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We investigate the development of superconductivity in graphene when the Fermi level becomes close to
one of the Van Hove singularities of the electron system. The origin of the pairing instability lies in the strong

anisotropy of the e-e scattering at the Van Hove filling, which leads to a channel with attractive coupling when
making the projection of the BCS vertex on the symmetry modes with nontrivial angular dependence along the
Fermi line. We show that the scale of the superconducting instability may be pushed up to temperatures larger
than 10 K, depending on the ability to tune the system to the proximity of the Van Hove singularity.
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I. INTRODUCTION

Since the fabrication in 2004 of single atomic layers of
carbon, this material (so-called graphene) has been attracting
a lot of attention.! The undoped system has conical valence
and conduction bands meeting at two different Fermi points
(known as Dirac points).>? This peculiar dispersion has
shown to be at the origin of a number of remarkable effects,
such as the existence of a minimum conductivity at the
charge neutrality point.*~

From the point of view of possible applications, the inter-
est in graphene has been driven by the large electron mobili-
ties attained in typical experimental samples. Another re-
markable property is that graphene can be used to build
Josephson junctions when placed between superconducting
contacts.® It then becomes quite intriguing whether graphene
may support superconducting correlations on its own under
suitable experimental conditions. On theoretical grounds, it
is known that a model based on the conical dispersion re-
quires a minimum strength of the pairing interaction for the
development of a superconducting instability in the undoped
system.” There have been already several proposals to drive
graphene toward a pairing instability upon doping, placing
the emphasis on the role of topological defects,'” the effect
of a metallic coating,!! or the possibility of inducing super-
conductivity by electronic correlations.'>!3

In this paper we investigate a different route to supercon-
ductivity in graphene when the Fermi level is close to one of
the Van Hove singularities (VHSs) of the electron system.
These are points characterized by a divergent density of
states, which has the effect of enhancing the magnetic and
superconducting correlations.'* The origin of the pairing in-
stability lies in the strong anisotropy of the Fermi line at the
Van Hove filling, and it proceeds following in essence the
same mechanism proposed by Kohn and Luttinger!'® to show
that superconductivity can arise out of purely repulsive inter-
actions. This is possible as long as the e-e scattering be-
comes highly anisotropic so that a channel with attractive
coupling may appear when making the projection on the
symmetry modes with nontrivial angular dependence over
the Fermi surface.

II. TIGHT-BINDING MODEL

In the case of graphene, there are two VHSs located at
about 3 eV above and below the Dirac points in the spec-
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trum. Each of the singularities correspond to the existence of
three inequivalent saddle points of the dispersion at the
boundary of the Brillouin zone, as shown in Fig. 1. In order
to find the dominant electronic instability arising from the
divergent density of states, one has to determine first the
shape of the Fermi line when the Fermi level is close to the
VHS. For this purpose, we have characterized the energy
contour lines around the saddle points of the valence band by
means of a tight-binding model, suited to fit the dispersion
e(k) known from angle-resolved photoemission spectros-
copy (ARPES).'® In the model, we have considered the
transfer integrals for first, second, and third neighbors of the
graphene lattice, labeled by 7, d, and t', respectively, and the
overlap integral s between first neighbors. In terms of these
parameters and setting the lattice spacing a=1, the Fermi
velocity at the Dirac points is given by vp=(3/2)(t-2¢'
+3sd), which according to the value found in graphene im-
plies that r—2¢'+3sd=2.7 eV. Moreover, the level of the
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FIG. 1. (Color online) Plot of energy contour lines around the
saddle points of the valence band of graphene, obtained from a
tight-binding model with first-, second-, and third-neighbor hopping
parameters given by Egs. (1)-(3) for s=0.1.

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.78.205431

J. GONZALEZ

3.0 e
2.5
2.0}

= :
= 1.5}
o

1.0f
0.5!

