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We propose and study a continuum model for the dynamics of amorphizable surfaces undergoing ion-beam
sputtering �IBS� at intermediate energies and oblique incidence. After considering the current limitations of
more standard descriptions in which a single evolution equation is posed for the surface height, we overcome
�some of� them by explicitly formulating the dynamics of the species that transport along the surface and by
coupling it to that of the surface height proper. In this, we follow recent proposals inspired by “hydrodynamic”
descriptions of pattern formation in aeolian sand dunes and ion-sputtered systems. From this enlarged model
and by exploiting the time-scale separation among various dynamical processes in the system, we derive a
single height equation in which coefficients can be related to experimental parameters. This equation general-
izes those obtained by previous continuum models and is able to account for many experimental features of
pattern formation by IBS at oblique incidence, such as the evolution of the irradiation-induced thin amorphous
layer, transverse ripple motion with nonuniform velocity, ripple coarsening, onset of kinetic roughening, and
others. Additionally, the dynamics of the full two-field model is compared with that of the effective interface
equation.
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I. INTRODUCTION

Materials nanostructuring by ion-beam sputtering �IBS�
have received increased attention in recent years1–3 due to
the potential of this bottom-up procedure for applications in
nanotechnology and also due to the interesting issues it arises
in the wider context of pattern formation at submicrometer
scales.4 In these experiments, a target is irradiated by a col-
limated beam of energetic ions �typical energies being in the
keV range� that impinge onto the former under a well-
defined angle of incidence. Although routinely employed
since long for many diverse applications within materials
science �material implantation, sample preparation, etc.� the
capabilities of this technique for efficient nanopatterning
have been recognized only recently �see references in Refs.
1–3�. Thus, it induces self-organized regular ripple �at ob-
lique ion incidence� or dot �at normal ion incidence or arbi-
trary incidence onto rotating targets� nanopatterns over large
areas �up to 1 cm2� on metallic, semiconductor, and insula-
tor surfaces after a few minutes of irradiation. Interestingly,
the main features of this pattern formation process seem to
be largely independent of the type of ions �even those induc-
ing reactive sputtering� and targets employed, as long as the
latter amorphize under irradiation �the case of metals falls
outside this class and will not be addressed here �see, e.g.,
Refs. 1–3��.

During IBS of amorphous or semiconductor substrates
�for which the subsurface layer is amorphized, as frequently
observed �see, e.g., Refs. 5 and 6�� incident ions loose their
energy through random collisions in the target bulk.7 Near-

surface atoms may receive enough energy and momentum to
break their bonds with the surface. Some of them may be
certainly eroded, but most of them will be redeposited else-
where, as seen, e.g., in molecular-dynamics �MD�
simulations.8,9 In addition to adatom and vacancy
formation,10,11 which increases surface diffusion currents,12

enhancement of material transport by viscous flow seems to
occur within a thin surface layer, as experimentally
verified.13,14 In any case, the evolution of the topography and
the appearance of ordered patterns result from the balance
between the erosive and the relaxational mechanisms.
Whereas erosion tends to destabilize the surface �as a result
of the fact that valleys are eroded faster than crests15� relax-
ational processes tend to reduce height differences. Although
there exists a wide separation of time scales between the
hopping diffusive events �which are of the order of picosec-
onds� and the ion-impact events �for an ion flux of
1015 ions cm−2 s−1 each atom on a typical surface experi-
ences an ion impact about once per second�, both mecha-
nisms have been modeled using kinetic Monte Carlo �KMC�
approaches. The difference between both scales seems to be
fundamental to correctly describe the evolution of the irradi-
ated surface—in typical time scales of the order of
seconds2,3— and challenges description by numerical simu-
lations. In order to reach these length scales, a natural pro-
cedure is to resort to continuum descriptions. Hence, build-
ing on Sigmund’s description7,15 of the �Gaussian� energy
distribution for energy deposition from collision cascades
within amorphous or amorphizable targets, the seminal linear
model of Bradley and Harper �BH� �Ref. 16� and its nonlin-
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ear extensions17–20 already predict many of the experimen-
tally important features, such as, e.g., ripple formation and
orientation as a function of incidence angle and dependen-
cies of the ripple wavelength with temperature and flux.
Moreover, they agree in many aspects with alternative mod-
els, such as KMC studies �see recent discussions in Refs. 2
and 3�.

