbed by the field

F1=�Ô1 �Eq. �8��. We have performed CCM calculations for
e��� choosing the Néel state as the reference state and ex-
trapolating LSUBn data with n=4,6 ,8 according to the scal-
ing law e�n�=a0+a1�1 /n�2+a2�1 /n�4 �see Fig. 6�a��. We
have also performed complementary ED for a finite square
lattice of N=32 sites �see Fig. 6�b�� for a qualitative check of
the CCM results. The obtained dependence e��� may be fit-
ted for a fixed J2 to the following polynomial form:

e��� − e�0� =
a

2
�2 +

b

4
�4 +

c

6
�6. �12�

To determine the order of the phase transition we use the
method described in Ref. 27. For a two-dimensional antifer-
romagnet, the system could be described by the following
O�3� model:

Hv =
1

2
���tv��2 + cv

2��� v��2 + mv
2v�2� +

uv

4
�v�2�2. �13�

Consider now the case that we are in the magnetically or-
dered phase and add the field F1 �Eq. �8�� with 	�	�1. The
Néel order will then coexist with a small dimerization de-
scribed by a scalar field

(a) (b)

(d)(c)

FIG. 5. �Color online� Illustration of perturbations �fields� Fj

related to generalized susceptibilities � j: �a� perturbation F1 �8�, �b�
perturbation F2 �9�, �c� perturbation F3 �10�, and �d� perturbation F4

�11�. Dark �red� �light �green�� shadows correspond to enforced
�weakened� exchange couplings.
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H� =
1

2
���t��2 + c�

2 ��� ��2 + m�
2 �2� +

u�

4
�4 +

r�

6
�6 − �� .

�14�

The fields v� and � are not independent, and the interaction
between them reads

Hint =
uv�

2
v�2�2. �15�

The effective field theory in the ordered phase for ��0 is
then given by H=Hv+H�+Hint. Combining Eqs. �13�–�15�
we will have a nonzero GS expectation value

��� =
�

A
−

u�

A4 �3 +
3u�

2 − Ar�

A7 �5 + O��7� , �16�

with A=m�
2 +uv��v��2. Equation �16� leads to a GS energy

given by

e��� − e�� = 0� = −
1

2A
�2 +

u�

4A4�4 +
Ar� − 3u�

2

6A7 �6 + O��8� .

�17�

The coefficient of the �4 term in Eq. �17� may be positive or
negative depending on the sign of the parameter u�. In the
case of u��0 we have a second-order transition with respect

to � at a critical point and a first-order transition if u��0.
Using the polynomial in Eq. �12� we have fitted the data

of e���, �2=0 , . . . ,0.09 for various J2 including values near
the critical point J2

c1 �see Fig. 6�a��. We find that the coeffi-
cient of the �4-term b is negative for small values of J2 but
becomes positive if J2 approaches J2

c1; see Fig. 7. This be-
havior is found for the CCM data as well as for the ED data.
In particular, b calculated by the CCM �calculated by the
ED� changes its sign at J2�0.35 �at J2�0.31�.

Comparing Fig. 7 with the results reported in Fig. 3 of
Ref. 27 we note that CCM data for J2 below 0.2 are in
reasonable agreement with series expansions, linear spin-
wave theory, or mean field spin-wave theory �in particular,
CCM yields b�J2=0.1��−0.40, b�J2=0.2��−0.86, b�J2
=0.25��−1.29, b�J2=0.3��−1.73 that is in between the
series-expansion data and the spin-wave theory results�. A
drastic difference between the series-expansion data and the
CCM results emerges if J2 approaches the critical value J2

c1.
The series expansion gives b�0, whereas the CCM and the
ED yield b�0 for J2→J2

c1. We recall that any predictions
from spin-wave theory for the considered J1–J2 model are
likely to be unreliable if J2 exceeds 0.35.8 Combining Eqs.
�12� and �17� we get b=u�a4 and determining a and b using
CCM data �Fig. 6�a�� for J2=0.36, . . . ,0.42 we find u�

�0.75�0. In summary, the presented CCM and ED data, in
contrast to series-expansion data of Ref. 27, do not support a
weak first-order phase transition from the Néel to the VBS
state27 but give evidence that this transition is continuous.