0.8_'

FIG. 2. (Color online) Plot of the hopping parameters ¢ (full
line), d (dashed line), and ¢’ (dotted line) given in eV units as
functions of the overlap integral s and satisfying the constraints
[Egs. (D)-(3)]-

saddle points relative to the Dirac points turns out to be 3d
+ (=31 -2d)/(1+s), which must correspond to the value of
~2.7 eV found in ARPES.'® With this input, we arrive at
two conditions (with 7, d, and ¢’ measured in eV):

' ~d-27s, (1)

t=27+2d-54s-3sd. (2)

Finally, we can adjust the parameters to reproduce the cur-
vature of the dispersion at the saddle points,'® arriving at a
dependence of the second-neighbor hopping d which is lin-
ear on s to very high accuracy,

d=0.07+2.85 + O(s?). (3)

The ARPES dispersion around the saddle points can then
be fitted leaving the overlap integral s free. This makes the
different transfer integrals dependent on that parameter, as
represented in Fig. 2. The important point is that the third-
neighbor hopping ¢’ remains always constrained to a very
small value, t'=~0.1 eV. This parameter controls the ap-
proximate nesting of the Fermi line, that is, the possibility of
having regions in which the dispersion satisfies e(k)=
—£(Q+Kk), with a fixed momentum Q. This is realized in the
model with hopping parameters obtained from Egs. (1)—(3)
when Q is the momentum connecting two inequivalent
saddle points, as observed in a typical plot of energy contour
lines shown in Fig. 1. The exact condition of nesting is met
in the model with t'=0 while the relative small values that
we find for this parameter still lead to quite straight Fermi
lines connecting the saddle points, especially in the case of
the valence band.

The measure of the nesting is given by the susceptibility
x(Q,w), which diverges in any event in the proximity to the
singular density of states. We may approximate for instance
the dispersion with the deviation Sk from the saddle point of
the valence band at (27/3,0) by
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e(k) = — adk; + Bk, (4)

Assuming that the VHS is in general at an energy w from the
Fermi level, we have

1 & ! AO
Qo) = lo ( ) (5)
X 2372 a+ B & W+ 0
where A is an upper cutoff in the description of the saddle
points, which we take as =1 eV. The nesting instability at
a=3[ appears in the dependence
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This has to be confronted with the susceptibility at vanishing
momentum transfer, which is

1 1 Ay

X(0.0) = "~ B 10g(ﬁ)+#>- ()
For the VHS in the valence band of graphene, sensible val-
ues of the parameters are a~7.41 and S~2.03 (as obtained
for s=0.1), which give ¢’ =3.6. We see therefore that the
susceptibility at momentum Q is about two times larger than
that at vanishing momentum.

The main physical effect of the nesting of the Fermi line
is to enhance the anisotropy of the e-e scattering. In this
respect, the accurate determination of the shape of the Fermi
line is an important factor in discerning whether such an
anisotropy may be strong enough to induce a pairing insta-
bility. We will see that this happens when the response of the
electron system at momentum Q prevails over that at vanish-
ing momentum, that is, when 2y(Q,®)>3x(0,w)."” This
condition is satisfied for the VHS in the valence band, ac-
cording to our parametrization of the tight-binding model.
The values of « and B are actually quite insensitive to varia-
tions in the overlap integral s in the range of 0.1-0.3, taking
into account the corresponding changes in the hopping pa-
rameters given by Eqgs. (1)—(3). The effects derived from the
anisotropy of the e-e scattering appear to be then quite robust
in the case of the VHS in the valence band of graphene.

A similar analysis carried out for the VHS in the conduc-
tion band leads however to a less clear situation. The disper-
sion can be approximated then around the saddle point at

(27r/3,0) by taking parameters & and 3 such that
e(k) = ask; — Bok;. (8)

In principle, a quite precise determination of & and B is not
possible now as the above evaluation of the hopping param-
eters was made to achieve an accurate fit to the valence band
observed in the ARPES experiments. Anyhow, the use of the
same constraints [Egs. (1)—(3)] does not give rise in this case
to the required anisotropy in the e-e interaction. By varying
the overlap integral s in the range of 0.1-0.3, we observe
corresponding changes in & from 1.75 to 1.53 while those in

E are from 6.86 to 7.12. By taking pairs of respective values
of these two parameters in that range, we observe that the
combination 2x(Q,w)-3x(0,w) is now either negative, or
positive but too small, to give rise to a significant effect.
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Therefore, we will not pursue in what follows the study of
the VHS in the conduction band of graphene while we con-
centrate on the analysis of the effects derived from the VHS
in the valence band, allowing us to reach definite predictions.