In all these continuum models a single evolution equation
is formulated for the surface height field, h�r , t�, and contri-
butions to such an equation are elucidated from the various
relaxation mechanisms influencing surface topography. We
will collectively refer to these as one- or single-field models.
Nevertheless, they also present limitations, which we can
group into several categories:

�i� Inaccuracies of the energy distribution. The fact that
there are known deviations from Sigmund’s Gaussian
distribution,7,15 most conspicuously at grazing angles of
incidence,21 may account for the incorrect order of magni-
tude of the roughening rate as estimated by these models or
their incorrect prediction22 for the direction of transverse
ripple motion.

�ii� Restricted number of mechanisms. Continuum models
necessarily neglect physical mechanisms which may turn out
to be important to the system behavior. This fact may be
related with the unsatisfactory description by one-field mod-
els of the ripple wavelength dependence with energy, phe-
nomena such as pattern wavelength coarsening, for the case
of normal ion incidence, their lack of account for in-plane
ordering, or the high parameter sensitivity for dot formation.

�iii� Formal consistency. Under some circumstances, the
very formal consistency of the one-field models can be ques-
tioned, for instance, due to the ad hoc nature of the way in
which competing physical effects �such as physical sputter-
ing and surface diffusion� are merely added in the height
equation of motion, due to the existence of cancellation
modes �CMs� of a varying nature20,23–25 in the nonlinear
equations, or due to physically unstable values of the effec-
tive surface diffusion coefficients for intermediate incidence
angles.19

�iv� Nonlinear features. Finally, the explanation for some
of the experimental properties that remain insufficiently ac-
counted for by previous continuum models may require im-
provements on our understanding of nonlinear effects �and
thus, affect any further continuum descriptions�. Some of
these may include the direction of transverse ripple motion,
the spread in the measured values of roughness exponents
when there is kinetic roughening, and the value �as a func-
tion of physical parameters� of the saturated ripple or dot
amplitude.

Due to the insufficiencies of the current continuum de-
scriptions of pattern formation by IBS, we conclude on the
need for improved continuum models that �a� introduce in-
creased number and/or type of relaxation mechanisms in a
natural way, which in particular allow assessment of the in-
terplay between transport and morphology, �b� improve upon
consistency issues �cancellation modes, etc.� of previous ap-
proaches, �c� can be adapted to modifications in the distribu-
tion of energy deposition, �d� can account for the phenom-
enology of nanopatterning by IBS within a unified
framework, and �e� generalize previous linear and nonlinear

models, incorporating their successes and improving upon
their shortcomings.

Trying to reach a balance between complexity and com-
pleteness in the physical description, in Refs. 26–29 con-
tinuum models that have been considered are simpler than a
full hydrodynamic description but still provide an explicit
coupling between the surface topography and the evolution
of the relevant diffusive fields. Following the philosophy be-
hind the so-called “hydrodynamic” approach to aeolian sand
dunes,30–32 in order to describe the temporal evolution of the
topography, two coupled fields are considered, namely, the
density of mobile species being transported at the surface
and the local height of the static target. Although naturally
there are important differences between IBS nanopatterns
and ripples on aeolian sand dunes �e.g., in IBS the size of the
structures is roughly 7 orders of magnitude smaller, the total
mass is not conserved due to sputtering, and the nature of the
morphological instability resides in the erosive process rather
than in the transport processes, as a difference with wind of
water induced patterns on granular systems� both of them
share global features that suggest modeling along similar
lines.