Next we examine the susceptibilities associated with
probing fields �8�–�11� directly. The CCM results are shown
in Fig. 8. We also present in this figure the ED data for N
=16, 24, and 32 lattice in the insets. �We do not show N
=24 results for �1 and �2 since the system of rectangular
shape perturbed by F1 or F2 does not possess symmetry with
respect to a � /2 rotation in the square-lattice plane.� Note
that a sophisticated finite-size analysis has to be performed in
order to derive the correct behavior of susceptibilities in the
thermodynamic limit.17 Such an analysis goes beyond the
scope of the present study since we use the ED data as a
qualitative check of our CCM results only. We notice here
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FIG. 6. �Color online� The GS energy e���−e�0� versus square

of field strength � for H+� Ô1 �see Eq. �8�� for J2=0.0, 0.1, 0.2,
0.3, 0.4, and 0.45 �from top to bottom�. �a� CCM results extrapo-
lated to n→� using the extrapolation scheme e�n�=a0+a1�1 /n�2

+a2�1 /n�4. �b� ED results for N=32. The displayed curves might be
compared to the ones in Fig. 1 of Ref. 27 where corresponding
series-expansion data for e��� are reported �however, only up to
J2=0.3�.
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FIG. 7. �Color online� The coefficient b of the quartic term in
Eq. �12� obtained from a fit of the CCM data in Fig. 6�a� and the
ED data in Fig. 6�b� in dependence on J2. This figure might be
compared to Fig. 3 of Ref. 27. Inset: the coefficient b versus J2

shown for small J2 with an enlarged scale.
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that although �1 and �4 are related to each other �see above�,
they are calculated completely independently. We have con-
firmed the expected relation between these susceptibilities,
thus providing an additional double check for our numerics.

As it has been already mentioned above, the susceptibili-
ties �1, �2, and �3 were calculated in earlier studies using
different methods. Our CCM results for �1 and �2 are in a
good quantitative agreement with series-expansion results re-
ported for J2=0 , . . . ,0.5 in Refs. 20 and 27. �For instance,
one can compare our CCM data, 1 /�1�J2=0.3��0.92,
1 /�1�J2=0.35��0.66, and �2�J2=0.3��0.90, �2�J2=0.35�
�1.06, with the data shown in Figs. 2 and 5 of Ref. 27.� The
CCM results for �1 and �2 also qualitatively agree with
variational quantum Monte Carlo method and ED results re-
ported �for some J2 only� in Ref. 17. The CCM results for �3,
however, exhibit a different qualitative dependence on J2 as
J2 approaches J2

c1 in comparison with series-expansion
data.22,27 Compare, e.g., Fig. 6 of Ref. 27 and Fig. 8�c� of the
present paper. According to series-expansion data �3 de-
creases by about 20% as J2 increases from 0 to 0.4. In con-
trast, according to CCM data shown in Fig. 8�c� �3 increases
by a factor of about 4 as J2 increases from 0 to 0.4.

Let us now discuss some general features of the general-
ized susceptibilities shown in Fig. 8. Obviously, a divergence

of a certain susceptibility �or 1 /�→0� at a particular value
of J2 indicates an instability of a GS phase regarding to a
possible different GS order. It can be seen from Fig. 8 that all
susceptibilities increase with growing J2 in the Néel phase.
Near the critical point J2

c1 both 1 /�1 and 1 /�4 �CCM data
imply �4=2�1� are significantly smaller than 1 /�2 and 1 /�3,
indicating that the valence-bond states belonging to the co-
lumnar dimerized and plaquette patterns are favorable in the
magnetically disordered quantum phase.

A similar behavior of �1 and �4 �CCM data imply �4
=�1

�x�+�1
�y�� is observed if J2 approaches J2

c2 form the collin-
ear phase, i.e., from J2�J2

c2. On this side the behavior of �2
and �3 is not conclusive since both are already large in the
collinear phase.