II1. PAIRING INSTABILITY

When the Fermi line becomes close to the saddle points,
the anisotropy of the e-e scattering may actually induce a
pairing instability. This can be understood by re-elaborating
in the present context the argument given by Kohn and
Luttinger'® a long time ago. We denote the interaction vertex
by V(6,0') for the particular case of BCS kinematics, in
which the incoming (outgoing) particles collide with zero
total spin and zero total momentum, and the angle 6 (6')
locates the position of the spin-up particle over the Fermi
line. The BCS vertex gets corrections at low energies by the
effect of the high-energy electron modes in slices between
energies A and A+dA about the Fermi level.'® The integra-
tion of these modes gives the variation

2m '
%f Ll ﬁ—ICHLV(G, av(e'.e),

dv(6.) = o mEaeu(e)

9)

where v(¢") is the gradient of the dispersion and dk;/ 36" is
the variation in the momentum along the slice parametrized
by the angle #’. We can write the above equation in more
compact form by passing to the variable

1 b ok 1
do'—r—— 10
27m(A)f0 le?é’"v(ﬁ")’ (10

#(6) =

where the density of states n(A) is introduced so that the new
variable also ranges from 0 to 27.'° After defining the trans-

formed vertex by Vg, d')=V(6,6), we get

M—MJZW AV N A
dlogA 27 J, dg'V(g.¢"\V(¢'.¢'). (1)

We can further decompose the vertex V(¢, ') in terms of
the eigenmodes W (¢) for the different representations y of
the point symmetry group,

Vig,¢) = 2 VL, UL(OT). (12)

ysm,n

We obtain then the set of coupled scaling equations

sz_ (A)Ev)’ VY (13)
ﬁlOgA_n . m,s "’ s,n*

In this framework, we recover the analog of the Kohn-
Luttinger mechanism when any of the couplings V)  turns
out to be negative in such a way that an unstable flow devel-
ops as the Fermi level is approached in the low-energy limit
A—0.

We remark that the scaling equation (11) encodes the cor-
rections to the BCS vertex that are logarithmically divergent
at low energies in the particle-particle channel. If we start
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FIG. 3. Lowest-order particle-hole corrections to the BCS vertex
for a bare on-site interaction. Full and dashed lines represent the
propagation of electrons around different saddle points.

solving the scaling equation at an intermediate energy scale

A, the initial values of the function V(¢, ¢') will be dictated
by the bare interaction as well as by finite corrections to it,
given in general by diagrams in the particle-hole channel.
Previous scaling analyses of electrons near a VHS have
shown that only the momentum-independent component of
the interaction potential is not irrelevant at low energies,’”
which is consistent with the large screening effects from the
divergent density of states. For this reason, we may consider
that a bare on-site repulsion U between the electron densities
of opposite spin provides a sensible form of interaction close
to the Van Hove filling. The relevant point is that the bare
short-range interaction gives rise to particle-hole corrections
to the BCS vertex like those represented in Fig. 3. If we
measure the angles ¢ and ¢’ with respect to the x axis, we
observe for instance that the value of V(0,7/3) will be en-
hanced by the particle-hole susceptibility (5) at momentum
Q while V(0,0) is enhanced by the particle-hole susceptibil-
ity (7) at zero momentum. The prevalence of x(Q, w) implies
that

V(0,0) — V(0,7/3) ~ 3U%x(0, ) - 2U°x(Q, w) < 0.
(14)
In general, we can anticipate the dominant terms in the

modulation of the BCS vertex complying with the symmetry
of the Fermi line:

V(, ) = co+ cq cos(6) + ..., (15)

V(0, ) = co+ 5 cos(2¢p) + ¢ cos(4p) + ¢ cos(6¢) + ...,
(16)

V(p,m— ) = cy+ 5 cos(2¢p) + ¢y cos(4) + cg cos(6¢)
+ ... (17)

