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A recently proposed six-parameter mixed power-exponential expression is tested against density-functional
theory binding-energy curves and equations of state across the 4d and 5d transition-metal series. It is shown to
remove known failures of the popular Birch-Murnaghan, extended Rydberg, and generalized Morse expres-
sions in that it is able to not only reproduce the observed hard-core repulsion of the early transition metals
under compression but also remove predicted spurious oscillations in the binding-energy relations under
expansion. However, it is unable to fit the well-known anomalous behavior of the equation of state for
lanthanum.
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I. INTRODUCTION

Many different analytic binding-energy relations �BERs�
and equations of state have been proposed for fitting both
experimental data and first-principles quantum-mechanical
calculations. A reliable binding-energy relation of the energy
versus volume enables one to understand the cohesion of
materials. Thus, it can assist theorists in the construction of
interatomic potentials such as in the embedded-atom
method.1–3 However, shortcomings in the parametrization of
the binding-energy relation at high pressures can generate
unreliable predictions from molecular-dynamics simulations
of collision cascades under radiation damage,4 for example.
An accurate equation of state �EOS� of the pressure versus
volume enables experimentalists to parametrize experimental
data and gain physical insight. For example, analytic equa-
tions of states have been extensively used by geophysicists to
extrapolate the pressure to the earth’s core and study its
properties.5

In this paper we will begin by examining the three
most commonly used analytic forms, namely, the
Birch-Murnaghan,6,7 the extended Rydberg,8,9 and the gener-
alized Morse,10,11 respectively. The first was proposed in
1952, expressing the energy of a bulk material as an expan-
sion in powers of the strain that results from either a uniform
compression or expansion. The second is an extension of the
interatomic potential proposed by Rydberg in 1932 for mod-
eling the vibrational spectra of diatomic molecules. It found
great popularity 20 years ago when Rose et al.12 and Vinet et
al.13 reintroduced it as a universal binding-energy relation
and equation of state, respectively. The third is a generaliza-
tion of the exponential-type interatomic potential that had
originally been proposed by Morse in 1929 for modeling
vibrational spectra of dimers and subsequently was success-
fully applied by Slater14 and Ducastelle11 to model covalent
materials and transition metals. During subsequent years
many authors have addressed the failures of these expres-
sions. In particular, under high pressure the Birch-
Murnaghan equation of state can become unstable,15–17 and
the extended Rydberg expansion and generalized Morse ex-
pression do not provide sufficient hard-core repulsion.18–21

In this paper we will show how to go beyond these limi-
tations. The analytic forms of the binding-energy relations

and equations of state will be tested systematically across the
4d and 5d transition-metal series. First, the failures within
the binding-energy relations based on the Birch-Murnaghan,
extended Rydberg, and generalized Morse expressions will
be analyzed and discussed in Sec. II. The corresponding fail-
ures in the equations of state will be discussed in Sec. III. In
Sec. IV an improved expression, which we proposed recently
to remedy these failures,22 will be discussed and tested
across the 4d and 5d transition-metal series. In Sec. V we
conclude.

II. BINDING-ENERGY RELATIONS

The analytic binding-energy relations are usually fitted to
known values of the cohesive energy E0, equilibrium volume
V0, bulk modulus K0, and pressure derivatives of the bulk
modulus such as K0�. In order to perform a detailed analysis
of the applications of different forms of binding-energy rela-
tions to the 4d and 5d transition metals, we have chosen to
generate a consistent high-quality database of binding-energy
curves by using density-functional theory �DFT�. We have
used the Vienna ab initio simulation package �VASP� �Refs.
23 and 24� with projected augmented wave �PAW� �Ref. 25�
method. The calculations are run within the local-density ap-
proximation �LDA� �Ref. 26� to the exchange-correlation
functional except for Lu where the Perdew-Burke-Ernzerhof
�PBE� �Ref. 27� approximation is used since only PBE is
provided in VASP for Lu. In order to obtain accurate data at
high pressures, the semicore electrons are treated as valence
electrons28 and a large cut-off energy of 430 eV is taken. The
Brillouin-zone sampling is performed using the Monkhorst-
Pack scheme29 and the k-point mesh is chosen as �45 /2��
times the length of the reciprocal vector �e.g., 15�15�9 is
used for hcp Lu at equilibrium�. The binding energy and
pressure are calculated for all three common metallic
structure-types bcc, fcc, and hcp �with c /a fixed as the equi-
librium value�.

