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We describe quantum entanglement inherent to the polaron ground states of coupled electron-phonon �or,
more generally, particle-phonon� systems based on a model comprising both local �Holstein-type� and nonlocal
�Peierls-type� couplings. We study this model using a variational method supplemented by the exact numerical
diagonalization on a system of finite size. By way of subsequent numerical diagonalization of the reduced
density matrix, we determine the particle-phonon entanglement as given by the von Neumann and linear
entropies. Our results are strongly indicative of the intimate relationship between the particle localization/
delocalization and the particle-phonon entanglement. In particular, we find a compelling evidence for the
existence of a nonanalyticity in the entanglement entropies with respect to the Peierls-coupling strength. The
occurrence of such nonanalyticity—not accompanied by an actual quantum phase transition—reinforces analo-
gous conclusion drawn in several recent studies of entanglement in the realm of quantum-dissipative systems.
In addition, we demonstrate that the entanglement entropies saturate inside the self-trapped region where the
small-polaron states are nearly maximally mixed.
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I. INTRODUCTION

In recent years entangled quantum systems1,2 have gar-
nered interest as a resource for quantum information
processing.3 In addition, a great deal of research effort has
been expended toward clarifying the role of entanglement in
the �zero-temperature� quantum phase transitions of many-
particle systems.4–6 Perhaps the most compelling, however,
is the need to elucidate its possible bearing on the macro-
scopic properties of physical systems.7,8 Namely, while the
entanglement entropies are simply related to the many-body
density matrix of the system, they bear no a priori relation to
any observable physical quantity. Attempts to associate a
physical meaning with entanglement were made, for ex-
ample, in mesoscopic physics: schemes have been proposed
for detection9 and even measurement of entanglement by ex-
ploiting its emergent relation to the quantum noise.10,11

Central to all the above developments is the problem of
quantifying entanglement in diverse physical systems, such
as quantum spin chains,12–14 interacting bosons and/or
fermions,15–18 and quantum-dissipative19,20 and disordered
systems21 to name a few.22 In this regard, one of the areas of
condensed-matter physics whose quantum-entanglement as-
pects have heretofore received only scanty consideration is
that of the polaron problem. Ever since its inception by Lan-
dau and Pekar,23 the polaron concept24–26—a quantum par-
ticle interacting with a bosonic environment—has played an
immensely important role in theoretical studies of coupled
electron or exciton-phonon �henceforth e-ph� systems.27 Fur-
thermore, this truly ubiquitous concept is lately finding re-
surgence in seemingly unrelated physical situations, with the
realm of ultracold atoms being a case in point.28

The main body of polaron-related work is focused on the
study of a single electron interacting with the harmonic lat-
tice vibrations through a short-range, nonpolar potential that
is linear in the lattice displacements and describes the depen-

dence of the electronic on-site energies on the lattice degrees
of freedom. The traditional starting point in describing such
interaction, dubbed local e-ph coupling, is the paradigmatic
molecular-crystal model due to Holstein.27 As is being amply
appreciated lately,29–31 however, local coupling is not the
only type of short-range e-ph interaction relevant in realistic
systems: nonlocal �off-diagonal� e-ph coupling accounts for
the phonon modulation of the electronic hopping integrals
and bears relevance to several classes of molecule-based sys-
tems. The most common form of nonlocal coupling is
Peierls-type coupling,32–34 widely studied within the frame-
work of the semiclassical Su-Schrieffer-Heeger �SSH�
model35–37 that describes the anomalous transport properties
of nonlinear excitations �solitons, polarons� along the quasi-
one-dimensional polyacetilene chain. In an implicit way—
becoming manifest by carrying out the Jordan-Wigner
transformation—this coupling forms the basis of the XY
spin-Peierls model,38,39 hence the name. Likewise, coupling
to the breathing mode in cuprate superconductors is of
Peierls’ type and—as transpires from recent investigations
based on generalizations of the t-J model—plays an impor-
tant role in these systems, especially in the regime of weak
doping.29 Somewhat different forms of nonlocal coupling
have been shown to be of relevance for charge transport in
organic molecular crystals,40,41 carbon nanotubes,42 and
DNA wires.43 It is worth mentioning that a form of nonlocal
coupling has also been incorporated in a generic electron-
boson coupling model recently proposed by Alvermann et
al.44

Given the abiding interest in the polaron problem in
condensed-matter physics, the quantum-entanglement as-
pects of this problem have so far not been given due atten-
tion. While the changeover from a small to a large polaron is
known to have the nature of a smooth crossover �with no
broken symmetry� rather than a phase transition,45 it is still
tempting to quantify it using the entanglement measures. En-
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tanglement in the one-dimensional Holstein model was stud-
ied by Zhao et al.46 The authors emphasized the relation
between the self-trapping process and the quantum �hetero-�
entanglement between the phonon subsystem and electronic
excitation. Effects of Peierls-type coupling, however, are as
yet totally unexplored; given the wealth of intriguing impli-
cations of such interaction, it appears interesting to elucidate
the role it plays in particle localization as seen through en-
tanglement measures. Additional motivation comes from re-
cent investigations of entanglement in the realm of quantum-
dissipative systems.19,20 One of the most important
conclusions of these studies is that entanglement measures
can have nonanalyticities away from any phase transition
and that these nonanalyticities are intimately related to the
loss of coherence. To be more specific, Stauber and Guinea19

found a nonanalyticity at the transition from underdamped to
overdamped oscillations in the Ohmic case47 of the spin-
boson model. Moreover, this nonanalyticity proved to be
even more pronounced than the one occurring at the actual
localization phase transition.

