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First-principles calculations based on density-functional theory indicate that high-order many-body interac-
tions are significant in Al clusters on Al�110� and Al�100�. The large number of many-body interactions renders
a full-lattice-gas approach ineffective for such systems. To simplify the description of adsorbate interactions,
we utilize two different schemes. First, we find effective parameters for Al adatom interactions using the
leave-one-out cross-validation method. Second, we propose the connector model, which is based on additive
single-atom connector units. The central idea of the connector model is to combine groups of many-body
interactions into important structural units �e.g., step edges� that have a single interaction energy. We find that
the connector model is more accurate and efficient in representing high-order many-body interactions than the
traditional lattice-gas approach and it may be suitable for describing a variety of surface phenomena such as
thin-film and crystal growth, adsorption, phase transitions, and catalysis at surfaces.
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I. INTRODUCTION

Achieving a predictive theoretical description of nano-
structures that assemble at solid surfaces is important in a
variety of applications, including electronic, magnetic, opti-
cal, and catalytic materials. A key element in this description
is an accurate rendition of the interactions that govern assem-
bly, which is a complex many-body problem. At the atomic
scale, first-principles calculations based on density-
functional theory �DFT� account for many-body effects and
have been successful at elucidating the energetics that dic-
tates structural evolution at surfaces. It is a current challenge
to incorporate this information into computationally efficient
models that can predict assembly on the mesoscopic and
macroscopic scales. To this end, lattice-based models offer
an attractive approach for many problems, as these retain the
atomistic nature of the interface while allowing for an accu-
rate albeit coarse-grained description of kinetics and interac-
tions.

One of the most popular methods to coarse-grain atomic
interactions is the lattice-gas model. In this model, the total
interaction energy �E is given by a sum of pair, trio, and
higher-order interactions among neighboring atoms; i.e.,

�E = �
i

�iE0,i + �
i

�
j�i

�i� jE2�i, j�

+ �
i

�
j�i

�
k�j

�i� j�kE3�i, j,k� + ¯ , �1�

where �i�j,k�=1 if site i, j, or k is occupied and is 0 otherwise,
E0,i is the adsorption energy of an atom on site i, E2�i , j� is
the pair interaction between atoms on sites i and j, and
E3�i , j ,k� is the three-body interaction between three atoms
on sites i, j, and k. The summation in Eq. �1� can be extended
to four-body, five-body, and higher-order interactions.
Rarely, however, are these interactions included and lattice-
gas studies are typically based on effective pair interactions
that are selected to match certain experimental attributes.
While pair interactions may suffice for some studies, there
has been a number of theoretical1–8 and experimental6,7,9

studies that have quantified adsorbate interactions and dem-
onstrated that three-body and higher-order interactions can
be significant. In this paper, we take up the issue of accu-
rately and efficiently including these high-order many-body
interactions into calculations of surface thermodynamics.

We consider the interactions between Al adatoms on the
�110� and �100� surfaces of Al, which both occur in
multilayer Al�110� homoepitaxy.10 Al�110� homoepitaxy is a
good example of the pervasive and essential role that many-
body interactions can play in dictating surface thermodynam-
ics. In a previous study, we used first-principles total-energy
calculations to quantify 23 two- and three-body interactions
that occur in dilute Al adlayers on Al�110�.4 Beyond the at-
tractive nearest neighbor, the Al atom-pair interaction is
repulsive4 and it cannot explain experimentally observed
nanostructures in Al/Al�110� homoepitaxy.10 Some of the
three-body interactions are attractive4 and would promote the
formation of experimentally observed nanostructures.10

However, we will show in this work that in adsorbate clus-
ters, four- and five-body interactions can be important on
Al�110�, as the magnitudes of these interactions are compa-
rable to those of the most significant pairs and trios. We also
obtain pair- and many-body interactions on Al�100� and find
that the magnitudes of four- and five-body interactions are
significant. Thus, our calculations indicate that the complete
set of adsorbate interactions is large and untenable for
lattice-gas calculations. It is possible to obtain an effective
set of interactions using cross-validation �CV� methods3,11–16

or the more recently introduced Bayesian statistics.8 How-
ever, for the optimal sets of interactions on Al�110� and
Al�100�, the number of high-order many-body interactions is
still significant. As an alternative to the lattice-gas model, we
propose a “connector model,” which has better accuracy than
the best lattice-gas model we found using cross-validation
methods, has fewer parameters than the full-lattice-gas
�FLG� expansion, and can be efficiently incorporated in
Monte Carlo �MC� simulations. We apply this model to study
the energetics of adatom clusters on Al�110�.
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II. METHODS

We employed first-principles total-energy calculations
based on DFT using the Vienna ab initio simulation package
�VASP�.17–19 We utilized ultrasoft Vanderbilt-type
pseudopotentials,20 as supplied by Kresse and Hafner,21 the
generalized gradient approximation �GGA� by Perdew and
Wang,22 Fermi-Dirac smearing23 with a width of 0.2 eV, and
an energy cutoff of 9.50 Ry �129.2 eV� for the plane-wave
basis set, which is sufficient for the desired accuracy. To
sample the Brillouin zone, we used the Monkhorst-Pack
scheme.24 With a converged �13�13�13� k-point mesh, we
obtained a value for the bulk lattice constant of 4.05 Å,
which is the same as the experimental value.25