In this paper we study in detail this two-field approach to
IBS, expanding previous results28,29 and focusing on the
most generic case of arbitrary �oblique� angle of incidence
that is pertinent to ripple formation. In addition to results
obtained in Refs. 28 and 29, here we will discuss how rede-
position and material transport at the surface are described
by the two-field model and study the relation of the linear
ripple wavelength and orientation to the physical parameters.
We will also perform numerical simulations of a one-
dimensional �1D� two-field model and compare with the cor-
responding 1D effective equation. Moreover, we will analyze
in detail various nonlinear effects, such as nonuniform ripple
motion, wavelength coarsening, and cancellation modes, and
the extent to which linear and nonlinear terms influence the
velocity and asymmetry of the structures. We will thus assess
the extent to which two-field models can contribute to the
improvement of continuum description of IBS as described
in points �a�–�e� above and can be seen as a continuum re-
formulation of thin-film surface dynamics that goes even be-
yond the specific instance of IBS. Our aim here is also to
clarify the influence of different experimental parameters,
such as temperature or ion flux energy, in order to stimulate
new controlled experiments. We derive an improved inter-
face equation and relate the parameters appearing in it to
experimental conditions and features. In a companion
paper,33 we explore the implications of our two-field model
for the cases of normal ion incidence and rotating targets,
which are of interest, e.g., for the production of quantum
dots by this experimental technique.

This paper is organized as follows. In Sec. II the basic
ideas of the coupled two-field model are discussed. In Sec.
III its planar solution is obtained and a linear stability analy-
sis is performed. Section IV is devoted to obtaining a single
effective evolution equation to describe the surface height of
the bombarded surface by means of a multiple-scale analysis.
In order to check the hypothesis made in the derivation of
that effective equation, in Sec. V the dynamics of this equa-
tion will be compared with that of the original two-field
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model in the 1D case. Following this, we will study the
two-dimensional �2D� interface equation in Sec. VI and con-
sider its relation to experiments. To end, we provide our
main conclusions in Sec. VII. In Appendixes A–D we collect
details of several analytical calculations.

II. MODEL

For the model formulation, a key experimental fact for
amorphous and amorphizable targets is the formation
through irradiation of a thin amorphous layer at the target
surface �see references in Refs. 2 and 3�. This thin viscous
layer seems to enhance material transport onto the eroded
target and its occurrence will motivate us to describe the
density of mobile material separately from the height of the
immobile substrate. Hence, as done in Refs. 26–29 the main
model assumption is that the surface dynamics can be com-
pletely described through the time evolution of two fields:
the height h�r , t� of the static substrate at time t and point
r= �x ,y� on a reference plane that coincides with the uner-
oded flat surface and the thickness R�r , t� of the �thin� sur-
face layer of mobile species. This thickness can be related
with the density of, say, mobile adatoms through their atomic
volume. Note that for the energies we are considering in the
order of 1 keV, we can take adatoms as the dominant diffus-
ing species, although, e.g., for energies below 1 keV, adva-
cancies may dominate surface transport effects;2 this should
reflect in the values of parameters to be introduced below,
such as, e.g., the surface diffusion constant. In the case of
amorphous or amorphizable materials for which viscous flow
is confined to a thin surface layer, R may be basically iden-
tified with its thickness, but more generally we will interpret
this field as a continuum description of the density of mobile
species on the surface, which naturally occurs also in non-
amorphizing targets.

Dynamics of the two fields are coupled and read as

�tR = �1 − ���ex − �ad − � · J , �1�

�th = − �ex + �ad, �2�

where the x̂ axis is chosen as the projection of the beam
direction onto the xy plane. In Eqs. �1� and �2�, �ex and �ad,
which depend on the geometry of R and h, are, respectively,
the rate at which material is dislodged from the immobile
target due to irradiation �locally decreasing the value of h�
and the rate at which mobile material incorporates back into
the immobile bulk �locally increasing the value of h�. There-
fore, in opposition to the excavation mechanism which is
responsible for the overall decrease in h, there exists a pro-
cess of incorporation back to the bulk analogous of a local
condensation of mobile species. Nevertheless, we will not
consider a spontaneous rate of “evaporation” that is indepen-
dent of the ion beam, so that we are neglecting surface-
tension-mediated evaporation or condensation effects34,35