The values of the predicted DFT ground-state cohesive
energy, equilibrium volume, bulk modulus, and its first-order
pressure derivative are shown in Fig. 1 for the 4d and 5d
transition-metal series. We have obtained E0, V0, and K0 by
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using polynomial fitting around equilibrium over the range
�V1/3−V0

1/3� /V0
1/3�5%, whereas K0� is obtained using the pro-

cedure described in Ref. 22 and in Sec. IV. We see that the
DFT results are consistent with the experimental data. As is
well-known non-spin-polarized �NSP� DFT calculations
overestimate the cohesive energy by about 4 eV due to the
neglect of the spin polarization of the free-atom reference.30

However, just like the spin-polarized �SP� curve in Fig. 1, the
cohesive energy displays the well-known parabolic variation
across the nonmagnetic transition-metal series.31 On the
other hand, the first-order pressure derivative of the bulk
modulus varies almost linearly across the series.32 In this
paper the binding-energy curves have been calculated with
respect to the non-spin-polarized free-atom state since we are
not including any explicit magnetic contributions in the ana-
lytic expressions we consider. We will now use these DFT
values of E0, V0, K0, and K0� to parametrize the binding-
energy relations based on the Birch-Murnaghan, the ex-
tended Rydberg, and the generalized Morse expressions, re-
spectively.

A. Birch-Murnaghan expansion

The Birch-Murnaghan expansion6,7 expresses the energy
of a bulk material as

E = − E0�1 + �
n�1

a�n��n� , �1�

where � is the Eulerian strain which is measured with respect
to the strained state, namely,

� = �1 − �V0/V�2/3�/2. �2�

Writing x= �V0 /V�1/3 and V=V0+�V, we see that the above
definition for strain reduces to the conventional linear strain
�=�x /x for ��1. The form of Eq. �1� automatically satisfies
the two equilibrium conditions that the binding energy at
equilibrium equals −E0 and the pressure vanishes at the equi-
librium volume V0 �since a�1�=0�. Three further parameters
a�2�, a�3�, and a�4� may be fitted to K0, K0�, and E��=1 /2�
=0, which follows from the binding energy vanishing as the
atoms are pulled apart to infinity.

The resultant fourth-order or four-parameter Birch-
Murnaghan binding-energy relation is given by

Ebm = − E0	1 −
9V0K0

2E0
��2 + �4 − K0���

3 + 2âBER
�4� �4�
 , �3�

where

âBER
�4� = −

aBER
�4�

9V0K0/E0
= K0� +

16E0

9V0K0
− 6. �4�

The subscript BER is added to the quartic prefactor to re-
mind us that the value is obtained by fitting the binding-
energy relation to E0, V0, K0 and K0�. Interestingly we find the
same combination of physical properties E0 / �9V0K0� that de-
fines the Rose scaling length lr through12

l̂r = lr/V0
1/3 = �E0/9V0K0. �5�

Therefore, if we follow Rose12 and define a rescaled distance

xr
� = �x − 1�/l̂r = �V1/3 − V0

1/3�/lr, �6�

then Birch-Murnaghan equation �3� can be written in the
normalized form,

Ebm
� �xr

�� = Ebm/E0 = − 1 + �1/8l̂r
2��1 − �1 + l̂rxr

��−2�2 + ¯ .

�7�

The plotting of the normalized Birch-Murnaghan binding en-
ergy against the rescaled Rose distance xr

� has the advantage
that all curves satisfy E��0�=−1, E���0�=0, and E���0�=1,
which can be verified by differentiating Eq. �7�. This allows
a ready comparison between the binding-energy curves of
different metals across the transition-metal series.

Figure 2 compares the normalized analytic binding-
energy relations to the DFT results for the 4d and 5d transi-
tion metals hcp Y and Lu, bcc Mo and W, and fcc Ag and Au.
We see that whereas the fourth-order Birch-Murnaghan ex-
pression reproduces the binding-energy curves of the two
noble metals extremely well, it fails under compression for
the early and middle transition metals due to an instability.
The occurrence of such an instability is not unexpected as
Stacey,15 Hofmeister,16 and Holzapfel17 pointed out that Eu-
lerian strain �2� diverges as the volume shrinks so that the
largest power in the truncated Birch-Murnaghan expression
dominates. It follows from Eqs. �3� and �4� that if âBER

�4�

=K0�+16E0 / �9V0K0�−6 is negative then the energy will be-
have anomalously. The plots in Fig. 3 of âBER

�4� across the 4d
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FIG. 1. �Color online� Comparison of DFT and experimental
values �Refs. 32–35� of E0, V0, K0 and K0� across the 4d �left-hand
panel� and 5d �right-hand panel� transition-metal series. Values of
E0 calculated with respect to NSP and SP free-atom energies are
given by solid lines connected by circles and triangles, respectively.
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and 5d series confirm that an instability will occur in the
fourth-order Birch-Murnaghan binding-energy relation for
all non-noble transition metals.