To represent the Al�110� and Al�100� surfaces, we con-
structed supercells consisting of multilayered slabs with
vacuum spacing above the surface, which are replicated pe-
riodically in the three orthonormal symmetry directions. For
all the total-energy calculations, the vacuum spacing was
greater than 15 Å, which is sufficient to avoid any interac-
tion between the periodic slabs normal to the surface. We
obtained optimized geometries by relaxing the unconstrained
atoms in the slabs until the forces on all atoms became
smaller than 0.01 eV /Å. The emergence of an artificial elec-
tric field perpendicular to the slab due to asymmetry is ex-
pected to be small for aluminum adatoms on aluminum
surfaces.4,26 Thus, we adsorbed atoms only on one side of the
slab, which reduces the computational demands without
compromising on the desired accuracy.

For Al�110�, we used a converged slab thickness of 10
atomic layers, which was obtained in our previous work4 by
examining interlayer relaxations. To determine the necessary
thickness of the Al�100� slab, we calculated interlayer relax-
ations using a 12-layer �1�1� slab. We allowed the top six
layers to relax using a converged �26�26�1� k-point mesh,
while keeping atoms in the bottom six layers fixed at the
bulk locations. We computed the interlayer relaxations �i,i+1,
which are the percentage change from the bulk interlayer
spacing between the i and i+1 layers, with i=1 for the top
layer. We obtained �1,2=1.76% and �2,3=0.67%, which are
within the uncertainty of values found in recent low-energy
electron diffraction �LEED� studies by Petersen et al.27

��1,2=2.0�0.8% and �2,3=1.2�0.7%� and other theoretical
studies.28–31 Our value of �1,2 is also close to the LEED
results by Berndt et al.32 �1.84%�, but we find that �2,3 is
smaller than their value �2.04%�. On Al�100�, only the top
two layers relax significantly and there are negligible relax-
ations associated with the third layer and beyond �e.g., �3,4
=0.27%�. Hence, we used an eight-layer slab for Al�100�,
with the top four layers and adatoms unconstrained. For the
eight-layer slab, we obtained �1,2=1.50% and �2,3=0.36%,
which are still in reasonable agreement with LEED results.27

In our previous study of Al adatom interactions on
Al�110�, we used slabs with �5�3� and �3�5� surface at-

oms along the ��11̄0�� �001�� �in-channel�cross-channel�
directions, with converged �5�6�1� and �8�3�1�
k-point meshes, respectively.4 To accommodate larger adsor-
bate geometries in this work, we adopted a somewhat larger
slab for Al�110�, which has �8�5� surface atoms. For this

slab, we used a �4�4�1� k-point mesh, which has a higher
k-point density than that in our previous study.4 We main-
tained this approximate k-point density for the other slabs in
this work. Similarly, for Al�100� the largest slab has �7�7�
surface atoms, for which we use a �4�4�1� k-point mesh.
We determined the suitability of this k-point mesh by calcu-
lating the values of the adsorption energy Eads for an Al
adatom on a �7�7�8� slab. The adsorption energy is de-
fined as

Eads = Es+1 − Es, �2�

where Es+1 is the energy of a relaxed slab containing one
adatom and Es is the energy of the bare relaxed slab. To
calculate the adsorption energy, we employed �2�2�1�,
�3�3�1�, �4�4�1�, and �5�5�1� k-point meshes. The
adsorption energy converged �within 1 meV� to a value of
Eads=−3.332 eV for the �4�4�1� k-point mesh. We used
approximately the same k-point density for other Al�100�
slabs in this work.

III. LATTICE-GAS MODEL

We first characterized interactions between adsorbed at-
oms and their origins within the framework of the lattice-gas
model. In the lattice-gas approach, the total interaction en-
ergy or lattice-gas Hamiltonian �LGH� is expressed as the
sum of the involved two-, three-, and higher-body interaction
terms �cf. Eq. �1��. The total interaction energy �E can be
obtained from DFT calculations as

�E = Es+N − Es − NEads, �3�

where Es+N, Es, and Eads are the energies of the slab with N
adatoms, the bare slab, and the adsorption energy of a single
adatom on the slab �defined in Eq. �2��, respectively. We used
an �8�5�10� slab for Al�110� and a �7�7�8� slab for
Al�100� in these calculations. In this work, we quantified five
four-body and one five-body interactions along with the re-
lated pair and trio interactions. These are shown in Figs. 1
and 2 for Al�110� and Al�100�, respectively. In these figures,
the pairs that are ith nearest neighbors are denoted as Ni,
while trios, four-body, and five-body interactions are denoted

FIG. 1. �Color online� Four-body �Qi� and five-body �Fi� inter-
actions on Al�110� along with associated pairs �Ni� and trios �Ti�.
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as Ti, Qi, and Fi, respectively. The corresponding interaction
energies are denoted as ENi, ETi, EQi, and EFi. The total in-
teraction energy for each of the configurations in Figs. 1 and
2 can be expressed as a sum involving some of the interac-
tions. For example, the total interaction energy for the four-
atom cluster Q2 on Al�110� �Fig. 1� is given by

�E = 2EN1 + EN2 + 2EN3 + EN4 + ET1 + 2ET2 + ET4 + EQ2. �4�

Although interactions between adatoms and their periodic
images can be important if the slab dimensions are small

compared to the interaction range,4,33–35 we verified that this
is not the case here. We obtain a similar equation for each of
the clusters shown in Figs. 1 and 2 and we solve the resulting
set of linear equations to obtain the interaction energies. The
results are shown in Table I.