The behavior of the susceptibilities �1 and �4 �=2�1� near
the critical point J2

c1 is shown in more detail in Fig. 9. Obvi-
ously, approaching J2

c1 from the Néel phase, �1 ��4� becomes
very large; it however, remains finite in the region around J2

c1

up to J2=0.55. That might be attributed to limited accuracy
of CCM results since: �i� we have data only up to LSUB8 for
extrapolation and �ii� LSUBn data based on the Néel refer-
ence state may become less accurate for values of J2 exceed-
ing J2

c1. However, if the phase transition with respect to the
corresponding VBS order parameter characterizing the quan-
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FIG. 8. �Color online� The inverse susceptibilities �a� 1 /�1, �b� 1 /�2, �c� 1 /�3 �please note the scaling factor 0.01 at the y axis�, and �d�
1 /�4 versus J2 obtained within the CCM LSUBn approximation with n=4,6 ,8 and extrapolated to n→� using ��n�=c0+c1�1 /n�
+c2�1 /n�2. Insets: the same as in the main panels but using ED for finite lattices of N=16, 24, and 32. Panel �a� might be compared to Fig.
2 of Ref. 27 and Fig. 3 of Ref. 20, panel �b� might be compared to Fig. 5 of Ref. 27, and panel �c� might be compared to Fig. 6 of Ref. 27
and Fig. 3 of Ref. 22.
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tum paramagnetic phase would be of second order we may
expect an almost linear decrease in the inverse susceptibility
if J2 approaches J2

c1, i.e., 1 /�1� �J2
c1−J2��� with ���1.27

Hence a linear fit of the CCM data of 1 /�1 �1 /�4� versus J2
using data points only within the Néel ordered region 0
�J2�J2

c1 might give reasonable results. We find that the
linear fit for 1 /�1 �1 /�4� vanishes at the point J2�0.47J1;
see Fig. 9. This is in agreement with the scenario of decon-
fined criticality that predicts such divergence if the decon-
fined critical point is approached from the Néel phase.27,41

To conclude this part, the CCM and ED data for all ex-
amined susceptibilities, �1, �2, �3, and �4, exhibit an en-
hancement while the system runs out of the Néel phase. This
enhancement is most pronounced for �1 ��4�. Moreover, �1
��4� diverges at a value of J2 close to the quantum critical
point J2

c1��0.44�0.01�J1 determined by the most accurate
data for the Néel order parameter M. This finding is consis-
tent with the predictions for a deconfined quantum critical
point.41 Furthermore we find that our CCM data for �1 and
�2 agree with the series-expansion data.27 In contrast, for �3
we observe a qualitatively different behavior. Finally, the en-
hancement or divergence of the considered susceptibilities if
J2 approaches J2

c1 indicates that the translational symmetry is
broken in the quantum paramagnetic phase, i.e., most likely a
spatially homogeneous spin-liquid phase for J2

c1�J2�J2
c2

can be excluded.

IV. SUMMARY

To summarize, in this paper we have applied the CCM in
high orders of approximation to the spin-1/2 J1–J2 Heisen-

berg antiferromagnet on the square lattice and present a com-
prehensive analysis of the GS phase diagram of the model.
For this purpose we have calculated the GS energy, the mag-
netic order parameter, the spin stiffness, and several general-
ized susceptibilities. Our results enrich the list of available
data and are complementary to other existing results ob-
tained using different approximate methods such as series
expansions or variational quantum Monte Carlo for the spin-
1/2 J1–J2 square-lattice Heisenberg antiferromagnet. In ad-
dition to the CCM results we present also ED results that are
found to be in good agreement with the CCM data.

Our findings confirm the basic picture discussed earlier.
For intermediate values of J2

c1�J2�J2
c2 the ground state

is a paramagnetic quantum state. The CCM prediction
for the boundaries of the paramagnetic region is
J2

c1��0.44�0.01�J1 and J2
c2��0.59�0.01�J1. To discuss the

nature of the quantum phase transition from the semiclassical
Néel phase to the quantum paramagnetic state at J2

c1 we use
the CCM �and ED� data as an input for the method devel-
oped in Ref. 27 to distinguish between a first- and a second-
order transition. Our analysis leads to the conclusion that the
phase transition from the Néel to the paramagnetic state at
J2

c1 is second order. This outcome contradicts the conclusion
of Ref. 27 based on series-expansion data, but agrees with
the deconfined critical point scenario proposed in Refs. 40
and 41.

Another way to check the predictions of the theory of
deconfined quantum criticality is to examine the susceptibili-
ties related to order parameters of a possible VBS ordering
emerging if the critical point is approached from the mag-
netically ordered Néel phase. The obtained data shown in
Figs. 8 and 9 give another hint that �1 ��4� diverges at J2

c1

which does not contradict the deconfined critical point
scenario.40,41

Finally, the divergence or enhancement of the generalized
susceptibilities obtained by CCM and ED approaching J2

c1

from the Néel phase gives evidence in favor of ground states
breaking translational symmetry. Therefore, our data yield
further arguments against a structureless �i.e., a spatially ho-
mogeneous� spin-liquid state without any LRO.