As a matter of fact, an evidence that nonanalytic behavior
of entanglement-related quantities does not necessarily coin-
cide with the quantum phase transitions had already been
found before.4 Besides, a study of localizable entanglement
in a gapped quantum spin system12 has showed that en-
tanglement length diverges despite the fact that the correla-
tion length remains finite with the latter indicating absence of
a quantum phase transition. On the other hand, in disordered
systems, for example, no such cases have been reported. It is
therefore of interest to investigate whether the polaron
problem—somewhat related to the spin-boson model but
with no phase transitions taking place—may also defy the
tenet whereby an occurrence of a nonanalyticity in the en-
tanglement entropy is a telltale signature of a quantum phase
transition.

In the present work, we study entanglement in polaron
systems. In order to address the problem from as general a
viewpoint as possible, we start from a polaron model that
includes both local �Holstein-type� and nonlocal �Peierls-
type� short-range e-ph couplings. Given that this Hamil-
tonian does not admit an exact solution in any physically
relevant limit, we analyze it using a variational method
supplemented by an exact diagonalization on a finite-size
system. Proceeding in this way, we find that entanglement
exhibits nonanalyticities as a function of Peierls-type cou-
pling, which are not accompanied by a phase transition. We
argue that the occurrence of such “accidental” nonanalytici-
ties in the problem at hand is related to the loss of coherence,
much like in the quantum-dissipative systems.

The outline of the remainder of this paper is as follows. In
Sec. II we present the model and notation to be used
throughout. Section III contains details of our variational ap-
proach: we first introduce our variational ansatz, then pro-
vide details of analytical derivations needed to implement it,
and finally describe our computational method of variational
minimization. The following Sec. IV contains essential de-
tails of the exact-diagonalization method. In Sec. V we in-
troduce the entanglement measures and lay out the method
for calculating them. The obtained results are presented in
Sec. VI, accompanied by a discussion of their salient fea-

tures. We conclude, with some general remarks, in Sec. VII.

II. MODEL

The system under study consists of an excess particle
�electron, hole, or exciton� interacting with harmonic lattice
vibrations—dispersionless �Einstein� phonons—through a
short-range interaction. As our starting point, we adopt a
one-dimensional e-ph Hamiltonian obtained by dovetailing
the Peierls-type coupling term on the conventional Holstein
Hamiltonian. �Restriction to a one-dimensional system is not
a severe limitation given the short-range nature of the e-ph
interactions discussed here.� The compact form of this ex-
tended Holstein model reads

Ĥ = �
i

�i��û��âi
†âi + �

i

ti+1,i��û���âi+1
† âi + H.c.� + ��

i

b̂i
†b̂i,

�1�

where âi
†�âi� creates �destroys� a particle at ith site �at posi-

tion Ri, i=0,1 , . . . ,N−1� and b̂i
†�b̂i� creates �destroys� a dis-

persionless phonon with frequency � at the same site. The
effective on-site energy,

�i��û�� = � + �Hûi, �2�

and hopping integral,

ti+1,i��û�� = − t + �P�ûi+1 − ûi� , �3�

depend on the lattice displacements ûi��2M��−1/2�b̂i+ b̂i
†�,

where �H and �P are the local �Holstein-type� and nonlocal
�Peierls-type� coupling constants, respectively, and M is the
mass of molecules in the underlying crystal. The bare on-site
energy and hopping integral are denoted by � and t, respec-
tively. For simplicity we take �=0 in what follows. More
explicitly, the Hamiltonian can be written as

Ĥ = Ĥe + Ĥph + Ĥg + Ĥ�, �4�

where

Ĥe = − t�
i

�âi+1
† âi + H.c.� , �5�

Ĥph = ��
i

b̂i
†b̂i, �6�

Ĥg = g��
i

âi
†âi�b̂i

† + b̂i� , �7�

Ĥ� = ���
i

�âi+1
† âi + H.c.��b̂i+1

† + b̂i+1 − b̂i
† − b̂i� , �8�

with g��H /�2M�3 and ���P /�2M�3 being the dimen-
sionless local and nonlocal-coupling constants, respectively.
The two important limiting cases of our model are the Hol-
stein model ��=0� and the quantized version of the SSH
model �g=0�.

The eigenstates of Hamiltonian �4� ought to be the good-
quasi-momentum states, i.e., eigenstates of the total crystal
momentum operator,
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K̂ = �
k

kâk
†âk + �

q

qb̂q
†b̂q, �9�

since the latter commutes with Ĥ. In the following, the ei-

genvalues of K̂ will be labeled with �. By making use of the
Born–von Karman periodic boundary conditions, the quasi-
momenta in the first Brillouin zone are given by �
= �2� /a��m /N� �a—the lattice spacing; m=0,1 , . . . ,N−1�.
For convenience, we express quasimomenta in units of a−1

so that �Rn=�na→�n.

III. VARIATIONAL METHOD

A. Choice of variational ansatz

While not being exactly soluble, Hamiltonian in Eq. �4�
can be treated variationally; in the studies of coupled e-ph
systems, methods of this type have been shown to yield
quantitatively trustworthy results that compare well with
those obtained by the exact �numerical� diagonalizations.48,49

An important class of such methods is furnished by Toyoza-
wa’s ansatz state50 and generalizations thereof.49,51,52 While
these ansatz states have been widely used in the studies of
the Holstein model, they are also capable of describing sys-
tems with simultaneous local and nonlocal couplings.