Adsorbate interactions can be direct or indirect and medi-
ated by the substrate.4,36–50 Indirect substrate-mediated inter-
actions can have electronic and/or elastic origins. To resolve
the origins of the interactions, we used an approach adopted
in previous studies4,33,34,51 in which we employed two differ-
ent relaxation schemes. In the first set of calculations, the
adatoms and substrate atoms �five layers for Al�110� and four
layers for Al�100�� were allowed to relax, while in the sec-
ond scheme we allowed the adatoms to relax on a fixed sub-
strate in which the atoms assume their relaxed positions for a
bare surface. In the second scheme, we suppress relaxation
of the surface with respect to the adatoms and we obtain the
electronic component of the interactions. This component
was subtracted from the total interaction energies obtained in
the first scheme to estimate the elastic component. We note
that this scheme does not perfectly delineate electronic and
elastic interactions because the two may be coupled—
especially when direct chemical bonds are formed. Neverthe-
less, it provides some resolution of the two different modes.

We quantified all the relevant pair and trio interactions on
Al�110� in a previous study4—the values reported in Table I
are slightly different than those �rms error of 0.012 eV� due
to differences in the slab size and k-point sampling. On
Al�110�, the nearest-neighbor pair interaction �N1� is the
strongest and is electronic in nature. This interaction reflects
the formation of a direct chemical bond between in-channel

FIG. 2. �Color online� Four-body �Qi� and five-body �Fi� inter-
actions on Al�100� along with associated pairs �Ni� and trios �Ti�.

TABLE I. Values of the total, electronic, and elastic components of interaction energies for the configu-
rations shown in Figs. 1 and 2. A negative value of the interaction energy denotes attraction.

Interaction energy �eV�

Al�110� Al�100�
Total Electronic Elastic Total Electronic Elastic

N1 −0.091 −0.241 0.150 −0.255 −0.238 −0.017

N2 0.050 −0.004 0.053 0.037 −0.004 0.041

N3 0.043 0.007 0.036 0.017 0.007 0.011

N4 0.045 0.002 0.043 0.010 0.001 0.009

N5 0.036 0.001 0.035

N6 0.010 −0.004 0.014

T1 −0.006 0.057 −0.063 0.066 0.013 0.053

T2 −0.057 −0.006 −0.051 0.083 0.070 0.012

T3 −0.049 −0.004 −0.045 −0.018 −0.012 −0.006

T4 −0.026 −0.002 −0.025 −0.013 0.000 −0.012

T5 0.005 0.008 −0.003 −0.006 −0.006 0.001

T6 −0.025 −0.001 −0.024

Q1 0.071 0.010 0.060 −0.074 −0.086 0.012

Q2 0.042 −0.003 0.045 −0.054 −0.042 −0.013

Q3 0.051 −0.004 0.054 −0.028 −0.037 0.009

Q4 0.034 0.001 0.034 −0.035 −0.008 −0.026

Q5 0.027 0.001 0.027 0.004 −0.004 0.008

F1 −0.045 0.000 −0.045 0.013 0.041 −0.028
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nearest-neighbor Al atoms. The pair interactions beyond the
nearest neighbor are repulsive and have elastic origins. Inter-
estingly, we find a similar trend for pair interactions on
Al�100�. However, the interaction range is shorter on Al�100�
than on Al�110�.

In our previous study of Al�110�,4 we could understand
the range of the pair interaction in terms of an elastic pertur-
bation zone surrounding an isolated adatom. An adsorbed
atom perturbs the positions of surface atoms surrounding it.
The range over which this perturbation is significant deter-
mines the range of the elastic interaction with other adatoms.
Figure 3�a� shows the most significant perturbations of the
substrate atoms in the first layer of a �7�7�8� Al�100� slab,
along with the results for an adatom on an �8�5�10�
Al�110� slab �Fig. 3�b��. We see that for Al�100�, the four
base atoms in contact with the adatom relax upward toward
the adatom relative to those on a bare surface. Beyond this
base, the perturbation of the substrate is insignificant. Al-
though the normal perturbations of the four base atoms be-
low the adatom are similar on Al�100� and Al�110�, the
Al�110� surface exhibits an anisotropic and oscillatory re-
sponse to the adatom, with nearest-neighbor surface atoms to
the four base atoms along the cross-channel direction exhib-
iting virtually no relaxation and neighbors along the in-
channel direction exhibiting an oscillatory relaxation that ex-
tends to the second-neighbor surface atoms. The maximum
range of the elastic interaction can be estimated as two times
the size of the perturbation zone for an adatom; i.e., if the
perturbation zones of two adatoms do not touch or overlap
then they are essentially isolated adatoms. Thus, for Al�110�,
the range of the pair interaction is �8 Å or N6 on Al�110�.
On Al�100�, the pair interactions have a smaller range of
�6.4 Å or the fourth-nearest neighbor.