This instability at fourth order can be avoided by working
only to third order for which the Birch-Murnaghan binding
energy takes the form,

Ebm = − E0�1 −
9V0K0

2E0
��2 − 2	1 −

8E0

9V0K0

�3� . �8�

For transition metals the prefactor of the cubic term,

�1–8E0 / �9V0K0��, is always positive since l̂r=�E0 /9V0K0 is

-1

0

1

2

3

4

5

Y(hcp)

0.11 0.40 1.00 2.02 3.56

3.0 3.5 4.0 4.5

-0.12

-0.08

-0.04

0.00

-1

0

1

2

3

4

5

Mo(bcc)

0.19 0.49 1.00 1.79 2.90

-2 -1 0 1 2
-1

0

1

2

3

4

5

Ag(fcc)

0.28 0.57 1.00 1.61 2.44

Lu (hcp)
DFT
4-bm
3-bm
4-er
4-gm

0.14 0.44 1.00 1.90 3.22

W(bcc)

0.20 0.50 1.00 1.76 2.82

-2 -1 0 1 2

Au(fcc)

0.33 0.60 1.00 1.55 2.26

E∗

x∗
rx∗

r

V/V0V/V0

FIG. 2. �Color online� Normalized binding-energy curves for hcp Y and Lu, bcc Mo and W, and fcc Ag and Au. 4-bm: four-parameter
Birch-Murnaghan expansion; 3-bm: three-parameter Birch-Murnaghan expansion; 4-er: four-parameter extended Rydberg expansion; 4-gm:
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found to be less than 1 /2�2, so that Eq. �8� is well-behaved
under compression. However, as can be seen from Fig. 2, the
third-order expansion gives a very poor fit to the DFT values
for Y, Lu, Mo, and W away from the immediate vicinity of
equilibrium. Hence, the Birch-Murnaghan expansion does
not give a good description of the binding-energy curves of
the early and middle transition metals.

B. Extended Rydberg expansion

The extended Rydberg expansion8,9 writes the energy of a
bulk material as

Eer
� �x�� = Eer/E0 = − �1 + x� + �

n�1
c�n��x��n�e−x�

, �9�

where x�= �V1/3−V0
1/3� / l is a measure of distance in terms of

some scaling length l. The form of Eq. �9� automatically
satisfies the two equilibrium conditions that E��0�=−1 and
E���0�=0. The choice of the Rose scaling length from Eq.
�5� guarantees that E���0�=1. The additional fitting of
E���0� or K0� leads to the Rose binding-energy relation12

Eer
� �xr

�� = − �1 + xr
� + cBER

�3� �xr
��3�e−xr

�

, �10�

where

cBER
�3� =

1

2
�K0� − 1�� E0

9V0K0
−

1

3
. �11�

The original 1932 Rydberg potential for the dimer is analo-
gous to this Rose equation for the bulk if we neglect the
cubic contribution.

Figure 2 compares the normalized Rose binding-energy
curves to the DFT results for the chosen 4d and 5d transition
metals. We see that in addition to reproducing the noble met-
als well, the Rose form of the extended Rydberg expression
also fits the group VI transition metals Mo and W well. How-
ever, the early transition metals Y and Lu are predicted to be
too soft under compression as the observed hard-core repul-
sion is not reproduced.

C. Generalized Morse expression

The generalized Morse expression for the binding energy
takes the exponential form,10,11

Egm�x� = Ae−p�x−1� − Be−q�x−1�, �12�

where the first contribution arises from the overlap repulsion
and the second from the formation of covalent bonds
�whether saturated as in sp-valent semiconductors or unsat-
urated as in d-valent transition metals�.31 The four param-
eters A, B, p, and q can be obtained by fitting to E0, V0, K0,
and K0�. In particular, the geometric mean of the exponents of
p and q is given by36

�pq = �9V0K0/E0 = V0
1/3/lr. �13�

The arithmetic mean of p and q is given by22

�p + q�/2 = 3�K0� − 1�/2 = V0
1/3/lv. �14�

This scaling length lv had previously been introduced by
Vinet et al.13 in his fitting of the extended Rydberg expansion
to the equation of state �where V0, K0, and K0� are known
explicitly, but not E0�.

As pointed out in an earlier publication,22 generalized
Morse expression �12� can be rewritten in a form that ap-
pears not unlike the extended Rydberg expansion, namely,

Egm
� �xv

�� = − �sinh��	xv
��/�	 + cosh��	xv

���e−xv
�

, �15�

where

	 = ��p − q�/�p + q��2 = 1 − �2�pq/�p + q��2. �16�

However, we see that the Vinet scaling length enters this
expression rather than the Rose scaling length because the
arithmetic mean 1

2 �p+q� is the natural inverse scaling length
for the generalized Morse expression with the sum of two
exponentials. These two different scaling lengths, in fact, de-
fine the parameter 	 since substituting Eqs. �13� and �14�
into Eq. �16�, we have