Omitting the most conventional form of Toyozawa’s an-
satz state, we purposefully cast it in a way that renders mani-
fest its entangled nature:

���	 =
1

N
�
n,m

ei�n�m−n
� âm

† �0	e �

l

D̂l�	l−n
� ��0	ph, �10�

where �0	e ��0	ph� is the electron �phonon� vacuum, and

D̂l����exp��b̂l
†−��b̂l� is Glauber’s displacement operator

that creates the phonon coherent state �	l−n
� 	ph� D̂l�	l−n

� ��0	ph
at site l. This �overcomplete� set of phonon coherent states
captures the multiphononic nature of the polaron ground
state. Importantly, it is the dependence of the variational pa-
rameters �m−n

� on both m and n that renders ansatz state ���	
entangled: the sums over these indices cannot be decoupled,
implying that this state cannot be expressed as a separable
�direct-product� state in the Hilbert space H=He � Hph.

Generally speaking, the use of variational methods invari-
ably involves the trade off between flexibility of the varia-
tional wave function �which increases with the growing
number of parameters� and numerical difficulty of finding
reliably the global minimum of the ground-state-energy ex-
pectation value �complexity grows rapidly with parameter
number; see Sec. III B for additional details�. In this regard,
the major drawback of Toyozawa’s ansatz is that it involves
a large number—2N for each �—of variational parameters.
Alternative methods have been proposed that provide accu-
rate results while involving smaller number of parameters.
Adopting this point of view, we seek the polaron eigenstates
of Hamiltonian �4� in the form of translationally invariant
Bloch states,

���	 =
1

�N
�

n

ei�n����n�	 , �11�

with “form factors” ����n�	 given by30

����n�	 = �
m


��m�ei�mân+m
† �0	e

� exp� �
j=−2

2

Û�;j�n + j���0	ph. �12�

The skew-Hermitian operators Û�;j �j=0, �1, �2� are de-
fined as

Û�;j�n� =
1

�N
�

q

f�;j�q�eiqnb̂q − H.c.� , �13�

with

f�;j�q� =
��;j

1 + 2�t/����;jcos��� − cos�� + q��
. �14�

Using trial wave functions Eq. �11��, the lowest polaron
band EGS��� can be obtained by minimizing the energy ex-
pectation value over variational parameters V�

= ���;0 ,��;�1 ,��;�2 ;��;0 ,��;�1 ,��;�2 ;
��−5� , . . . ,
��5��:

EGS��� = min
V�

����Ĥ���	
������	

. �15�

Note that for each �, there are in total twenty variational
parameters; this number is fixed, rather than being propor-
tional to the system size as in Toyozawa’s ansatz. Impor-
tantly, among eleven parameters 
��j� only ten are indepen-
dent because of the normalization condition on the trial wave
function in Eq. �11�.� In the following, we will be particu-
larly interested in the polaron ground-state energy EGS��
=0��E0. The corresponding variationally optimized ground-
state wave function will hereafter be denoted with �GS	.

B. Matrix elements and computational scheme

Here we present the derivation of the expression for the
energy expectation value, followed by the details of our nu-
merical method for variational minimization. To facilitate
further derivations we first note that

exp� �
j=−2

2

Û�;j�n + j�� = 

q

D̂q�−
e−iqnw�

��q�
�N

� , �16�

where D̂q��q��exp��qb̂q
†−�q

�b̂q� is Glauber’s displacement
operator that creates a coherent state of phonons with quasi-
momentum q, and w��q� is defined as

w��q� � �
j=−2

2

f�;j�q�eiqj . �17�

It is straightforward to show that

������	 = �
mm�


�
��m��
��m�Zm−m�

� , �18�

where
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Zm−m�
� � ph�0�


q

D̂q
†�−

e−iqmw�
��q�

�N
�D̂q�−

e−iqm�w�
��q�

�N
��0	ph.

�19�

By making use of the well-known expression53 for the over-
lap of coherent states �� ��	 �� ,��C�,

����	 = �0�D̂†���D̂����0	 = e���e−����2+���2�/2, �20�

we obtain

Zm−m�
� = exp�−

1

N
�

q

�1 − eiq�m−m����w��q��2� . �21�

Other relevant matrix elements are given by

����Ĥe���	 = − t �
mm�


�
��m��
��m�

�e−i�Zm−m�+1
� + ei�Zm−m�−1

� � , �22�

����Ĥph���	 =
�

N
�
mm�


�
��m��
��m�Zm−m�

�

�
q

eiq�m−m���w��q��2, �23�

����Ĥg���	 = −
g�

N
�
mm�


�
��m��
��m�Zm−m�

�

 �
q

e−iqm�w��q� + eiqmw�
��q�� , �24�

����Ĥ����	 =
��

N
�
mm�


�
��m��
��m�

�
q

ei�Zm−m�−1
� �1 − e−iq�

− e−i�Zm−m�+1
� �1 − eiq��

e−iqm�w��q� − eiqmw�
��q�� . �25�

The above formulas are easily derived using identity

eÂeB̂ = eÂ+B̂eÂ,B̂�/2, �26�

which holds if operators Â and B̂ satisfy condition

Â , Â , B̂��= B̂ , Â , B̂��=0, as well as identity

b̂, f�b̂†, b̂�� =
� f�b̂†, b̂�

� b̂†
, �27�

valid for an arbitrary analytic function f�b̂† , b̂� of bosonic
operators.

An important measure of the multiphononic nature of the
polaron ground state is the average number of phonons

N̄ph = �GS��
i

b̂i
†b̂i�GS	 , �28�

which can be obtained using Eq. �23�.
Based on the expressions for ����Ĥ���	 and ��� ���	, we

perform variational minimization in order to find the polaron
ground state ��=0� for a system with N=32 sites. Due to the
large number �n=20� of variational parameters involved, the
energy expectation value is a function of these parameters
with multiple local minima. Finding the global minimum
thus constitutes a rather nontrivial numerical optimization
problem. We perform this complex task using the multistart-
based global random search method:54 we first generate a
large sample ��105� of random points in the space of varia-
tional parameters. We then select a smaller number ��20� of
them that have the smallest values of the function to be mini-
mized and perform local searches for minima O�n3� compu-
tation� around each of these points: the one with the smallest
energy is then adopted as the sought-after global minimum.
The fidelity of this approach is corroborated by the stability
of the final result for the global minimum upon varying the
initial number of random points.