ACKNOWLEDGMENTS

We thank O. Sushkov for interesting discussions. The re-
search was supported by the DFG �Projects No. Ri615/16-1
and No. Ri615/18-1�. O.D. acknowledges the kind hospital-
ity of the University of Magdeburg in the spring of 2008.

1 S. Sachdev, Quantum Phase Transitions �Cambridge University
Press, Cambridge, 1999�; S. Sachdev, in Quantum Magnetism,
Lecture Notes in Physics Vol. 645, edited by U. Schollwöck, J.
Richter, D. J. J. Farnell, and R. F. Bishop �Springer, Berlin,
2004�, p. 381.

2 P. Chandra and B. Doucot, Phys. Rev. B 38, 9335 �1988�.
3 E. Dagotto and A. Moreo, Phys. Rev. Lett. 63, 2148 �1989�.
4 F. Figueirido, A. Karlhede, S. Kivelson, S. Sondhi, M. Rocek,

and D. S. Rokhsar, Phys. Rev. B 41, 4619 �1990�.
5 N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 �1991�.

0

0.2

0.4

0.6

0.8

1

1.2

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

1/
χ

J2

1/χ1
1/χ4

FIG. 9. �Color online� Susceptibilities 1 /�1 �red� and 1 /�4

�gray� around the critical point J2
c1. Bold curves correspond to the

CCM curves shown in Figs. 8�a� and 8�d�. Thin lines obtained from
a linear fit of the CCM data for 0�J2�J2

c1. Extrapolated �thin�
lines become zero at J2�0.47.

DARRADI et al. PHYSICAL REVIEW B 78, 214415 �2008�

214415-8



6 H. J. Schulz and T. A. L. Ziman, Europhys. Lett. 18, 355 �1992�;
H. J. Schulz, T. A. L. Ziman, and D. Poilblanc, J. Phys. I 6, 675
�1996�.

7 N. B. Ivanov and P. Ch. Ivanov, Phys. Rev. B 46, 8206 �1992�.
8 J.-i. Igarashi, J. Phys. Soc. Jpn. 62, 4449 �1993�.
9 J. Richter, Phys. Rev. B 47, 5794 �1993�.

10 J. Richter, N. B. Ivanov, and K. Retzlaff, Europhys. Lett. 25,
545 �1994�.

11 A. V. Dotsenko and O. P. Sushkov, Phys. Rev. B 50, 13821
�1994�.

12 T. Einarsson and H. J. Schulz, Phys. Rev. B 51, 6151 �1995�.
13 M. E. Zhitomirsky and K. Ueda, Phys. Rev. B 54, 9007 �1996�.
14 M. S. L. du Croo de Jongh and P. J. H. Denteneer, Phys. Rev. B

55, 2713 �1997�.
15 R. F. Bishop, D. J. J. Farnell, and J. B. Parkinson, Phys. Rev. B

58, 6394 �1998�.
16 R. R. P. Singh, Z. Weihong, C. J. Hamer, and J. Oitmaa, Phys.

Rev. B 60, 7278 �1999�.
17 L. Capriotti and S. Sorella, Phys. Rev. Lett. 84, 3173 �2000�.
18 L. Capriotti, Int. J. Mod. Phys. B 15, 1799 �2001�.
19 L. Siurakshina, D. Ihle, and R. Hayn, Phys. Rev. B 64, 104406

�2001�.
20 O. P. Sushkov, J. Oitmaa, and Z. Weihong, Phys. Rev. B 63,

104420 �2001�.
21 L. Capriotti, F. Becca, A. Parola, and S. Sorella, Phys. Rev. Lett.

87, 097201 �2001�.
22 O. P. Sushkov, J. Oitmaa, and Z. Weihong, Phys. Rev. B 66,

054401 �2002�.
23 L. Capriotti, F. Becca, A. Parola, and S. Sorella, Phys. Rev. B

67, 212402 �2003�.
24 R. R. P. Singh, W. Zheng, J. Oitmaa, O. P. Sushkov, and C. J.