Trio interactions are significant on both surfaces—
although they have different origins on Al�110� and Al�100�.
On Al�110�, all trio interactions except for the collinear trio
�T1� are elastic in origin.4 Here, we report on trio energies up
to T6; however, the trio interaction on Al�110� extends to a
longer range than this.4 The trios on Al�100� are more com-
plex than those on Al�110� and most have both electronic and
elastic components. It is evident that four- and five-body
interactions are also significant on both surfaces. These high-
order interactions are primarily elastic in origin on Al�110�.

As the trios, the four- and five-body interactions on Al�100�
contain both elastic and electronic components. The most
compact quarto Q1 is the strongest on both the surfaces, and
the magnitude decreases for more open clusters Q4 and Q5.
There is no indication of the convergence of interaction en-
ergies as we move to higher-order interactions. In fact, some
of four- and five-body interactions have higher magnitudes
than the three-body interactions.

For the lattice-gas model to be efficient, the number of
high-order many-body terms should be limited. Here, we
quantified 18 significant interaction terms for Al�110� and 15
terms for Al�100�. Although we can consider this to be a
complete set of interactions for the clusters shown in Figs. 1
and 2, there is no guarantee that this set of interactions will
suffice to describe the energetics of other adsorbate struc-
tures. In particular, we know that for Al�110� there are 23
significant pair and trio interactions4 that could become im-
portant if we consider structures other than those shown in
Fig. 1. Further, there is no reason to assume that other pro-
spective five- and higher-body terms, not considered in this
work, are not significant. Such a large number of significant
terms makes the lattice-gas approach unwieldy. Below, we
consider alternatives to the full-lattice-gas approach.

IV. LATTICE-GAS MODEL WITH EFFECTIVE
PARAMETERS

In recent studies, various search algorithms have been
employed to reduce the set of interaction terms in lattice-gas
models or cluster expansions by obtaining an optimal set of
effective parameters.3,8,11–16 This involves least-squares fit-
ting of trial LGH to predetermined DFT energies for a large
number of atomic configurations and using the minimum
number of interaction terms possible to achieve a desired
accuracy. A subset of n interactions �pairs, trios, etc.� is cho-
sen from a larger set of N possible interactions. To determine
the optimal subset of n interactions, we employ the leave-
one-out cross-validation method.3,11–14 In this method, we
select a set of n interactions and we do a least-squares fitting
of a trial LGH to M −1 DFT configurations/energies �out of
M total� to obtain the values of the interaction energy terms.
The remaining DFT configuration i is used to assess the
lattice-gas prediction ELGH�i� relative to the corresponding
DFT value EDFT�i�. A CV score is obtained for the interac-
tion terms selected as

CV =� 1

M
�
i=1

M

��EDFT�i� − ELGH�i��2	 . �5�

We repeat this procedure for different sets of n interactions—
with N possible terms, we repeat it � N

n � times—and the opti-
mal set of n interactions emerges as the one with the mini-
mum CV score. The interaction parameters in this optimal
set are fit to all M DFT configurations to obtain the final set
of interactions. We then repeat the procedure for different
values of n. The goal is to minimize the value of n while
keeping the CV score low.

We tested the leave-one-out cross-validation scheme for
Al�110� and Al�100� beginning with the interactions shown

FIG. 3. �Color online� Relaxations of the relevant surface atoms
�normal to the surface plane� induced by the presence of an adatom
on �a� Al�100� and �b� Al�110�. The small circles in the center show
the position of the adatom and the heights �in angstrom� of the
surrounding surface atoms relative to those of the bare surface are
indicated on the color scale.
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in Figs. 1 and 2, respectively, as these seem likely to be the
most significant ones. To fit and test possible LGH, we ob-
tained the total interaction energies for M configurations
�M =32 for Al�110� and M =28 for Al�100�� using DFT cal-
culations. We tried all possible combinations for n interac-
tion terms, out of N=18 for Al�110� and N=15 for Al�100�,
to construct LGH and obtained the interaction energies of
these terms using the combination which gives the minimum
CV score. We varied n from 18 to 1 for Al�110� and 15 to 1
for Al�100�. Tables II and III show the resulting values of the
interaction energies for a few values of n, corresponding CV
scores, and the maximum difference �per atom� � in the total
interaction energy with respect to DFT values, which is
given by

� = maxi=1
M 
EDFT�i� − ELGH�i�

N�i� � , �6�

where N�i� is the number of adatoms in the ith configuration.
Similar to previous studies,3,14 we find that CV scores are
high for large values of n, decrease for moderate values, and
again increase for small n.

Based on CV scores and maximum errors, we see that the
optimal interaction sets for Al�110� have �6–14 interaction
parameters while those for Al�100� have �5–12. Three-
body and higher interactions figure prominently in both sets

of interactions. The actual interaction energies obtained from
the FLG formulation are also given in Tables II and III. Here
we see that even though the FLG model exactly describes the
energies of the structures in Figs. 1 and 2, it does a poor job
at describing the test structures, which contain other interac-
tions. On the other hand, it is clear that the interaction ener-
gies obtained by fitting are mostly different from the FLG
values that describe the clusters in Figs. 1 and 2. This is
because the effective values compensate for interaction terms
missing in the effective sets as well as those missing from
the FLG in the additional DFT configurations. While this
loss of accuracy may be acceptable for certain applications,
we strive for a physically motivated model with greater ac-
curacy and good efficiency for Monte Carlo studies. Below,
we describe a model �the connector model� that achieves this
goal.