	BER = 1 − �lv/lr�2. �17�

We have again added the subscript BER to stress that this
expression is only valid when fitting binding-energy rela-
tions, since then the cohesive energy E0 and hence the Rose
scaling length lr are calculated. Figure 4 shows that the
variation in lv and lr across the 4d and 5d series, where we
observe that lv� lr for groups III, IV, and V, but lv
 lr oth-
erwise. At the crossover point where lv= lr, we have 	BER
=0, so that generalized Morse expression �15� reduces to the
original Rydberg expression,

Eer
� �x�� = Eer/E0 = − �1 + x��e−x�

, �18�

with x�=xr
�=xv

�.
Figure 2 compares the normalized generalized Morse

binding-energy curves to the DFT results for the chosen 4d
and 5d transition metals. Not unexpectedly we see that the
generalized Morse curves behave very similarly to the ex-
tended Rydberg case and fail to reproduce the observed hard-
core repulsion of the early transition metals under compres-
sion. The extent of the failure may be quantified directly for
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the Morse curve by locating the points of the node xnode and
point of inflection xinfl that satisfy E�xnode�=0 and E��xinfl�
=0, respectively. It follows from Eq. �12� that the general-
ized Morse expression predicts that they will be given by

1 − xnode = xinfl − 1 = ln�p/q�/�p − q� . �19�

That is, the deviation between the DFT values on the left-
hand side compared to the Morse values on the right-hand
side is measured by

�i = �1 − xi� − ln�p/q�/�p − q� , �20�

where i corresponds to either “node” or “inflection.”
Figure 5 shows the deviation in the nodal point and point

of inflection across the 4d and 5d transition-metal series. We
see that the nodal point starts to deviate markedly as we
proceed across to the left of the transition-metal series due to
the increase in the size of the ion core providing additional
hard-core repulsion.31 However, comparing the 4d and 5d

nodal curves, we find that whereas the deviation in the 4d
curve continues to increase as we move from Nb→Zr→Y,
the 5d curve displays instead a shallow minimum in going
from Ta→Hf→Lu. It then increases dramatically across the
lanthanide series from the Lu value of −0.01 to 1 order of
magnitude larger value for La of −0.1. This reflects the lan-
thanide contraction due to the filling of 4f shell as we pro-
ceed from La to Lu, which results in their ionic core radii
changing from 1.17 to 1.00 Å.37 This lanthanide contraction
has a noticeable influence on the properties of the early 5d
transition-metal series38 and is responsible for the shallow
minimum in the nodal deviation in going from Ta→Hf
→Lu. On the other hand, we see that apart from La the
deviations in the point of inflection are relatively small
across the 4d and 5d series. Thus, we find that the analytic
expressions give a poor description of the binding-energy
curves of the early transition metals Y and Lu in Fig. 2.

The generalized Morse binding-energy curve for Y also
displays an oscillation at large volume as can be seen in the
inset of Fig. 2. This is a direct consequence of lv� lr in Fig.
4 so that 	BER
0 with the consequence that �	BER is imagi-
nary in the argument of the hyperbolic functions in Eq. �15�.
Thus the logical basis of the analytic Morse expression is
lost because p and q will be complex and we can no longer
separate the terms in Eq. �15� into real repulsive and attrac-
tive contributions as implied by Eq. �12�.

The origin of this spurious oscillatory behavior appears to
be related to the s→d electron transfer that takes place in
transition metals under compression as the bottom of the
valence sp band is pushed up through the d band by core
orthogonality constraints.39 This transfer will, of course,
severely modify the behavior of the binding-energy
relation40,41 and corresponding equation of state.42–45 For the
early transition metals, the four-parameter generalized Morse
expression with real values of p and q is unable to reproduce
simultaneously the values of V0, K0, and K0� at equilibrium
and E0, which depends on the total area under the equation of
state as the atoms are brought together from infinity. The
bonding contribution in Eq. �12� displays a simple exponen-
tial dependence that reflects the variation in the DFT d-band
width under compression.31 However, the prefactor B in Eq.
�12� is treated as a constant whereas in practice it should be
dependent on the d-band occupancy.31 The DFT values of the
logarithmic volume derivative of the number of valence
d-electrons Nd at equilibrium are displayed in the right-hand
panel of Fig. 6 for the 5d transition-metal series. We see that
they reflect a similar trend across the series as the variation
in 	BER in the left-hand panel. A corresponding plot of the
	BER and Nd derivative curves across the 4d transition-metal
series was given earlier in Fig. 1 of Ref. 22.

III. EQUATIONS OF STATE

The failures of these analytic expressions to reproduce the
binding-energy curves of the early transition metals are not
surprisingly also displayed in the behavior of their equations
of states. Whereas the binding-energy relations were fitted to
V0, K0, K0�, and the cohesive energy E0, the equations of state
were fitted to V0, K0, K0�, and the second pressure derivative
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of the bulk modulus at equilibrium K0�. Both K0� and K0� are
subject to more noise46 in fitting the DFT data to a polyno-
mial about equilibrium than V0 and K0 since they involve the
third and fourth derivatives of the energy, respectively. In
this paper, therefore, we have calculated them �and higher-
order derivatives� using the procedure described in Ref. 22
and discussed later in Sec. IV.