Hamer, Phys. Rev. Lett. 91, 017201 �2003�.
25 G. M. Zhang, H. Hu, and L. Yu, Phys. Rev. Lett. 91, 067201

�2003�.
26 T. Roscilde, A. Feiguin, A. L. Chernyshev, S. Liu, and S. Haas,

Phys. Rev. Lett. 93, 017203 �2004�.
27 J. Sirker, Z. Weihong, O. P. Sushkov, and J. Oitmaa, Phys. Rev.

B 73, 184420 �2006�.
28 M. Mambrini, A. Läuchli, D. Poilblanc, and F. Mila, Phys. Rev.

B 74, 144422 �2006�.
29 D. Schmalfuß, R. Darradi, J. Richter, J. Schulenburg, and D.

Ihle, Phys. Rev. Lett. 97, 157201 �2006�.
30 F. Krüger and S. Scheidl, Europhys. Lett. 74, 896 �2006�.
31 T. Munehisa and Y. Munehisa, J. Phys.: Condens. Matter 19,

196202 �2007�.
32 R. Melzi, P. Carretta, A. Lascialfari, M. Mambrini, M. Troyer, P.

Millet, and F. Mila, Phys. Rev. Lett. 85, 1318 �2000�; P. Car-
retta, R. Melzi, N. Papinutto, and P. Millet, ibid. 88, 047601
�2002�; P. Carretta, N. Papinutto, C. B. Azzoni, M. C. Mozzati,
E. Pavarini, S. Gonthier, and P. Millet, Phys. Rev. B 66, 094420
�2002�.

33 H. Rosner, R. R. P. Singh, W. H. Zheng, J. Oitmaa, S. L. Drech-
sler, and W. E. Pickett, Phys. Rev. Lett. 88, 186405 �2002�.

34 A. Bombardi, J. Rodriguez-Carvajal, S. Di Matteo, F. de Ber-
gevin, L. Paolasini, P. Carretta, P. Millet, and R. Caciuffo, Phys.
Rev. Lett. 93, 027202 �2004�.

35 R. Nath, A. A. Tsirlin, H. Rosner, and C. Geibel, Phys. Rev. B
78, 064422 �2008�.

36 Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am.
Chem. Soc. 130, 3296 �2008�.

37 T. Yildirim, Phys. Rev. Lett. 101, 057010 �2008�.
38 Q. Si and E. Abrahams, Phys. Rev. Lett. 101, 076401 �2008�.
39 F. Ma, Z.-Y. Lu, and T. Xiang, arXiv:0804.3370 �unpublished�.
40 T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. A.

Fisher, Science 303, 1490 �2004�.
41 T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and M. P. A.

Fisher, Phys. Rev. B 70, 144407 �2004�.
42 A. Gellé, A. M. Läuchli, B. Kumar, and F. Mila, Phys. Rev. B

77, 014419 �2008�.
43 R. Kumar and B. Kumar, Phys. Rev. B 77, 144413 �2008�.
44 A. W. Sandvik, Phys. Rev. Lett. 98, 227202 �2007�.
45 A. B. Kuklov, M. Matsumoto, N. V. Prokof’ev, B. V. Svistunov,

and M. Troyer, Phys. Rev. Lett. 101, 050405 �2008�.
46 D. Yoshioka, G. Arakawa, I. Ichinose, and T. Matsui, Phys. Rev.

B 70, 174407 �2004�.
47 S. Wenzel, L. Bogacz, and W. Janke, Phys. Rev. Lett. 101,

127202 �2008�.
48 F. Alet, G. Misguich, V. Pasquier, R. Moessner, and J. L. Jacob-

sen, Phys. Rev. Lett. 97, 030403 �2006�.
49 S. Powell and J. T. Chalker, Phys. Rev. Lett. 101, 155702

�2008�.
50 R. Schmidt, J. Schulenburg, J. Richter, and D. D. Betts, Phys.