V. CONNECTOR MODEL

To efficiently capture many-body interactions at surfaces,
we present a connector model. In the connector model, struc-
tures are formed from sets of building blocks called connec-
tors. Here, connectors are single-atom units with bonds that
link them to neighboring atoms. The total energies of struc-
tures at surfaces are obtained by summing the connector
binding energies. For example, the set of the connectors

TABLE II. Al�110� interaction energies obtained by solving FLG equations �i.e., those shown in Fig. 1
and Table I� and least-squares fitting with n interaction terms. Terms that were eliminated are indicated by
dots. Also shown are the CV scores and the maximum errors � between the LGH predictions and the DFT
values of total interaction energies for 32 configurations. For the FLG and connector models, the CV scores
are given as the rms error between the model predictions and DFT values.

Interaction energy �eV�

FLG n=18 n=14 n=10 n=6 n=4 Connector

N1 −0.091 −0.086 −0.092 −0.095 −0.093 −0.094 ·

N2 0.050 0.050 0.052 0.053 0.053 0.062 ·

N3 0.043 0.047 0.046 0.044 0.025 · ·

N4 0.045 0.045 0.040 0.045 0.039 0.041 ·

N5 0.036 0.009 · · · · ·

N6 0.010 0.010 0.010 0.009 0.011 · ·

T1 −0.006 −0.015 · · · . ·

T2 −0.057 −0.067 −0.062 −0.052 −0.033 −0.021 ·

T3 −0.049 −0.030 −0.015 −0.008 · · ·

T4 −0.026 −0.038 −0.030 −0.032 · · ·

T5 0.005 0.003 0.000 · · · ·

T6 −0.025 0.002 0.014 · · · ·

Q1 0.071 0.093 0.081 0.052 · · ·

Q2 0.042 0.067 0.050 0.039 · · ·

Q3 0.051 0.044 0.023 · · · ·

Q4 0.034 0.023 · · · · ·

Q5 0.027 0.022 · · · · ·

F1 −0.045 −0.058 −0.023 · · · ·

CV 0.014 0.021 0.009 0.009 0.013 0.020 0.007

��eV /atom� 0.030 0.014 0.018 0.018 0.018 0.022 0.006
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needed to describe rectangular clusters and atom chains on
Al�110� is shown in Fig. 4. In Fig. 4, C1 represents an iso-
lated atom, while C2 and C3 are needed to describe dimers

or the ends of atom chains along the in-channel �11̄0� and
cross-channel �001� directions, respectively. C4 and C5
model atoms inside atom chains along the in- and cross-
channel directions, C6 represents corners of compact Al is-

lands, C7 and C8 model the close-packed step edges, and C9
models atoms that have a full complement of first, second,
and third neighbors in the surface plane such as those in the
interior of an adsorbate island or within the first layer of
surface atoms. Also shown in Fig. 4 are the binding and
interaction energies of C1–C9, which are obtained in DFT
calculations.

Figure 5 shows a few examples of how connector binding
energies are obtained. We obtain the binding energy BC9 for
C9 as the difference between the energy E of a �1�1�11�
slab and that of a �1�1�10� slab Es

1�1. The binding energy
of C5 BC5 comes from a semi-infinite atom chain along the
�001� direction and is given by the difference between the

TABLE III. Al�100� interaction energies obtained by solving FLG equations �i.e., those shown in Fig. 2
and Table I� and least-squares fitting with n interaction terms. Terms that were eliminated are indicated by
dots. Also shown are the CV scores and the maximum errors � between the LGH predictions and the DFT
values of total interaction energies for 28 configurations. For the FLG and connector models, the CV scores
are given as the rms error between the model predictions and DFT values.

Interaction energy �eV�

FLG n=15 n=12 n=8 n=5 n=4 Connector

N1 −0.255 −0.221 −0.221 −0.216 −0.217 −0.220 ·

N2 0.037 0.033 0.035 0.037 0.039 0.035 ·

N3 0.017 0.007 · · · · ·

N4 0.010 0.001 −0.003 −0.007 · −0.016 ·

T1 0.066 0.009 0.015 · · · ·

T2 0.083 0.033 0.029 0.022 0.022 0.026 ·

T3 −0.018 −0.028 −0.031 −0.026 −0.029 · ·

T4 −0.013 0.006 0.009 · · · ·

T5 −0.006 −0.010 · · · · ·

Q1 −0.074 −0.025 −0.016 · · · ·

Q2 −0.054 −0.016 −0.016 0.009 · · ·

Q3 −0.028 0.000 0.010 · · · ·

Q4 −0.035 −0.001 · · · · ·

Q5 0.004 0.010 0.010 0.010 · · ·

F1 0.013 0.021 0.009 0.007 0.021 · ·

CV 0.412 0.079 0.018 0.015 0.015 0.020 0.011

��eV /atom� 0.191 0.017 0.017 0.023 0.024 0.031 0.007

FIG. 4. �Color online� The connectors in compact rectangular
islands and adatom chains on Al�110�, along with their binding and
interaction energies �the binding energy minus the binding energy
of C1� in units of eV.