Regarding the choice of our numerical method, a remark
is in order here. In the local-coupling-only case ��=0, i.e.,
the Holstein model�, the system is exactly soluble in the
“unphysical” limit of zero hopping �t→0� by the well-
known Lang-Firsov canonical transformation.27 The natural
way to proceed in finding the optimal variational parameters
for finite t is then to start from the exact solution for t=0 and
gradually change t, using optimal values of variational pa-
rameters obtained for given value of t as the initial guess for
the next, slightly higher value. However, for finite � the
model is not exactly soluble in any relevant limit. Therefore,
the procedure just described does not carry over to the �
�0 case and one needs a careful sampling of the entire space
of variational parameters, afforded by the multistart-type
methods, to reliably find the global minimum of the ground-
state-energy expectation value.

C. Application scope of our variational method and
comparison with other methods

While ansatz state in Eqs. �11� and �12� was originally
introduced for use in the Peierls-coupling-only case �quan-
tized SSH model�, we here demonstrate that it can also be
utilized for the local-coupling-only case �Holstein model�,
and accordingly for the case with simultaneous local and
nonlocal couplings. The nearly perfect agreement of our re-
sults in the �=0 case with another known variational ap-
proach, suggested by Cataudella et al.,55 is illustrated in Figs.
1�a� and 1�b�. The latter was shown to agree well with the
global-local method51 implying the general agreement of all
three methods. Therefore the trial states used here are gener-
ally applicable to short-ranged e-ph interactions with Ein-
stein phonons. The agreement between the results obtained
by the variational methods of the present type and other ap-
proaches �density-matrix renormalization-group method56

and quantum Monte Carlo57� is also well established.51
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IV. EXACT DIAGONALIZATION

To supplement our variational method, we also perform
an exact numerical diagonalization of Hamiltonian �4� on a
system of finite size. We study the system of N=6 sites,
varying the maximal number of phonons between M =8 and
10. The states in the truncated Hilbert space are given by

��	 = �
n,m

Cn,m�n	 � �m	 , �29�

where n= �n0 , . . . ,nN−1� and m= �m0 , . . . ,mN−1� are the site-
wise electron and phonon occupation numbers ��ini=1 and
�imi�M�. Coefficients Cn,m contain the information about
the phonon content of state ��	.

One of the crucial prerequisites for a successful applica-
tion of the exact-diagonalization approach in the present con-
text is a proper truncation of the �otherwise infinite-
dimensional� phonon Hilbert space. In other words, the
maximal total number of phonons on a lattice has to be large
enough as to be capable of accounting for the phonon distri-
bution in the polaron ground state in the strong-coupling
regime. Typical phonon content �sitewise� of the polaron
ground state obtained by exact diagonalization is illustrated
in Fig. 2, where the nth group of peaks represents the phonon
distribution for the case when the electron is located at site n

�n=0, . . . ,N−1�. Within each group of peaks, coefficients
Cn,m are given in the ascending order of the phonon occupa-
tion numbers. For weak coupling, phonon distribution pm
=�m�Cn,m�2 �where m=�imi� peaks at m=0 phonons while in
the strong-coupling regime it peaks at m=3 or 4 phonons.
This a posteriori corroborates that our choice of the maximal
number of phonons �between eight and ten� was pertinent.

V. ENTANGLEMENT

A. Entanglement entropies: generalities

In order to make the present work self-contained, before
embarking on the calculation of entanglement in our coupled
e-ph system, we review the general prescription for charac-
terization of bipartite quantum entanglement. We consider a
composite quantum system that can be divided up into two
parts A and B, where A denotes the subsystem of interest and
B denotes the environment whose details are unimportant.
The Hilbert space of the full system has the form of a tensor
product: H=HA � HB. In a pure state ��	, the density matrix
of the full system is given by

�̂ =
��	���
����	

. �30�

We then construct the reduced �marginal� density matrix �̂A
by tracing over the environmental degrees of freedom: �̂A
=TrB �̂. The von Neumann �entanglement� entropy, defined
by

S = − TrA��̂A ln �̂A� , �31�

contains information about the quantum correlations present
in the pure quantum state under study. It represents the most
widely used measure of bipartite quantum entanglement.
Note that S=−TrA��̂A ln �̂A�=−TrB��̂B ln �̂B�, where the re-
duced density matrix �̂B is obtained by tracing over the de-
grees of freedom in subsystem A. The upper bound Smax
=ln�D� of S, where D is dimensionality of the reduced den-
sity matrix, is reached when the reduced density matrix is
maximally mixed.

The so-called linear entropy is defined as

FIG. 1. Comparison of the ground-state energies obtained using
the variational method of Cataudella et al. �Ref. 55� �circles� and
the method of the present work �solid curve� in the �=0 case: �a�
t /�=1.0 and �b� t /�=2.0.

FIG. 2. Phonon distribution sitewise in the polaron ground state
for t /�=1.0 and �=1.3 �N=6 and M =10�. The states m with the
same total number of phonons m=�imi are indicated by the bins at
the bottom portion of the plot.
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SL = 1 − TrA��̂A
2 � , �32�

and has the advantage �compared to the von Neumann en-
tropy� of being easier to calculate. It is worth mentioning that
both the von Neumann and linear entropies are closely re-
lated to the quantum Rényi entropies2 Sq��̂���1
−q�−1ln�Tr �̂q� �q�0�: S��̂� is the q→1 limit of Sq��̂� while
SL��̂� is simply related to S2��̂�. The upper bound of SL,
reached for the maximally mixed reduced density matrix, is
given by SL,max=1−D−1.