�equivalently, we are assuming that the pressure in the vapor
phase is negligible�. The excavated material may be either
sputtered away or added back to the mobile thickness R with
an efficiency �1−��� �̄. Therefore, the fraction of the

eroded atoms which are finally sputtered away is represented
by � so that, for ��1, local redeposition is partially
allowed.36 For �=1 all eroded atoms are sputtered away,
while in the �=0 case the sputtering yield is zero. In the last
case the effect of the ion beam is limited to providing mate-
rial for surface transport, and there is no average motion of
the interface. We will refer to the latter two cases as zero-
redeposition and complete redeposition limits, respectively.
They will constitute useful limiting cases below.

Systems �1� and �2� were put forward in Refs. 26 and 27
in which a linear stability analysis was performed. However,
one of the limitations of the choices made in these works for
�ex and �ad is that surface diffusion vanishes in the absence
of redeposition �=1, making the ensuing model ill-defined
�due to a large wave-vector instability�. These limitations
were overcome in Refs. 28 and 29 in which more physical
mechanisms of erosion and addition are considered.

The third term on the right-hand side of Eq. �1� describes
transport of mobile material onto the surface in the form of a
continuity equation. In contrast to Refs. 26 and 27, where
terms representing Erlich-Schwoebel barrier effects �relevant
to IBS of metals1� are incorporated into the diffusive current
J, these are not considered in Refs. 28 and 29. With the aim
of studying amorphous or semiconducting targets we will
follow the latter option. Here we simply consider a diffusive
term for mass transport onto the surface that, in the case of
isotropic materials, is given by J=−D�R, where D may be a
temperature dependent constant �see below�.

Likewise, we will neglect momentum transfer in the di-
rection of the projection of the beam of ions to adatoms, as
this is expected to be non-negligible only at higher energies
�say, above 103 keV �see, e.g., Ref. 37 and a discussion in
Ref. 2��.

A. Excavation

We next need expressions for the excavation and addition
rates. As studied in previous theoretical single-field
studies,16,17,19 the rate at which material is sputtered from the
bulk depends on experimental conditions such as the angle of
incidence, �, substrate and ion species, ion flux, �, average
ion energy, E, temperature, T, and others. In these works,
such dependencies were studied through an assumption on
the shape of the spatial distribution for energy deposition,
mostly Sigmund’s Gaussian distribution.7,15 However, there
are cases in which systematic deviations from the Gaussian
shape occur �see, e.g., Ref. 38 for the occurrence of expo-
nential decay combined with null energy deposition along
the ion track�. As recently shown moreover,39 the shape of
this distribution may affect the very existence of a morpho-
logical instability and thus the formation of a pattern. At any
rate, given the fact that for most ripple patterns the aspect
ratio is small enough so that a small slope approximation is
expected to hold2 �except, possibly, for compound materials
and predesigned substrates40� to lowest nonlinear order, the
form of the excavation rate is expected to be28,29
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�ex = �0�1 + �1x�xh + � · ��2�h� + �x � · ��3�h�

+ �
i,j=x,y

�4ij�i
2� j

2h + �xh � · ��5�h� + �h · ��6 � h��

�3�

independently of the assumed energy distribution.16,17,19,38

Here, we will ignore the effects of direct erosion �knock-on
sputtering� which could be relevant under very shallow en-
ergy deposition conditions �e.g., at very grazing angles of
incidence�. Indeed, the local erosion velocity that follows
from Sigmund’s distribution7,15 has the shape given in Eq.
�3� �see Ref. 19 and Appendix A�. Changes in the energy
distribution are of course expected to modify the values of
the parameters but not the number and shape of the terms
appearing in Eq. �3�, which are a consequence of the loss of
x↔−x symmetry induced by the oblique beam. Note that
reflection symmetry is not lost in the y direction and that the
x−y symmetry can be restored under different incidence con-
ditions, such as normal incidence ��=0� and for rotating tar-
gets �see Ref. 33�. Thus, we have that in general �i
=diag��ix ,�iy� are 2�2 diagonal matrices for i=2,3 ,5 ,6.