As we will see, several relations can be obtained between the
coefficients in Egs. (15)—(17) by estimating the strength of
the different scattering processes around the Fermi line.
The Fourier expansions (15)—(17) match well with the
decomposition (12) of the BCS vertex in terms of the basis
functions W(¢). The point symmetry group is Cg,, which
has six irreducible representations. Four of them are one di-
mensional, with respective sets of basis functions given by
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{cos(6ng)}, {sin(6n¢)}, {cos[(6n+3)¢p]}, and {sin[(6n
+3)¢]} (n being always an integer). The other two represen-
tations are two dimensional and have sets of basis functions
which can be represented by {cos(me),sin(m¢)}, with the
integer m running over all values that are not multiples of 3
and which are odd for one of the representations and even for
the other. We can write therefore an expansion of the BCS
vertex following Eq. (12) and matching the angular depen-
dence in Egs. (15)—(17),

V(eh, ') = Voo + \2Vy l[c0s(66) +cos(6 )]
+2V,,[cos(2¢)cos(2¢") + sin(2¢)sin(2¢") ]
+2V, 4[cos(2p)cos(4¢’) — sin(2¢p)sin(4¢")
+ ¢ ¢']+2V;; cos(3¢)cos(3¢')
+2V3 3 sin(3¢)sin(3¢) + ... (18)

One can check that the terms displayed in Eq. (18) ac-
count for the modulation of the BCS vertex in Eqgs.
(15)—(17). We identify actually the different coefficients ¢
=2V 42V, 4, ¢4=2V,,, and céz_\EVO,G, on one hand, and
cy=4V,4, c4=2V,,, and cg=2V2V,¢—V;;, on the other
hand. The constraint (14) can be translated then to these
couplings since V(0,0)—V(0,7/3) is given by the combina-
tion 3(cy+cy)/2=3(c5+c})/2. We find

3(Van +2V,4) ~ 3U2x(0,0) - 2U%x(Q, ). (19)

This already points at the existence of an unstable flow in the
channel corresponding to the representation with d-wave
symmetry, as long as 3x(0, ) <2x(Q,w). A closer inspec-
tion reveals actually that both couplings V,, and V, 4 must
be negative. To show this, one more constraint can be en-
forced by noticing that V(m/6,5m/6)—V(w/2,1w/2)=3(c}
—cy)/2. The relevant point is that the particle-hole correc-
tions to the BCS vertex at those angles are not singular near
the VHS as they involve scattering processes that scale at
most as ~\w.2! Therefore, the dominant contribution to both
couplings V,, and V,, arises from the logarithmic depen-
dence on w at the right-hand side of Eq. (19).

As long as V,, and V, 4 are negative, we have a pairing
instability in the system whose critical scale can be estimated
by solving the coupled scaling equations (13) in the relevant
symmetry channel. We can truncate the set of equations to

J (Vz,z V2,4> _ n(A)<V2’2 Vaa ) (Vz,z V2,4>
d1og A\Vyy Viu Via Vaa/\Vip Viu

(20)

Equation (20) can be easily solved by passing to the eigen-
values \; and A, of the matrix of couplings. We recall that
V4.4 does not appear at the dominant level in the expansion
(18) of the BCS vertex. The two eigenvalues can be approxi-
mated then by Ny ,=(V,,* \I'V§’2+4V§A)/2. It is clear that
the positive eigenvalue A\ vanishes in the low-energy limit
while the signature of the pairing instability is given by the
growth of \, toward very large negative values as A —0.
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FIG. 4. (Color online) Plot of the scale A/2 at which the eigen-
value \, diverges (full line) and the critical temperature 7. (dashed
line), as a function of the deviation u of the VHS from the Fermi
level.

IV. SUPERCONDUCTING GAP AND CRITICAL
TEMPERATURE

We determine the onset of the pairing instability in terms
of the energy A, at which the solution of Eq. (20) diverges.
In our scaling approach, the progressive integration of elec-
tron modes stops at that point, which can be identified with
the opening of a gap in the single-particle spectrum. Accord-
ing to this argument, the magnitude A of the gap can be
computed as A=2A_, which turns out to be also consistent
with the determination of the critical temperature carried out
in what follows.