A. Birch-Murnaghan expansion

The four-parameter Birch-Murnaghan equation of
state6,7,47 is given by

P = −
3K0

x5 ��1 −
3

2
�K0� − 4�� + 4âEOS

�4� �2� , �21�

where

âEOS
�4� =

− aEOS
�4� �287 − 87K0� + 9�K0��

2 + 9K0K0��
384

=
3

8
�K0K0� + K0��K0� − 7� +

143

9
� . �22�

The subscript EOS is added to the quartic prefactor âEOS
�4� in

the energy expression of Eq. �1� to remind us that it is ob-
tained by fitting to the equation of state parameters V0, K0,
K0�, and K0� and âEOS

�4� is plotted in Fig. 7 across the 4d and 5d
transition-metal series. If we integrate this equation of state
�Eq. �21�� from the equilibrium value V0 out to infinity, then
the predicted cohesive energy is given by

E0
pred =

9

16
K0V0�6 + âEOS

�4� − K0�� . �23�

Just as the most convenient way for comparing binding-
energy curves of different transition metals is to plot the
normalized energy E /E0 versus the Rose scaled distance xr

�,
the equations of state are best compared by plotting the loga-
rithm of the normalized Vinet function H� versus the Vinet
scaled distance xv

�. The latter two coordinates are defined by

H� = H/K0 = Px2/�3K0�1 − x�� , �24�

and

xv
� = �x − 1�/l̂v = �V1/3 − V0

1/3�/lv �25�

with lv=V0
1/3 / �3 /2�K0�−1�� from Eq. �14�. Vinet et al.13

showed that using these two definitions

ln H� = − xv
� , �26�

to lowest order. This “universal” relation about equilibrium
is clearly satisfied by the Birch-Murnaghan equation of state,
since substituting � from Eq. �2� into Eq. �21� leads to
H��0�=1 and �ln H����0�=−1 at xv

� =0.
Figure 8 compares the normalized analytic equations of

state to the DFT results for the chosen 4d and 5d transition
metals. We see that whereas the four-parameter Birch-
Murnaghan expansion reproduces the equation of state of the
two noble metals under compression, it fails badly for Lu,
Mo, and W due to the prefactor âEOS

�4� taking negative values
for most transition metals, as can be seen in Fig. 7. On the
other hand, the three-parameter expansion with âEOS

�4� taken as
zero performs more robustly as it only fails for the early
transition metals Y and Lu where K0�
4 �see Fig. 1�.16 This
most probably accounts for the extensive use of the third
order but not fourth-order Birch-Murnaghan equation of state
in the literature. However, we should note that the predicted
values of the cohesive energy, which are given in Table I, are
generally in poor agreement with the non-spin-polarized
DFT values.

B. Extended Rydberg expansion

It follows from Eq. �9� that the four-parameter extended
Rydberg equation of state is given by

P =
3K0�1 − x�

x2 �1 + ĉEOS
�2� �xv

��2 + ĉEOS
�3� �xv

��3�e−xv
�

, �27�

where

ĉEOS
�2� = 8/�3�1 − K0��� , �28�
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FIG. 6. �Color online� Trend of 	BER and logarithmic volume
derivative of number of valence d electrons at equilibrium across
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ĉEOS
�3� =

125 + 18K0� + 9�K0��
2 + 36K0K0�

54�1 − K0��
2 . �29�

The predicted cohesive energy is given by

E0
pred =

8V0K0�18K0K0� + 9�K0��
2�

9�K0� − 1�4 . �30�

To lowest order, Eq. �27� immediately implies Vinet “univer-
sal” relation �26�. We see that all the corresponding ln H�
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plots in Fig. 8 are well behaved in that there are no singu-
larities as found for some of the Birch-Murnaghan equations
of state under compression. However, it is clear that the
ln H� plots do not display the hard-core repulsion at high
pressures that is observed for Y, Lu, Mo, and W. In addition,
the predicted value of the cohesive energy for Y is a factor of
2 too large.

C. Generalized Morse expression

As shown by Qin et al.,22 the four-parameter generalized
Morse expression for the normalized Vinet function H� can
be written in the compact form,

H� =
sinh��	EOSxv

��
�	EOSxv

�
e−xv

�

, �31�

where

	EOS =

4K0K0� + �K0��
2 + 2K0� −

19

9

�K0� − 1�2 . �32�

Thus, we recover the “universal” Vinet relation, in the limit
as 	EOS→0. Integrating the equation of state out from equi-
librium to infinity yields the predicted cohesive energy

E0
pred =

9K0V0

7 – 9�K0K0� + K0��
. �33�

As expected from an earlier discussion of the binding-energy
curve in Fig. 2, we see in Fig. 8 that the four-parameter
generalized Morse and extended Rydberg expressions behave
very similarly over a wide range of pressures. In particular,
they both fail to reproduce the hard-core contributions under
compressions and the cohesive energies of the early transi-
tion metals.