The parameter �0 defines the excavation rate of a flat
surface and is directly related to the sputtering yield of a flat
surface, Y0, the ion flux, �, and the number of atoms per unit
volume in the solid, nv, by �0=�Y0 /nv. Since typical fluxes
range from �=1012 cm−2 s−1 to �=1017 ions cm−2 s−1, the
number of atoms per unit volume for an atomic diameter of
0.4 nm is nv=30 nm−3, and typical yields for experiments
with ion energies of some keV are of order unity, then �0
�10−3–102 nm s−1.

While the detailed dependence of the remaining �ijk co-
efficients on the physical parameters can be rather nontrivial,
the main physical content of Eq. �3� is relatively straightfor-
ward. Thus, e.g., as already shown by BH, the coefficients
�2x and �2y are positive �see Appendix A� at small angles of
incidence, which implies faster excavation at surface minima
than at surface maxima, which is the landmark of Sigmund’s
morphological instability.7,15 Similarly, the various terms in
Eq. �3� imply geometrical dependencies of the excavation
rate with surface morphology; say, in Ref. 19, for small �
one has �1x�0 so that the excavation rate is larger on a lee
��xh�0� ripple slope than on a stoss ��xh	0� ripple slope.
However, we will see that, when coupled to surface trans-
port, some of these dependencies can be modified with re-
spect to the simplest expectations. Conspicuous geometrical
dependencies of this sort appear through the coefficients �4ij.
Within Sigmund’s energy distribution,19 these are high order
geometrical dependencies of the sputtering rate that in one-
field equations reflect into terms with the shape of surface
diffusion. However, the present formulation makes it trans-
parent the extent to which such terms do not correspond to
actual material transport on the surface. We will come back
to this point later.

B. Addition

One-field models are basically complete once �ex is pro-
vided. However, in our case we still need to specify the
addition rate �ad. To this end, we have to take into account

that surface diffusion is an independent physical mechanism
that can take place even in the absence of an ion beam. Of
course, it should be susceptible of enhancement by the pres-
ence of the latter due to the induced increase in the density of
diffusing species, but within our framework we would like to
have surface diffusion currents which are not necessarily
proportional to the ion flux. To this end, we will allow for a
nonzero thickness of mobile material Req even in the absence
of excavation ��ex=0� or redeposition ��=0� and write
down a rate that favors addition in highly coordinated sur-
face positions �minima� rather than at sites with low coordi-
nation �surface maxima�. Thus, we write28

�ad = 
0�R − Req�1 − 
2x�x
2h − 
2y�y

2h�� , �4�

which has a form that is reminiscent from the Gibbs-
Thomson expression effect for surface relaxation via evapo-
ration condensation.34,35 In Eq. �4�, 
0 is the mean nucleation
rate for a flat surface, 
0

−1 representing the typical time be-
tween two nucleation events, typically in the range of pico-
seconds, and 
2x, 
2y �0 describe the variation in the nucle-
ation rate with the surface curvatures. In principle this paper
focuses on amorphous or amorphizable surfaces, for which

2x=
2y �
2 although, for the sake of generality, we will
consider the most general case of anisotropic nucleation rates
�
2x�
2y� as far as convenient.

As we will see later, the thickness of the mobile material,
R, is only slightly altered off its equilibrium value, Req, so
that the rate of addition previously considered in Ref. 29 is
equivalent to Eq. �4�, at least sufficiently close to the insta-
bility threshold. We will see in Sec. III that Eq. �4� indeed
leads to proper surface diffusion effects, which will allow us
to identify the phenomenological parameters Req, D, and 
2
with physical constants.