B. Reduced density matrix from variational approach

In accordance with general relation �30�, the density ma-
trix corresponding to the state ���	 on the tensor-product Hil-
bert space H=He � Hph is given by

�̂e−ph��� =
���	����
������	

. �33�

The reduced particle �electron� density matrix is given by the
partial trace over the phonon Hilbert space Hph:

�̂e��� = Trph�̂e−ph���� . �34�

Straightforward derivation, with the aid of Eq. �19�, yields

Trph����	����� =
1

N
�
nn�

��
mm�


�
��m��
��m�

 Zm−m�+n�−n
� �ei��n−n���n	ee�n�� , �35�

where �n	e�an
†�0	e is the state with electron at site n. The last

equation, when combined with Eq. �18�, readily leads to the
expression for the general matrix element of the reduced
density matrix �̂e��=0�� �̂e in the polaron ground state:

��̂e�nn� =
1

N

�mm�

�=0

� �m��
�=0�m�Zm−m�+n�−n
�=0

�mm�

�=0

� �m��
�=0�m�Zm−m�
�=0

. �36�

The corresponding von Neumann entropy,

S = − Tre��̂e ln �̂e� , �37�

can be expressed as

S = − �
i

�i ln �i, �38�

where ��i � i=0,1 , . . . ,N−1� are the eigenvalues ��i�0 and
�i�i=1� of �̂e. Based on our variational approach, the linear
entropy,

SL = 1 − Tre��̂e
2� , �39�

can readily be obtained in an analytical form using Eq. �36�;
however, we here omit the ensuing cumbersome expression.
In the exact-diagonalization approach, the reduced density
matrix �̂e is obtained from the corresponding eigenvectors.
The results illustrating dependence of the entanglement en-
tropies on the e-ph coupling strengths are presented in Sec.
VI.

VI. RESULTS AND DISCUSSION

Our numerical results, obtained using variational ap-
proach, correctly reproduce a continuous dependence of the
polaron ground-state energy displayed in Fig. 3�a� for t /�
=1.0� on local and nonlocal-coupling strengths, reflecting the
well-known absence of phase transitions in coupled e-ph
systems.45

The entanglement entropies, depicted in Figs. 3�b� and
3�c� for t /�=1.0, both behave in a similar way: they increase
with increasing coupling strengths, saturating and remaining
essentially unchanged in the self-trapped region where the
particle becomes localized. The saturation values of the two
entropies are close to those of the maximally mixed density
matrix: Smax=ln�N� and SL,max=1−N−1. For example, for N
=32, Smax=3.46 and SL,max=0.97 �cf. Fig. 3�.

Importantly, for t /��0.85 we find a strong nonanalytic-
ity in the dependence of entanglement entropies on the

FIG. 3. �a� Variational ground-state energy, �b� the von Neu-
mann entropy, and �c� linear entropy as functions of dimensionless
local �g� and nonlocal ��� coupling strengths, for t /�=1.0 and N
=32.
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nonlocal-coupling strength. This nonanalyticity has the char-
acter of a jump discontinuity and is more pronounced in the
case of von Neumann entropy Fig. 3�b�� than for the linear
entropy Fig. 3�c��. It becomes more and more pronounced
with increasing value of t /�, i.e., upon approaching the adia-
batic regime t��. In order to emphasize that discontinuous
behavior sets in for sufficiently large value of the ratio t /�,
in Fig. 4�a� we depict the von Neumann entropy for t /�
=0.25 where the nonanalyticity does not exist at all, and for
t /�=2.0 Fig. 4�b�� where the nonanalyticity is noticeably
more pronounced than for t /�=1.0.

To emphasize the appearance of a nonanalyticity in the
entanglement entropies as a function of nonlocal-coupling
strength, we study the nonlocal-coupling-only case making
comparisons between the results of the two approaches
�variational and exact diagonalizations�. Typical results are
depicted in Fig. 5. Figure 5�a� illustrates very good agree-
ment between the two approaches as far as the ground-state
energy is concerned. In Figs. 5�b� and 5�c� the entanglement
entropies are shown as obtained from two different varia-
tional calculations �for N=6 and 32� and two different exact
diagonalizations �with N=6 and maximum M =8 or 10
phonons used�. The only sizeable discrepancy is in the be-
havior of S, which clearly stems from the finite-size effects:
while values of S corresponding to the variational calculation
with N=32 deviate considerably from those of exact diago-
nalizations with N=6, the difference between the two ap-

proaches when applied to a system with the same number of
sites is not very drastic. However, the most important feature
of the obtained results, manifest in all the cases considered,
is the nonanalytic behavior of S and SL with respect to �.

Detailed analysis shows that the observed nonanalyticities
occur for values of � at which the lowest energy states of

Ĥ��� undergo avoided crossings. The crossings are avoided

�rather than real ones� because Ĥ , Ĥ���0,58 leading to a
smooth dependence of the polaron ground-state energy on
the coupling strength � �and, accordingly, the absence of a
phase transition in the conventional sense of the term�. There
is, however, no general principle that would rule out the

FIG. 4. The von Neumann entropy S, obtained variationally, as a
function of dimensionless local �g� and nonlocal ��� coupling
strengths. Displayed are results for �a� t /�=0.25 and �b� t /�=2.0,
with N=32.