TABLE II. Parameters of 6-pe expression for the 4d and 5d transition metals.

A
�eV�

B
�eV� p q m n

4d Y �hcp� 0.33 5.33 0.00 9.91 8.20 9.40

Zr �hcp� 0.80 8.86 0.00 9.63 7.92 8.92

Nb �bcc� 4.54 15.30 0.00 5.97 5.45 4.36

Mo �bcc� 8.80 20.83 7.08 2.99 0.00 0.00

Tc �hcp� 8.38 19.86 7.46 3.15 0.00 0.00

Ru �hcp� 6.21 16.43 8.41 3.18 0.00 0.00

Rh �fcc� 4.52 12.47 9.11 3.31 0.00 0.00

Pd �fcc� 2.97 8.20 9.82 3.56 0.00 0.00

Ag �fcc� 1.44 5.26 10.98 3.00 0.00 0.00

5d Lu �hcp� 0.54 4.81 0.00 11.15 7.18 10.35

Hf �hcp� 1.17 9.14 0.00 9.73 7.21 8.81

Ta �bcc� 2.06 12.67 0.00 9.18 7.45 7.97

W �bcc� 9.57 22.07 0.00 6.58 5.27 4.30

Re �hcp� 12.91 26.06 7.14 3.54 0.00 0.00

Os �hcp� 9.10 21.72 8.13 3.40 0.00 0.00

Ir �fcc� 7.86 18.13 8.44 3.66 0.00 0.00

Pt �fcc� 4.82 12.13 9.37 3.73 0.00 0.00

Au �fcc� 2.85 7.28 10.22 4.00 0.00 0.00

TABLE I. Cohesive energy E0
pred �eV� predicted from different analytic equations of state.

DFT 4-bm 3-bm 4-er 4-gm

4d Y �hcp� 5.10 15.84 14.06 10.48 10.98

Mo �bcc� 11.57 16.86 26.16 11.70 12.03

Ag �fcc� 3.76 1.98 2.69 3.41 3.82

5d Lu �hcp� 4.44 13.64 13.90 5.18 5.72

W �bcc� 12.59 23.28 32.54 15.21 15.93

Au �fcc� 4.41 −0.65 2.96 4.27 4.43
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IV. MIXED POWER-EXPONENTIAL EXPRESSION

We have recently proposed a six-parameter analytic ex-
pression in an attempt to overcome the problems of lack of
hard-core repulsion and poor cohesive energy prediction for
the early transition metals.22 It takes a mixed power-
exponential form with the binding-energy relation being
written as

E = A
e−p�x−1�

xm − Bxne−q�x−1� �34�

with m ,n�0. We see that exponential generalized Morse
expression �12� has been modified to include a divergent
power-law prefactor in the repulsive contribution to model
the hard-core repulsion, but a nondivergent power-law pref-
actor in the attractive term to provide an additional degree of
freedom for fitting the binding-energy curve as the atoms are
pulled apart to infinity.

We have obtained the six parameters A, B, p, q, m, and n
as follows. First, A and B can be written down explicitly in
terms of the equilibrium volume V0 and bulk modulus K0 as

A = 9K0V0�q − n�/C , �35�

B = 9K0V0�p + m�/C , �36�

with

C = �p + m��q − n���p + m� − �q − n�� + �pn + qm� .

�37�

This results in an equation of state that depends on V0, K0,
and the remaining four parameters p, q, m, and n, namely,

P =
3K0

x2C
��p + m/x��q − n�x−me−p�x−1�

− �p + m��q − n/x�xne−q�x−1�� . �38�

In this paper, we have fitted the parameters to the DFT
pressure data over the range from 1000 GPa to 7V0. The
upper pressure value of 1000 GPa has been chosen since it
represents the current experimental limit that can be reached
in a laboratory.17,48 The corresponding values of A, B, p, q,
m, and n are given in Table II across the 4d and 5d
transition-metal series. Importantly, we see that this six-
parameter power-exponential �6-pe� expression reduces to
the four-parameter generalized Morse �4-gm� expression for
all but the early transition metals Y, Zr, Nb and Lu, Hf, Ta,
and W, since all the other elements are found to be optimally
fitted for m=0 and n=0. This is not surprising since an in-
spection of the deviation between the 4-gm and DFT plots of
ln H� versus xv

� reveals that only these early transition metals
display noticeable signs of any deviation for P
1000 GPa.
If we set a critical pressure to correspond to the deviation
�ln H��DFT�−ln H��4-gm�=0.02�, then the 4d elements Y,
Zr, Nb, Mo, and Tc have the critical pressures 15, 108, 457,
2007, and 6592 GPa, respectively; whereas the 5d elements
Lu, Hf, Ta, W, and Re have the values 46, 96, 290, 783, and
1242 GPa, respectively. Thus, for pressures less than 1000
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GPa all the transition metals to the right of Nb in the 4d
series and W in the 5d series will not be sensitive to the
divergent hard-core contribution.