III. PLANAR SOLUTION AND LINEAR STABILITY
ANALYSIS

The existence of a wide separation of time scales between
diffusive events and erosive events will allow us to simplify
the study of models �1�–�4�. We can assume that the excava-
tion rate, �0, is much smaller than any other velocity in-
volved in the problem. Specifically, by considering �0
�
0Req, we can define a nondimensional parameter 
=�0 / �
0Req� which will simplify the study of the system. As
noted above, typically �0�10−3–102 nm s−1, while the fre-
quency of hopping diffusive events, equivalent to 
0, is of
the order12 of 109 s−1. If we consider that the thickness of
the mobile layer in equilibrium is of the order of some
atomic sizes, Req�1 nm, we get as an estimate for typical
values of  to be in the range �10−12–10−7, larger values
corresponding to higher fluxes and/or larger yield conditions.

A. Planar solution

In order to start the study of our model, we first consider
the situation of a perfectly flat interface. In such a case, all
the spatial derivatives of h�r , t� are zero, Eqs. �1� and �2�
becoming
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�tR
p = �̄
0Req − 
0�Rp − Req� , �5�

�th
p = − 
0Req + 
0�Rp − Req� , �6�

where we have defined Rp�t� and hp�t� as the planar solution
fields. Integrating Eq. �5� and assuming R�t=0�=Req we ob-
tain Rp, which reads

Rp�t� = Req�1 + �̄�1 − e−
0t�� �7�

for any value �not necessarily small� of . In Eq. �7� we see
that, after a short time �of the order of 
0

−1�, Rp reaches a
stationary value equals Req plus a small modification of order
 due to the redeposition of excavated material �such an extra
term is absent in the zero redeposition, �=1, case�. As indi-
cated in Sec. II B, even in the absence of excavation ��0

==0� or redeposition ��̄=0�, there still exists an intrinsic
fraction of mobile material equals Req.

Substituting Eq. �7� into Eq. �6� and assuming that h�t
=0�=0, we obtain the evolution of the planar height of the
bombarded surface, namely,

hp�t� = Req�− �
0t + �̄�e−
0t − 1�� → − v0t , �8�

where the last expression holds for times longer than 
0
−1, for

which the planar profile erodes with a constant velocity v0
=�
0Req=��0. This expression gives a clear interpretation
of the parameter � as the overall efficiency of the sputtering
process.

B. Linear stability analysis

The next step is to perform a linear stability analysis in
order to investigate whether a small perturbation of the pla-
nar solution is amplified or damped out in the course of time.
We consider periodic perturbations of the form

R�x,t� = Rp�t� + R0
� exp�ik · r + �kt� , �9�

h�x,t� = hp�t� + h0
� exp�ik · r + �kt� , �10�

where k= �kx ,ky� is the wave vector of the perturbation and
�k its dispersion relation. Substituting Eqs. �9� and �10� into
Eqs. �1� and �2� and neglecting quadratic terms in R0

�, h0
�, we

obtain the following linear system of equations:

��k + 
0 + Dk2 − �̄�ex
� + �ad

�

− 
0 �k + �ex
� − �ad

� 	�R0
�

h0
� 	 = 0, �11�

where

�ex
� = 
0Req
�1xikx − �

j=x,y
��2j + �3jikx�kj

2 − �
i=x,y

�4ijki
2kj

2� ,

�12�

�ad
� = − 
0Req�
2xkx

2 + 
2yky
2� . �13�

Nontrivial solutions only exist when the determinant of the
coefficient matrix equals zero, which allows us to obtain the
dispersion relation �k as the solution of the following com-
plex second-order equation:

�k
2 + �k�a + ib� + �c + id� = 0, �14�

where the coefficients a, b, c, and d are functions of param-
eters and wave-vector components and are given in Appen-
dix B. Equation �14� leads to two branches in the dispersion
relation, corresponding to its two �complex� solutions,
namely,