FIG. 5. �a� Ground-state energy, �b� the von Neumann entropy,
and �c� linear entropy for t /�=1.0 and g=0, as calculated using the
variational �var.� and exact diagonalization �e.d.� approaches. N is
the number of sites while M stands for the maximal number of
phonons used for exact diagonalization. The arrows indicate the
entropies for the maximally mixed reduced density matrix.
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occurrence of nonanalyticities in the entanglement entropies
at these avoided-crossing points.

The fact that nonanalyticities of the type discussed here
do not exist in the case with local e-ph coupling—nor in the
“statically”-disordered systems described by the Anderson
model—and that for Peierls-type coupling they show up only
when t is larger or of the same order as � point to the pos-
sible importance of “dynamical disorder” �retardation, i.e.,
nonlocality in time� effects, which are here bringing about
the nonlocal particle-phonon correlations. Namely, when the
relevant electron energy scale �set by the hopping integral t�
becomes comparable to or larger than the characteristic pho-
non energy ���, the lattice deformation does not follow in-
stantaneously the electron motion. Consequently, the phonon
modes that are excited by the passage of the electron take a
long time to relax. Therefore, a lattice deformation can be
observed far away from the current position of the electron.
As a consequence, the effects of retardation in the e-ph in-
teraction become prominent. Such effects are known to be
much more pronounced for the Peierls-type interaction than
for the purely local Holstein-type interaction even when the
effects of phonon dispersion are accounted for in the latter.37

This can be traced back to the fact that unlike local coupling,
which is momentum independent, the Peierls-type coupling
depends strongly on both the electron and phonon momenta.
More precisely, in momentum space this coupling reads

Ĥ� =
1

�N
�
k,q

��k,q�âk+q
† âk�b̂−q

† + b̂q� , �40�

where ��k ,q� is the e-ph interaction vertex function

��k,q� = i
2�P

�2M�
sin�k� − sin�k + q�� . �41�

In particular, at small phonon momenta � behaves as

��k,q� � q �q → 0� , �42�

which is a very strong momentum dependence and different
than that of the Fröhlich e-ph interaction.26 Localization of a
“Peierls polaron” is therefore expected to have a much more
dramatic impact on the nature of the accompanying e-ph
correlations than that of a “Holstein polaron.” Additionally,
the more pronounced character of the nonanalyticity ob-
served for larger t /� also appears to be in consistency with
this argument; it demonstrates the increasing “inertia” of the
more and more spatially extended phonon cloud to electron’s
localization.

In light of our findings and those of Stauber and Guinea,19

it is tempting to draw some parallels between the two models
involved, or more specifically, between our model and
“Ohmic systems.” However, our polaron model—at least in
its full form—does not seem to bear a direct relation to any
of the known quantum-dissipative models because of the in-
trinsically off-diagonal nature in the electron bilinear opera-
tors and the dispersionless character of phonons that it in-
volves. Besides, based on Eq. �42� we can infer that the
Peierls-coupling term with acoustic �rather than optical�
phonons would be most similar to the super-Ohmic systems
with spectral density J�����2, even though we here are con-

cerned with a one-dimensional system.� The link to these
models appears much easier to establish for the local-
coupling-only Holstein model ��=0�: the two-site version of
this model, discussed long time ago by Shore and Sander,59

represents a simplistic �single-mode� form of the spin-boson
model. However, the nonanalyticities of entanglement entro-
pies that we find in the present work occur in the polaron
crossover regime, and are accompanied by the growth in the
average number of phonons in the polaron ground state cf.
Eq. �28��. This can indeed be considered as a physical situ-
ation analogous to the loss of coherence in the spin-boson-
type models.

A few remarks regarding our variational method are in
order. While examples are known of artifacts60 in the varia-
tional approaches to coupled e-ph or quantum-dissipative
systems—a prominent one being the failure of variational
methods to predict a continuous transition in the sub-Ohmic
case of the spin-boson model—in the case at hand such an
approach correctly reproduces the smooth dependence of the
polaron ground-state energy on both local and nonlocal-
coupling strengths �the polaron crossover�. The obtained
nonanalyticities in the entanglement entropies, corroborated
through the exact diagonalizations, represent a robust feature
that underscores the connection between entanglement and
localization.

VII. CONCLUSIONS

In summary, we have investigated the quantum-
entanglement aspects of polaron systems. As our point of
departure, we have adopted a very general polaron model
that includes both local �Holstein-type� and nonlocal
�Peierls-type� particle-phonon couplings. We have studied
this Hamiltonian using a sophisticated variational approach
supplemented by the exact �numerical� diagonalization on a
finite-size system. We have established a close connection
between the entanglement and phonon-induced localization.
Our results make it transparent that the entanglement entro-
pies constitute much more sensitive indicators of the change
of polaron states than the ground-state energy. While the in-
tuition as to the relationship between entanglement and lo-
calization has already been manifest in studies of other
classes of systems61—most prominently the disordered
ones—our findings add to it some other elements.

As a salient feature, we have demonstrated that—above
some threshold value for the ratio of the hopping integral and
the phonon frequency—entanglement entropies exhibit a
nonanalyticity as a function of the nonlocal �Peierls� cou-
pling strength. This nonanalyticity is physically related to the
loss of coherence and is not accompanied by a phase transi-
tion. In this sense, the present work reinforces the conclu-
sions drawn in some recent studies of related quantum-
dissipative systems, such as the spin-boson model.19

Furthermore, our findings underscore the fact that the nature
of the phonon-induced localization in the presence of nonlo-
cal particle-phonon interactions is different than that of the
purely local interactions. This may have bearing not only on
the solid-state systems exhibiting polaronic behavior but pos-
sibly also on certain classes of cold-atom systems—with �in
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principle� tunable couplings—where phonons can be intro-
duced in a controlled way.28 The need to investigate the in-
terplay between entanglement and the phonon-induced local-
ization in other relevant models62 is clearly compelling.