Figure 9 compares the six-parameter analytic binding en-
ergy, pressure, and ln H� curves with those of DFT for the 5d
elements hcp Lu and bcc W. A similar plot for the 4d element
Y has already been published elsewhere.22 The 6-pe curves
were fitted to the DFT pressure database as outlined above.
The six-parameter Birch-Murnaghan and extended Rydberg
curves were then obtained from the values of V0, K0 and the
analytic derivatives of K0�, K0�, K0�, and K0

IV that correspond to
the fitted 6-pe curve. They are given explicitly in Table III
using the values of A, B, p, q, m, and n listed in Table II.

We see in Fig. 9 that the 6-pe equation of state and ln H�

plots fit both the high pressure and the large volume regions
extremely well. On the other hand, the six-parameter Birch-
Murnaghan equation of state and ln H� curves show diver-
gences under compression that we had found earlier with the
four-parameter Birch-Murnaghan plots. The six-parameter
extended Rydberg expansion also fails to reproduce the hard-
core behavior of the Lu curves but performs well for W. Both
the Birch-Murnaghan and extended Rydberg values for the
predicted cohesive energies are extremely bad; whereas the
6-pe predicted values across the 4d and 5d series are in ex-
cellent agreement with the non-spin-polarized DFT results,
as can be observed in Table III.

It is appropriate to comment here on the asymptotic be-
havior of K�. Several authors5,49 have noted that the expo-
nential form of the Morse and Rydberg expressions will lead
to K�� =2 /3; whereas experimentally the earth’s inner core
that consists of mainly iron, for example, appears to take the
infinite pressure asymptote of K�� =3.00.1.50 In Fig. 10, we
have plotted the variation in K� from zero pressure up to

3000 GPa using the analytic 6-pe equation of state in Fig. 9
for Lu and W and the analytic 4-gm equation of state in Fig.
8 for Au. We see that Lu and W with their power-law repul-
sion and corresponding asymptote K�� =1+m /3 reach their
asymptotic values of 3.39 and 2.75 very quickly, whereas Au
with its exponential behavior is very far from its theoretical
asymptotic value of 2/3. In fact, Au takes a value of K�
=2.95 at 3000 GPa that is close to the “asymptotic” value of
iron. We conclude, therefore, that the exponential extended
Rydberg and generalized Morse expressions perform well for
those metals �such as the later transition metals� in which the
hard-core region has not yet been reached by experimental
conditions.

TABLE III. Equilibrium properties obtained from 6-pe expression for the 4d and 5d transition metals.