Rev. B 66, 224406 �2002�.
51 J. Oitmaa and W. Zheng, Phys. Rev. B 69, 064416 �2004�.
52 A. A. Nersesyan and A. M. Tsvelik, Phys. Rev. B 67, 024422

�2003�.
53 P. Sindzingre, Phys. Rev. B 69, 094418 �2004�.
54 O. A. Starykh and L. Balents, Phys. Rev. Lett. 93, 127202

�2004�.
55 S. Moukouri, J. Stat. Mech. �2006�, P02002.
56 R. F. Bishop, P. H. Y. Li, R. Darradi, and J. Richter, J. Phys.:

Condens. Matter 20, 255251 �2008�.
57 J. R. Viana and J. R. de Sousa, Phys. Rev. B 75, 052403 �2007�.
58 R. F. Bishop, P. H. Y. Li, R. Darradi, J. Schulenburg, and J.

Richter, Phys. Rev. B 78, 054412 �2008�.
59 R. F. Bishop, P. H. Y. Li, R. Darradi, and J. Richter, Europhys.

Lett. 83, 47004 �2008�.
60 R. F. Bishop, P. H. Y. Li, R. Darradi, J. Richter, and C. E. Camp-

bell, J. Phys.: Condens. Matter 20, 415213 �2008�.
61 F. Coester, Nucl. Phys. 7, 421 �1958�; F. Coester and H. Küm-

mel, ibid. 17, 477 �1960�.
62 R. F. Bishop, in Microscopic Quantum Many-Body Theories and

Their Applications, Lecture Notes in Physics Vol. 510, edited by
J. Navarro and A. Polls �Springer, Berlin, 1998�, p. 1.

63 M. Roger and J. H. Hetherington, Phys. Rev. B 41, 200 �1990�.
64 R. F. Bishop, J. B. Parkinson, and Yang Xian, Phys. Rev. B 43,

13782 �1991�; 44, 9425 �1991�.
65 R. F. Bishop, R. G. Hale, and Y. Xian, Phys. Rev. Lett. 73, 3157

�1994�.
66 C. Zeng, D. J. J. Farnell, and R. F. Bishop, J. Stat. Phys. 90, 327

�1998�.
67 S. E. Krüger, J. Richter, J. Schulenburg, D. J. J. Farnell, and R.

F. Bishop, Phys. Rev. B 61, 14607 �2000�.
68 R. F. Bishop, D. J. J. Farnell, S. E. Krüger, J. B. Parkinson, J.

Richter, and C. Zeng, J. Phys.: Condens. Matter 12, 6887
�2000�.

69 S. E. Krüger and J. Richter, Phys. Rev. B 64, 024433 �2001�.
70 D. J. J. Farnell and R. F. Bishop, in Quantum Magnetism, Lec-

ture Notes in Physics Vol. 645, edited by U. Schollwöck, J.
Richter, D. J. J. Farnell, and R. F. Bishop �Springer, Berlin,

GROUND STATE PHASES OF THE SPIN-1/2… PHYSICAL REVIEW B 78, 214415 �2008�

214415-9



2004�, p. 307.
71 R. Darradi, J. Richter, and S. E. Krüger, J. Phys.: Condens. Mat-

ter 16, 2681 �2004�.
72 D. J. J. Farnell, J. Schulenburg, J. Richter, and K. A. Gernoth,

Phys. Rev. B 72, 172408 �2005�.
73 R. Darradi, J. Richter, and D. J. J. Farnell, Phys. Rev. B 72,

104425 �2005�.
74 S. E. Krüger, R. Darradi, J. Richter, and D. J. J. Farnell, Phys.

Rev. B 73, 094404 �2006�.
75 R. Zinke, J. Schulenburg, and J. Richter, Eur. Phys. J. B 61, 147

�2008�.
76 For the numerical calculation we use the program package THE

CRYSTALLOGRAPHIC CCM �D. J. J. Farnell and J. Schulenburg�.

77 A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919
�1994�.

78 R. Guida and J. Zinn-Justin, J. Phys. A 31, 8103 �1998�.
79 B. I. Halperin and P. C. Hohenberg, Phys. Rev. 188, 898 �1969�.
80 S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. B

39, 2344 �1989�.
81 A. E. Trumper, L. O. Manuel, C. J. Gazza, and H. A. Ceccatto,

Phys. Rev. Lett. 78, 2216 �1997�; L. O. Manuel, A. E. Trumper,
and H. A. Ceccatto, Phys. Rev. B 57, 8348 �1998�.

82 Note, however, that in Ref. 20 the response to a plaquette-type
modulation of bonds starting from a columnar dimerized state
was calculated using series expansion.

DARRADI et al. PHYSICAL REVIEW B 78, 214415 �2008�

214415-10