ACKNOWLEDGMENT

M.V. acknowledges support by the Swiss National Sci-
ence Foundation.

*vstojano@andrew.cmu.edu
1 For an introduction, see M. B. Plenio and S. Virmani, Quantum

Inf. Comput. 7, 1 �2007�.
2 I. Bengtsson and K. Życzkowski, Geometry of Quantum States:

An introduction to quantum entanglement �Cambridge Univer-
sity Press, Cambridge, 2006�.

3 C. H. Bennett, Phys. Today 48, 24 �1995�.
4 A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature �London�

416, 608 �2002�; T. J. Osborne and M. A. Nielsen, Phys. Rev. A
66, 032110 �2002�.

5 A. Galindo and M. A. Martin-Delgado, Rev. Mod. Phys. 74, 347
�2002�.

6 L.-A. Wu, M. S. Sarandy, D. A. Lidar, and L. J. Sham, Phys.
Rev. A 74, 052335 �2006�.

7 V. Vedral, Nature �London� 425, 28 �2003�; New J. Phys. 6, 102
�2004�; G. De Chiara, Č. Brukner, R. Fazio, G. M. Palma, and V.
Vedral, ibid. 8, 95 �2006�.

8 Entanglement measures may signify the occurrence of factorized
quantum states which is not observed in conventional thermo-
dynamic properties of the system. See, for example, T. Roscilde,
P. Verrucchi, A. Fubini, S. Haas, and V. Tognetti, Phys. Rev.
Lett. 93, 167203 �2004�; 94, 147208 �2005�; F. Baroni, A. Fu-
bini, V. Tognetti, and P. Verrucchi, J. Phys. A: Math. Theor. 40,
9845 �2007�; S. M. Giampaolo, G. Adesso, and F. Illuminati,
Phys. Rev. Lett. 100, 197201 �2008�.

9 M.-S. Choi, C. Bruder, and D. Loss, Phys. Rev. B 62, 13569
�2000�.

10 G. Burkard, D. Loss, and E. V. Sukhorukov, Phys. Rev. B 61,
R16303 �2000�; N. M. Chtchelkatchev, G. Blatter, G. B. Leso-
vik, and T. Martin, ibid. 66, 161320�R� �2002�; P. Samuelsson,
E. V. Sukhorukov, and M. Büttiker, Phys. Rev. Lett. 91, 157002
�2003�; M. Kindermann, ibid. 96, 240403 �2006�; I. Klich and
L. Levitov, arXiv:0804.1377 �unpublished�.

11 C. W. J. Beenakker, in Proceedings of the International School
of Physics “E. Fermi,” edited by G. Casati, D. L. Shepelyansky,
P. Zoller, and G. Benenti �IOS, Amsterdam, 2006�, Vol. 162, pp.
307–347.

12 F. Verstraete, M. A. Martin-Delgado, and J. I. Cirac, Phys. Rev.
Lett. 92, 087201 �2004�.

13 J. J. Garcia-Ripoll, M. A. Martin-Delgado, and J. I. Cirac, Phys.
Rev. Lett. 93, 250405 �2004�.

14 H. Fan, V. Korepin, and V. Roychowdhury, Phys. Rev. Lett. 93,
227203 �2004�.

15 F. G. S. L. Brandão, New J. Phys. 7, 254 �2005�.
16 D. Larsson and H. Johannesson, Phys. Rev. Lett. 95, 196406

�2005�.
17 K. G. H. Vollbrecht and J. I. Cirac, Phys. Rev. Lett. 98, 190502

�2007�.
18 M.-C. Bañuls, J. I. Cirac, and M. M. Wolf, Phys. Rev. A 76,

022311 �2007�.
19 T. Stauber and F. Guinea, Phys. Rev. A 70, 022313 �2004�; 73,

042110 �2006�.
20 K. Le Hur, Ann. Phys. 323, 2208 �2008�.
21 A. Kopp, X. Jia, and S. Chakravarty, Ann. Phys. 322, 1466

�2007�.
22 For an extensive review, see L. Amico, R. Fazio, A. Osterloh,

and V. Vedral, Rev. Mod. Phys. 80, 517 �2008�.
23 L. D. Landau, Z. Phys. 3, 664 �1933�; L. D. Landau and S. I.

Pekar, Zh. Eksp. Teor. Fiz. 18, 419 �1948�.
24 Y. A. Firsov, Polarons �Mir, Moscow, 1975�.
25 A. S. Alexandrov and N. Mott, Polarons and Bipolarons �World

Scientific, Singapore, 1995�.
26 J. Ranninger, in Proceedings of the International School of Phys-

ics “E. Fermi,” Course CLXI, edited by G. Iadonisi, J. Ran-
ninger, and G. De Filippis �IOS, Amsterdam, 2006�, pp. 1–25;
O. S. Barišić and S. Barišić, Eur. Phys. J. B 64, 1 �2008�.

27 T. Holstein, Ann. Phys. 8, 343 �1959�; I. G. Lang and Yu. A.
Firsov, Zh. Eksp. Teor. Fiz. 43, 1843 �1962� Sov. Phys. JETP
16, 1301 �1963��; J. Ranninger and U. Thibblin, Phys. Rev. B
45, 7730 �1992�; G. Wellein and H. Fehske, ibid. 56, 4513
�1997�.