V0

�Å3�
K0

�GPa� K0�
K0��10
�GPa−1�

K0��103

�GPa−2�
K0

IV�103

�GPa−3�
E0

pred �6-pe�
�eV�

E0 �DFT�
�eV�

4d Y �hcp� 30.0 44 2.95 −0.64 11.97 −2.78 5.00 5.10

Zr �hcp� 22.0 106 3.25 −0.29 2.53 −0.30 8.06 8.05

Nb �bcc� 17.1 194 3.83 −0.23 0.99 −0.07 10.75 10.76

Mo �bcc� 15.2 297 4.36 −0.21 0.68 −0.04 12.03 11.57

Tc �hcp� 13.9 344 4.54 −0.19 0.50 −0.02 11.48 11.65

Ru �hcp� 13.3 366 4.86 −0.19 0.52 −0.02 10.22 10.27

Rh �fcc� 13.4 318 5.14 −0.24 0.78 −0.04 7.94 7.78

Pd �fcc� 14.3 228 5.46 −0.38 1.80 −0.15 5.22 4.98

Ag �fcc� 16.2 138 5.66 −0.62 4.97 −0.69 3.82 3.76

5d Lu �hcp� 29.5 47 3.16 −0.80 15.51 −4.17 4.27 4.44

Hf �hcp� 20.8 122 3.38 −0.29 2.19 −0.23 7.96 8.17

Ta �bcc� 17.3 219 3.79 −0.20 0.83 −0.05 10.61 10.78

W �bcc� 15.5 339 4.24 −0.17 0.47 −0.02 12.50 12.59

Re �hcp� 14.5 409 4.56 −0.16 0.37 −0.01 13.15 12.82

Os �hcp� 13.8 451 4.84 −0.16 0.35 −0.01 12.62 12.46

Ir �fcc� 13.9 405 5.03 −0.19 0.47 −0.02 10.27 10.41

Pt �fcc� 14.9 305 5.37 −0.28 0.98 −0.06 7.31 7.33

Au �fcc� 16.8 192 5.74 −0.49 2.93 −0.30 4.43 4.41
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FIG. 10. �Color online� Variation in K� against pressure ob-
tained from 6-pe expression. Asymptotic values for Lu and W of
3.39 and 2.75, respectively, are shown by horizontal dotted lines.
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Finally, as a caveat we stress that not all transition metals
have their equations of state well described by the 6-pe ex-
pression. The left-hand panel of Fig. 11 shows the ln H� plot
for hcp La where we see that the 6-pe fit between 1000 GPa
and 7V0 fails to reproduce the slope of the DFT curve about
the origin. This anomalous behavior was analyzed in detail
by McMahan et al.44 using the Pettifor-Andersen expression
for the s, p, d, and f partial pressures.39,43,51 They found that
the anomaly is directly related to the valence s to d electron
transfer that is expected for the early transition metals under
pressure.31 This is seen in the inset of the left-hand panel of
Fig. 11, which displays the variation in the logarithmic vol-
ume derivative of the number of s electrons as we pass
through equilibrium. Initially for La, at positive values of xv

�

this takes a fairly constant negative value of −0.6 corre-
sponding to the valence 6s electrons being lost to the valence
5d �and 4f� bands under compression. This results in a net
softening of the pressure due to additional bonding states
being filled, which is reflected in the downward curvature of
the ln H� plot in this region. However, for negative values of
xv

� as the bottom of the 6s band approaches and moves up
through the Fermi level, this 6s pool of valence electrons is
lost to the system, resulting in an abrupt ending of the soft-
ening and the observed stiffening of the pressure curve.44 We
see in the left-hand panel of Fig. 11 that fitting the DFT data
for La up to a pressure of 30 GPa at which the transition is
observed shown in its inset leads to a 6-pe curve that repro-
duces the DFT values extremely well up to the transition but
fails above it. On the other hand, this transition occurs in Lu
at the much higher pressure of 584 GPa due to the lanthanide
contraction, as can be seen in the right-hand panel of Fig. 11.
The anomalous behavior that is observed around equilibrium
for La is thus hidden in Lu due to its occurrence at higher
pressures. A similar but weaker anomaly is also observed for
the 3d element Sc.

V. CONCLUSION

We have examined in details the successes and failures of
the Birch-Murnaghan, extended Rydberg, and generalized
Morse binding-energy relations and equations of state for the
4d and 5d transition metals by comparing these analytic ex-
pressions to the corresponding first-principles DFT curves.
As expected, all these analytic expressions were found to
reproduce well the DFT binding-energy curves and equations
of state for the late transition metals. However, for most
early and middle transition metals, the fourth-order Birch-
Murnaghan expression was observed to behave anomalously
under compression due to divergences. This resulted in either
negative energy or pressure values. The four-parameter ex-
tended Rydberg and generalized Morse expressions, on the
other hand, did not behave abnormally but failed to repro-
duce the observed hard-core repulsion of the early transition
metals under compression. In addition, the four-parameter
extended Rydberg and generalized Morse binding-energy
curves were found to oscillate under expansion in order to
satisfy simultaneously the DFT values of the cohesive energy
E0 �equivalent to integrating the equation of state from equi-
librium out to infinity� and the DFT values of the bulk modu-
lus K0 and pressure derivative K0� at the equilibrium volume
V0.

These failures of the four-parameter Birch-Murnaghan,
extended Rydberg, and generalized Morse expressions were
then shown to be removed by using a recently proposed six-
parameter mixed power-exponential expression. In particu-
lar, this six-parameter expression not only reproduced the
observed hard-core repulsion under compression but also re-
moved the spurious oscillations that had been predicted for
the early 4d and 5d transition metals under expansion. On
the other hand, the six-parameter Birch-Murnaghan and ex-
tended Rydberg expressions still behaved poorly with the
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FIG. 11. �Color online� ln H� plots for �a� hcp La and �b� hcp Lu with 6-pe parameters fitted to DFT values over a range of 1000 GPa
to 7V0 �dashed curves� and also 30 GPa to 7V0 �full curve� for La and 584 GPa to 7V0 �full curve� for Lu. Insets show the logarithmic
volume derivative of the number of valence s electrons Ns versus Vinet scaling length.
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Birch-Murnaghan remaining anomalous under compression
and the extended Rydberg deviating badly from the DFT
curves under expansion. In conclusion, however, we must
stress that this analytic six-parameter expression is not appli-
cable to all metals as it is unable to reproduce, for example,
the well-known anomalous behavior of the equation of state

of La at the beginning of the 4f lanthanide series.
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