To find the behavior of the negative eigenvalue \,, we
take for n(A) the density of states about the VHS

3 1 Ao

n(e) Py \'@ log(|8+'u|). (21)
The other important factor in the resolution of Eq. (20) is the
choice of initial conditions for V,, and V,, at the upper
cutoff Ay. In this respect, we have taken a value of U
=4 eV for the bare on-site repulsion, which is between the
estimates made for graphite and carbon nanotubes.?? In order
to go beyond the perturbative particle-hole corrections to the
BCS vertex, we have summed up the series of leading loga-
rithms obtained by iteration of the particle-hole susceptibili-
ties in the diagrams of Fig. 3. Thus, we have constrained the
initial couplings by the condition

U
1-3Ux(0, ) - 20x(Q,n)

The precise values of V,, and V,, have been obtained by
adding the other constraint mentioned below Eq. (19), which
reads 3(2V, 4=V, ) =V(7/6,5m/6)—V(/2,m/2).

The results obtained for the scale A, at which \, diverges
are shown in Fig. 4. We observe that the scale of the pairing
instability depends drastically on the value of the chemical
potential u measuring the deviation of the VHS from the
Fermi level. The plot of Fig. 4 shows anyhow that the insta-
bility exists irrespective of the value of u. We recall in this
respect that the Kohn-Luttinger mechanism was proposed to
put forward the idea that any Fermi liquid is unstable at

3(Vyp+2V,,) = (22)
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sufficiently low temperature.'> On the other hand, an inflec-
tion point can be seen in the plot of Fig. 4 for a value of u
slightly below 0.2 meV. That feature corresponds to the case
in which the scale A, for the opening of the gap coincides
with the deviation u of the VHS from the Fermi level. Values
of u to the right of the inflection point correspond to the
regime where the VHS lies outside the superconducting gap
while the values to the left are points where the gap develops
around the VHS.

An important question is the determination of the finite
temperature effects on the pairing instability. This analysis is
particularly interesting in our electron system as the strength
of the instability is dictated by the proximity to the VHS
while the thermal effects have the ability to smear out the
superconducting correlations at low energies. We can incor-
porate such effects by computing the BCS vertex within the
many-body formalism at temperature 7#0. The Green’s
function for electrons with saddle-point dispersion &(k) reads
then as?’

(O]

GOk, 0)=P
2kyT

) w-e(K)).
(23)

——— —imtanh
o o(k) i an(

Taking into account the change in the imaginary part of the
electron propagator as 7# 0, we obtain now the counterpart
of Eq. (9) at finite temperature

av(6,0') =t h( A )dA
=tan —_—
=M o) A
40 ok 1
= y(0,0)V(0,0).
fo Q2m)2 06" v(¢') (6,69, 6)

(24)

From this point, we can reproduce all the steps following Eq.
(9) for the analysis of the instabilities in the different sym-
metry channels. We arrive at the scaling equation including
now thermal effects

d Voo V. A
( > 2’4) ~ tanh( )n(A)
J 10g A V4’2 V4,4 2kBT

y (Vz,z Vo ) (Vz,z Vo )
Vio Vas/\Vay Vau

(25)

The important property of the scaling equation (25) is
that, for each value of the chemical potential u, there is a
value of the temperature 7. above which the divergence in
the solution disappears. We identify therefore 7. with the
critical temperature for the pairing instability. The values of
T. obtained from the resolution of Eq. (25) have been plotted
in Fig. 4. It is worthwhile to remark that, far away from the
VHS, the ratio of A to kzT. is very close to the BCS value of
~1.76. As the Fermi level approaches the VHS, the ratio
shows however significant deviations from that value, as rep-
resented in Fig. 5. This is actually a reflection of the vanish-
ing of the T-dependent gap at the critical temperature, which
makes possible the probing of the proximity of the VHS at
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FIG. 5. (Color online) Plot of the ratio between the supercon-
ducting gap A and the critical temperature T, as a function of the
deviation w of the VHS from the Fermi level. The dashed line
stands for the BCS value A/kgT,.~1.76.

very low energies. Apart from this feature, we get the overall
picture that the thermal effects play the role of reducing the
strength of the pairing instability but much in the same fash-
ion as in the more conventional electron liquids, with a value
of the critical temperature in close correspondence with that
of the superconducting gap.