FIG. 5. �Color online� A few slabs and adatom configurations
used to obtain the binding energies BCi of Al�110� connectors. Here,
E is the total energy of the slab plus adatoms and Es is the energy of
a bare slab with superscripts indicating the size of slabs. The full
slab is not shown for BC4 and BC7.
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energy E of an �8�1� slab with a single atom and a bare
�8�1� slab E8�1. Similarly, we obtain BC8 from a semi-
infinite chain along the �001� direction that is two atoms
wide. Since, as shown in Fig. 5, such a configuration con-
tains two C8 units, we have BC8= �E−E8�1� /2. The binding
energies of C4 and C7 can be obtained in an analogous way
to those of C5 and C8. Finally, we obtain BC6 from one
fourth of the difference between the energy of an �8�5� slab
with a four-atom rectangle and the energy of a bare �8�5�
slab, as shown in Fig. 5. Using a similar methodology, we
obtain the binding energies of Al�100� connectors D1–D8
which are reported in Fig. 6.

Although the connectors in Figs. 4 and 6 do not constitute
a complete set that could describe the configuration of any
adlayer, they do represent important building blocks for
nanostructures at surfaces and their energies can be related to
important physical quantities. For example, the energies of
C9 and D8 both represent the bulk cohesive energy. These
values should be the same and the small difference between
the two can be attributed to the differences in k points and
slab thickness in the calculations for Al�110� and Al�100�.
These values are in reasonable agreement with previously
calculated values from DFT.26,30 The C7 and C8 connectors
represent the �111�- and the �100�-faceted steps on Al�110�,
respectively, and D7 represents the �111�-faceted step on
Al�100�. These connectors can yield the step energies � if we
subtract the bulk cohesive energies from their binding ener-
gies. On Al�110�, we obtain the step energies as ��111�
=0.003 eV /atom and ��100�=0.048 eV /atom, and on
Al�100� we obtain ��111�=0.082 eV /atom. These are in gen-
eral agreement with theoretical52–57 and experimental58 val-
ues for other unreconstructed fcc surfaces. The corner ener-
gies C6 and D6 play a role in determining the shapes of
small islands. By comparing the energies of C1 and D1, we
find that an isolated adatom has a stronger surface binding on

Al�110� compared to Al�100�. These binding energies reflect
the surface energies of Al�110� and Al�100�, which �for the
slabs studied here� we find to be �s=0.57 and 0.429 eV/
atom, respectively. These values are close to those found in
experimental59 studies and reasonably close to values found
in other theoretical26,30,60 studies—differences can be attrib-
uted to differences in slab thickness �for a 50-layer slab, we
find �s=0.665 eV /atom for Al�110� and for a 20-layer slab,
we find �s=0.454 eV /atom for Al�100�� as well as the
exchange-correlation functional and choice of pseudopoten-
tial.

Comparing connectors to interactions within the lattice-
gas approach, we note that the interaction energies associated
with the “one-armed” connectors C2, C3, D2, and D3 are
half the interaction energies of their corresponding pair in the
FLG model �cf. Figs. 1 and 2 and Tables II and III�. Connec-
tors with more than two arms incorporate multiple interac-
tions. For example, C6 reflects at least three different pair
interactions and at least one type of trio and four-body inter-
action, while C9 contains, among others, a nine-body inter-
action. By combining units that incorporate groups of inter-
actions, we can include important high-order many-body
interactions, describe the energies of important structural
units, and, as we will discuss below, achieve greater compu-
tational efficiency.

To test the connector model, we compare the total ener-
gies for nine compact Al�110� and Al�100� clusters obtained
by ab initio DFT calculations with the connector-model pre-
dictions. The clusters used to test the Al�110� connectors are
shown in Fig. 7, along with the corresponding differences
from the DFT calculations in eV/atom. To obtain the
connector-model binding energies for the clusters, we simply
identify the connectors associated with each of the atoms in
the cluster and we sum their energies. For example, the bind-
ing energy per atom of the atom chain in Fig. 7�a� is given by
�2BC2+BC4� /3 and that of the semi-infinite strip in Fig. 7�d�
is �2BC8+BC9� /3.

From Fig. 7, we see that although connectors integrate
high-order many-body interactions, their range appears to be

FIG. 6. �Color online� The connectors in compact square and
rectangular islands and adatom chains on Al�100�, along with their
binding and interaction energies �the binding energy minus the
binding energy of D1� in units of eV.

FIG. 7. �Color online� Test clusters for Al�110� along with the
difference �in eV/atom� between ab initio and connector-model en-
ergies. The structures in �d�, �e�, �h�, and �i� are semi-infinite.
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limited to the third neighbor in adsorbate clusters. For ex-
ample, although C4 was obtained from a calculation involv-
ing an infinite adatom chain �cf. Fig. 5�, it effectively repro-
duces the energies of finite structures �cf. Figs. 7�a� and
7�b��. Similarly, C5, C7, and C8 were obtained from semi-
infinite structures �cf. Fig. 5� but they accurately reproduce
the energies of finite structures, while C9, the “bulk” connec-
tor, works well in various semi-infinite environments. Al-
though C6 was obtained from a four-atom cluster �cf. Fig. 5�,
it is effective in describing the energies of the six-atom clus-
ters in Figs. 7�c� and 7�g�. From Fig. 7, we see that the
maximum error is only 0.002 eV/atom. Further consider-
ations indicate that the test clusters in Fig. 7 along with the
fitting clusters, some of which are shown in Fig. 5, form a
complete set that ranges from �semi-� infinite structures to
the most finite structures possible. Thus, we would not ex-
pect the quality of the agreement with DFT to diminish with
the introduction of further test clusters and we can conclude
that for chains and rectangular structures, the connector
model is as good as DFT. We used similar clusters to test the
connector model on Al�100�, where we find a maximum er-
ror of 0.003 eV/atom and we reach the same conclusion
about the accuracy on that surface.