28 I. E. Mazets, G. Kurizki, N. Katz, and N. Davidson, Phys. Rev.
Lett. 94, 190403 �2005�; E. Pazy and A. Vardi, Phys. Rev. A 72,
033609 �2005�; K. Günter, T. Stöferle, H. Moritz, M. Köhl, and
T. Esslinger, Phys. Rev. Lett. 96, 180402 �2006�; F. M. Cucchi-
etti and E. Timmermans, ibid. 96, 210401 �2006�; L. Mathey
and D.-W. Wang, Phys. Rev. A 75, 013612 �2007�; M. Bruderer,
A. Klein, S. R. Clark, and D. Jaksch, ibid. 76, 011605�R�
�2007�; L. Pollet, C. Kollath, U. Schollwöck, and M. Troyer,
ibid. 77, 023608 �2008�.

29 S. Ishihara and N. Nagaosa, Phys. Rev. B 69, 144520 �2004�; O.
Rösch and O. Gunnarsson, Phys. Rev. Lett. 92, 146403 �2004�;
C. Slezak, A. Macridin, G. A. Sawatzky, M. Jarrell, and T. A.
Maier, Phys. Rev. B 73, 205122 �2006�.

30 C. A. Perroni, E. Piegari, M. Capone, and V. Cataudella, Phys.
Rev. B 69, 174301 �2004�.

31 C. A. Perroni, V. Cataudella, G. De Filippis, and V. M. Ramaglia,
Phys. Rev. B 71, 054301 �2005�.

32 J. Zaanen and P. B. Littlewood, Phys. Rev. B 50, 7222 �1994�.
33 J. Zaanen, The Classical Condensates: From Crystals to Fermi-

liquids �Lorentz Institute for Theoretical Physics, Leiden, 1996�.
34 K. Yonemitsu and N. Maeshima, Phys. Rev. B 76, 075105

�2007�.
35 W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42,

1698 �1979�; A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W.
P. Su, Rev. Mod. Phys. 60, 781 �1988�.

36 M. Zoli, in Polarons in Advanced Materials, edited by A. S.
Alexandrov �Canopus Books, Bristol, 2007�.

37 M. Zoli, Phys. Rev. B 67, 195102 �2003�; 70, 184301 �2004�;
71, 205111 �2005�.

38 M. C. Cross and D. S. Fisher, Phys. Rev. B 19, 402 �1979�.
39 W. Barford and R. J. Bursill, Phys. Rev. Lett. 95, 137207 �2005�.

QUANTUM-ENTANGLEMENT ASPECTS OF POLARON… PHYSICAL REVIEW B 78, 214301 �2008�

214301-9



40 K. Hannewald, V. M. Stojanović, J. M. T. Schellekens, P. A.
Bobbert, G. Kresse, and J. Hafner, Phys. Rev. B 69, 075211
�2004�.

41 V. M. Stojanović, P. A. Bobbert, and M. A. J. Michels, Phys.
Rev. B 69, 144302 �2004�.

42 L. E. F. Foa Torres and S. Roche, Phys. Rev. Lett. 97, 076804
�2006�.

43 B. B. Schmidt, M. H. Hettler, and G. Schön, Phys. Rev. B 75,
115125 �2007�.

44 A. Alvermann, D. M. Edwards, and H. Fehske, Phys. Rev. Lett.
98, 056602 �2007�.

45 B. Gerlach and H. Lowen, Phys. Rev. B 35, 4291 �1987�; 35,
4297 �1987�.

46 Y. Zhao, P. Zanardi, and G. Chen, Phys. Rev. B 70, 195113
�2004�.

47 D. Porras, F. Marquardt, J. von Delft, and J. I. Cirac, Phys. Rev.
A 78, 010101�R� �2008�.

48 A. Weiße, H. Fehske, G. Wellein, and A. R. Bishop, Phys. Rev.
B 62, R747 �2000�.

49 L.-C. Ku, S. A. Trugman, and J. Bonča, Phys. Rev. B 65, 174306
�2002�.

50 Y. Toyozawa, Prog. Theor. Phys. 26, 29 �1961�.

51 A. H. Romero, D. W. Brown, and K. Lindenberg, J. Chem. Phys.
109, 6540 �1998�; Phys. Rev. B 59, 13728 �1999�.

52 O. S. Barišić, Phys. Rev. B 65, 144301 �2002�.
53 M. O. Scully and M. S. Zubairy, Quantum Optics �Cambridge

University Press, Cambridge, 1997�.
54 A. Törn and A. Žilinskas, Global Optimization �Springer, New

York, 1989�.
55 V. Cataudella, G. De Filippis, and G. Iadonisi, Phys. Rev. B 60,

15163 �1999�.
56 E. Jeckelmann and S. R. White, Phys. Rev. B 57, 6376 �1998�.
57 H. De Raedt and A. Lagendijk, Phys. Rev. B 27, 6097 �1983�;

30, 1671 �1984�; P. E. Kornilovitch and E. R. Pike, ibid. 55,
R8634 �1997�.

58 S. Sachdev, Quantum Phase Transitions �Cambridge University
Press, New York, 1999�.

59 H. B. Shore and L. M. Sander, Phys. Rev. B 7, 4537 �1973�.
60 Z.-D. Chen and H. Wong, Phys. Rev. B 78, 064308 �2008�.
61 J. Brand, S. Flach, V. Fleurov, L. S. Schulman, and D. Tolkunov,

Europhys. Lett. 83, 40002 �2008�.
62 Y.-Y. Zhang, T. Liu, Q.-H. Chen, X. Wang, and K. Wang,

arXiv:0809.4426 �unpublished�.

VLADIMIR M. STOJANOVIĆ AND MIHAJLO VANEVIĆ PHYSICAL REVIEW B 78, 214301 �2008�

214301-10