V. DISCUSSION

The possibility of finding a pairing instability in graphene
at temperatures of the order of ~10 K may rely on the abil-
ity to make a fine tuning of the Fermi level to the VHS. This
may be feasible as long as the proximity to the divergent
density of states corresponds to a situation with a very large
compressibility, which is energetically favorable. It has been
shown in particular that the VHS may pin the Fermi level
over a range of the chemical potential in open systems, under
conditions in which the electron density is not fixed but can
be balanced from the contact with a charge reservoir.*

With the experimental setups that can be devised at
present, it seems possible to place the Fermi level in
graphene within 1 meV from the position of the VHS. The
samples are usually doped by varying the gate voltage V,,
and typical values of the capacitance (for a 300-nm-thick
SiO, substrate) imply that a change in gate voltage of AV,
=1 V should correspond to a shift in the Fermi level of
~10 meV. It is therefore conceivable that by applying
smaller variations in the gate voltage, and possibly using
thicker SiO, substrates with smaller capacitance, the shift in
the Fermi level may be controlled with a precision below the
meV scale.

The real challenge in approaching the VHS may be the
characterization of samples where the divergent density of
states is not smeared or attenuated due to the imperfections
of the graphene lattice. In this regard, however, the theoret-
ical estimates do not point at any scattering mechanism that
can have a significant impact on the strength of the VHS.
The graphene lattice may have vacancies, or even cracks and
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voids, but these give rise in general to low-energy features
that are felt close to the charge neutrality point. More rel-
evant instead may be the effect of impurities in the graphene
layer. In this case, a large momentum transfer may be in-
volved in the scattering of electrons, which is reinforced near
the VHS by the approximate nesting of the Fermi line. The
influence of this kind of disorder has been studied in detail in
Ref. 25 in the case of the square lattice with nearest-neighbor
hopping at half filling. Given that the analysis is based in
essence on the nesting of the Fermi line, we can actually
apply the results of that study with an appropriate translation
of the relevant parameters. Thus, we arrive at the conclusion
that the density of states (21) may be suppressed in general
by  corrections that depend on the function
(1/4mt7,)log(47,|e|), with ¢ being the nearest-neighbor hop-
ping and 7, being the relaxation time related to the impurity
scattering. This latter quantity can be estimated, taking into
account the observation that in some graphene samples the
mean-free path can be of the order of ~1 wm. According to
the value of v in graphene, this may be used to estimate the
relaxation time as 7,~ 10*~!. We see therefore that, at the
relevant energy scales represented in Fig. 4, the corrections
to the divergent density of states from impurity scattering
can have a relative weight of the order of ~107*#, making
them insignificant in altering the strength of the supercon-
ducting instability.

Finally, we should consider also the presence of ripples as
an intrinsic source of scattering in graphene. The effect of
this type of disorder can be represented as a smooth modu-
lation of the hopping parameters over the graphene lattice.
We can think of this modulation as producing locally a shift
in the position of the different saddle points, much in the
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same way as the curvature of the carbon nanotubes produces
a shift of the Dirac points in the Brillouin zone. The diver-
gence in the density of states may be then split depending on
the curvature of the graphene lattice, and we have checked
numerically that this is actually the case, with a scale Ae for
the distance between the resulting VHSs which is of the or-
der of ~t(acc/R)?, in terms of the C-C distance acc and the
scale R of the local radius of curvature. Taking into account
the change Al in the height of the graphene profile
(~1 nm) over a distance L which is typically of the order of
~10 nm, it is easy to estimate the scale of the radius of
curvature as ~L?/2Ah~ 50 nm. This leads to a scale for the
splitting Ae which is ~1072 meV, that is, too small to have
an influence in the development of the superconducting gap
when it takes place around the VHS, as observed in Fig. 4.

In conclusion, we have seen that placing graphene in the
proximity of the VHS in its valence band may be a good
instance to induce a superconducting instability in the elec-
tron system. The origin of this effect lies in the anisotropy of
the e-e scattering along the Fermi line, which leads to an
attractive coupling in a channel with d-wave symmetry.
From a practical point of view, the different sources of scat-
tering in graphene appear to be ineffective in smearing out or
attenuating the strength of the VHS. Thus, we have shown
that the scale of the pairing instability may be pushed up to
temperatures larger than 10 K, depending on the ability to
tune the system to the proximity of the VHS.
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