With the connectors given in Fig. 4, we can consider the
role of many-body interactions in promoting island shapes
on Al�110�. Considering just pair interactions, the only stable

structures are linear atom chains along the �11̄0� direction, as
the only attractive pair interaction is the nearest neighbor
along this direction4 �cf. Table I�. Nevertheless, we find, due
to many-body effects, that two-dimensional �2D� islands be-
come energetically preferred for sufficiently large islands. To
probe the stability of 2D islands, we fix the �100� width m of

an adatom cluster and increase the �11̄0� length n to find the
minimum value nmin for which an nmin�m cluster becomes
more stable than a cluster with a width of �m−1� and the
same number of atoms. For example, the value of nmin=4 for
m=2 because 1�2, 2�2, and 3�2 clusters are less stable
than the 2�1, 4�1, and 6�1 atom chains, respectively, but
a 4�2 cluster is more stable than an 8�1 chain. Figure 8
shows the value of nmin along with the corresponding island
aspect ratio for various values of m. For large islands, the
aspect ratio converges to �16, as predicted using the Wulff
construction,61 i.e., ��100� /��111�=16.0 �number basis� or
11.88 �length basis�. Similar aspect ratios can be inferred
from theoretical calculations52–56,62 and have been observed
experimentally63–66 for other fcc�110� surfaces. Interestingly,
the aspect ratio for small islands is smaller than the Wulff
value. This is due to the effect of corner atoms, which are not
considered in the Wulff construction, and the discreteness of
the clusters, as many atoms are necessary to achieve the
Wulff aspect ratio.

The connector model is not limited to square and rectan-
gular geometries and it can be extended. To efficiently deter-
mine the relevant connectors, we can make some justified
assumptions based on our observations. From a few trial cal-
culations for Al�110�, we observed that the second- �cross-
channel� and third-neighbor �diagonal� interactions are es-
sentially identical and distinct from the first-neighbor �in-
channel� interaction. Thus, we can categorize the Al�110�

connector arms as in-channel A arms and cross-channel or
diagonal B arms. Also, we find that the connector binding
energies are approximately independent of the arrangement
of the type B bonds on this surface—with good accuracy,
they depend only on the number of B bonds. Thus, we can
denote all the Al�110� connectors by a connector matrix
C�NB ,NA�, where NA and NB are the number of bonds of type
A and B, respectively. For example, C9=C�6,2� and C2
=C�0,1�. In this framework, there are 21 connectors for
NA=0–2 and NB=0–6. The connector matrix, with binding
energies in eV, is given by

C�NB,NA� =�
− 3 . 583 − 3 . 628 − 3 . 639

− 3 . 558 − 3 . 641 − 3.644

− 3 . 521 − 3 . 621 − 3.649

− 3 . 519 − 3.619 − 3 . 652

− 3 . 445 − 3 . 606 − 3.654

− 3.400 − 3.587 − 3.654

− 3.337 − 3.563 − 3 . 655


 . �7�

We calculated the binding energies of 12 connectors using
DFT �bold and underlined in Eq. �7�� and obtained the rest
by fitting a second-order polynomial to each of the columns
in C�NB ,NA�. From the connector matrix in Eq. �7�, we see
that for a fixed number of cross-channel or diagonal B bonds,
the connector binding energies always increase in magnitude
with the number of in-channel A bonds. Interestingly many-
body effects can be seen in the variation in the connector
binding energies with the number of B bonds: with no A
bonds, the connector binding energies decrease in magnitude
as NB increases; with one A bond, they go through a maxi-
mum; and with two A bonds, the connector binding energy
increases in magnitude with NB and levels at bulk cohesive
energy as we reach a full complement of A and B bonds.

FIG. 8. �Color online� Number of atoms along the �11̄0� direc-
tion nmin and aspect ratio �nmin /m� vs m �atoms along the �001�
direction� for clusters on Al�110�.
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On Al�100�, we also found that the connector energies are
essentially independent of the arrangement of the nearest-
and next-nearest-bonds. Thus, similar to Al�110�, the connec-
tors can be denoted by D�NB ,NA�, where NA and NB are the

numbers of nearest- and next-nearest-bonds, respectively.
Thus, we have 25 connectors corresponding to NA=0–4 and
NB=0–4. The connector matrix with binding energies in eV
for Al�100� is given by

D�NB,NA� =�
− 3 . 332 − 3 . 459 − 3 . 525 − 3 . 561 − 3.608

− 3 . 313 − 3 . 431 − 3 . 508 − 3.577 − 3.637

− 3 . 302 − 3.415 − 3 . 517 − 3 . 588 − 3.658

− 3.299 − 3.404 − 3.504 − 3.589 − 3.668

− 3.298 − 3.395 − 3.491 − 3.583 − 3 . 670

 . �8�

We calculated 11 connector binding energies using DFT
�bold and underlined in Eq. �8�� and obtained the rest using
local piecewise triangle �linear� interpolation. Similar to the
Al�110� connectors, the connectors in Eq. �8� show a com-
plex many-body dependence on the number of nearest- and
next-nearest-neighbor bonds.

It is a property of adsorbed structures on these surfaces
that interactions among atoms in dilute clusters have a longer
range than those in dense clusters. Long-range pair interac-
tions in these systems are elastic in origin �cf. Table I� and
there are significant differences between two atoms that are
part of a cluster and two adatoms that do not share direct
bonds. Figures 9 and 10 illustrate this trend. Comparing the
relaxations associated with the corner atoms in the four- and
six-atom clusters in Figs. 9�a� and 9�b� and Figs. 10�a� and
10�b�, we see that these are similar and consistent with short-
range bonding in dense clusters. However, comparing the
corner relaxation for the six-atom clusters to those associated
with the atom pairs �Figs. 9�b� and 9�c� and Figs. 10�b� and
10�c��, we see that the substrate relaxations leading to the

elastic interactions between these two adsorbate pairs �cf.
Table I� are substantially different when the atoms are part of
a six-atom cluster. The significant alteration of the long-
range elastic interaction, due to short-range surface relax-
ation and direct chemical bonding, is one of the origins of
the many-body interactions on these surfaces.

To describe both dense and dilute adlayer structures, we
need to account for long-ranged pair interactions in dilute
clusters. For this purpose, we introduce two connectors
shown in Figs. 11�a� and 11�b� �N4 and N5� for Al�110� and
Figs. 11�c� and 11�d� �N3 and N4� for Al�100�. These con-
nectors describe pairs with the dilute local environments
shown in Fig. 11. With the connectors in Fig. 11, as well as
those in the connector matrices in Eqs. �7� and �8�, we have
a complete description of the first layer in homoepitaxy on
Al�110� and Al�100�.

To test the connector model, we applied it to 32 adatom
configurations on Al�110� and 28 on Al�100�. These are the
same structures used to test the lattice-gas model in Sec. IV.
We also obtained CV scores as the rms error between the

FIG. 9. �Color online� Change in the height �in angstrom� of top-layer surface atoms relative to those on a bare relaxed Al�110� surface
for a surface containing �a� a four-atom cluster, �b� a six-atom cluster, and �c� an atom pair. The small circles represent adatoms.
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connector-model predictions and the DFT energies. These
are reported in Tables II and III along with the maximum
errors for the connector model. Some additional test struc-
tures are shown in Fig. 12 along with the differences from
DFT results. In Tables II and III, as well as in Fig. 12, we can
see that for both Al�110� and Al�100� the CV scores and
maximum errors associated with the connector model are
lower than those for the best models with effective interac-
tions. In particular, the maximum errors associated with the
connector model are considerably lower than those of the
lattice-gas models. We attribute this accuracy to the inclusion
of important high-order many-body interactions in the con-
nector model, as well as to the fact that we were able to
incorporate physically meaningful connectors into this model
based on the insights gained from our detailed studies.

We note that, in addition to being more accurate than the
lattice-gas model, the connector model is also more efficient
computationally. For example, considering the six-atom clus-
ter shown in Fig. 9�b� we would need 4N1, 3N2, 4N3, 2N4,
8T2, 4T3, 2T4, 2Q1, and 2Q2 �a total of 31 interactions�

with the “best fit” ten-parameter lattice-gas model in Table
II. In a Monte Carlo simulation, we would need to identify
and sum these interactions. In contrast, only six connectors
�4C6 and 2C7� are needed and, due to the simple form of the
connector matrix, these are easy to identify in a MC simula-
tion.

VI. CONCLUSIONS

In summary, we used the lattice-gas model and introduced
the connector model to quantify interactions between Al ada-
toms on Al�110� and Al�100�. In both of these systems, high-
order many-body interactions are important in describing the
energies of basic adsorbate configurations. We found the
connector model to be more accurate for describing these
systems. Because we were able to make some accurate sim-
plifying assumptions in deriving the connector model, it will
be more efficient than the lattice-gas model. Such simplifi-
cations may not be justified for more complex systems.
However, the central idea of the connector model of combin-
ing groups of many-body interactions into important

FIG. 11. �Color online� Connectors used to describe long-ranged
pair interactions on ��a� and �b�� Al�110� and ��c� and �d�� Al�100�
along with their binding energies. The small circles represent vacant
sites.

FIG. 12. �Color online� A few clusters which were used to test
the connector matrix obtained for �a�–�d� Al�110� and �e�–�h�
Al�100�, along with the difference between the connector-model
and DFT results �in eV/atom�.

FIG. 10. �Color online� Change in the height �in angstrom� of top-layer surface atoms relative to those on a bare relaxed Al�100� surface
for a surface containing �a� a four-atom cluster, �b� a six-atom cluster, and �c� an atom pair. The small circles represent adatoms.
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structural units �e.g., step edges� with a single interaction
energy may be useful in future studies of thin-film and crys-
tal growth, adsorption, phase transitions, and catalysis at sur-
faces.
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