Re��k
�� = −

a

2
�

1

2�2
���a2 − b2 − 4c�2 + �2ab − 4d�2�1/2

+ a2 − b2 − 4c�1/2, �15�

Im��k
�� = −

b

2
�

1

2�2
���a2 − b2 − 4c�2 + �2ab − 4d�2�1/2

− a2 + b2 + 4c�1/2. �16�

Substituting Eqs. �B1�–�B4� for a, b, c, and d into Eqs. �15�
and �16�, we obtain an analytical expression for the disper-
sion relation as a function of the model parameters. Thus, we
can describe the linear evolution of a periodic perturbation to
the planar solution since the real part of �k is related to the
growth or decay of the perturbation amplitude while the
imaginary part describes its in-plane propagation. Since we
are interested in the behavior of the system for long dis-
tances, we will reduce our analysis of �k to small wave
vectors. In this limit, we get, to lowest order in kx and ky,

Re��k
−� = − 
0, �17�

Re��k
+� = �
0Req��2xkx

2 + �2yky
2 − �̄�1xkx

2� . �18�

Thus, the negative branch is unconditionally stable �pertur-
bations decay exponentially for any wave vector� and non-
trivial dynamics �including the pattern formation process� are
thus governed by the positive branch, which features a band
of unstable modes �wave vectors�, of small magnitude for
small  values, for which perturbations can grow exponen-
tially. The imaginary part of the dispersion relation for k
�k�1 is Im��k�=−�
0Req�1xkx or Im��k�=
−�̄
0Req�1xkx depending of the branch, the sign of kx, and
the sign of ��−1 /2�. The linear in-plane propagation of the
perturbations is related to the imaginary part of the disper-
sion relation �see Eq. �29� below�. For the positive branch,
positive modes, and large redeposition ���1 /2�, we have

Im��k
+� = − �
0Req�1xkx, �19�

which indicates that the perturbations travel along the x di-
rection with a constant velocity equal to �0��1x.

With respect to the time evolution of the amplitude of
perturbations, the linear pattern features are provided by that
mode which makes Re��k

+� a positive maximum. For, say,
small angles of incidence, both �2x and �2y are positive19 so
that Eq. �18� is maximized for infinite wave-vector compo-
nents. A finite maximum is seen to occur once we take into
account higher order corrections �in k� to Eq. �18�, where
stabilizing mechanisms compete with the erosion instability.
Thus,
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Re��k
+� = �
0Req��2xkx

2 + �2yky
2 − �̄�1xkx

2�

− ReqDk2�
2xkx
2 + 
2yky

2� − 
0Req

� �
i,j=x,y


��4ij − � �̄D


0
− �Req
2i	�2j�ki

2kj
2,

�20�

where we have kept terms that are lower order than O�2k4�.
Equation �20� has the same form as the corresponding ex-
pression in one-field theories but with modified coefficients
�see Appendix C�. In general, the O�k2� terms are both of a
purely erosive origin, being directly proportional to the cur-
vature dependencies of the excavation rate �once we neglect
the O�2� contribution�, which are available for several en-
ergy distribution functions.16,19,38 Thus, in particular, our
model respects the signs of these terms as obtained, e.g., by
BH.16 Given their destabilizing nature, they are usually re-
ferred to as “negative” surface-tension terms. The remaining
O�k4� terms in Eq. �20� are of an opposite stabilizing nature
related to surface diffusion effects as justified below.

1. Two-field description of surface diffusion

In order to clarify the physical meaning of the O�k4� con-
tributions in Eq. �20�, it is useful to consider different relax-
ation mechanisms that are known to lead to such type of
terms.

(a) Thermal surface diffusion. Let us study at this point
the extreme limit of no erosion in original model �1�–�4�.
This can be achieved by simply “turning off” the ion-beam
flux setting �0=0, which in turn implies =0. Note that,
physically, in this case we are left with a system in which
variations in the substrate height h are only due to local
detachment or addition and transport of the surface mobile
species R, precisely as in Mullins’ classic description34,35 of
surface diffusion activated by temperature. Mathematically,
the dynamics of ensuing systems �1� and �2� conserves the
total amount of material and, moreover, dynamics is linear
�note that nonlinearities enter only through the rate �ex,
which has been turned off�. Thus, one can readily solve the
full system in this case. To our purposes we are interested in
the long-wavelength limit, for which we can simply take the
→0 limit in the results of the present section. Up to order
O�k4�, and already restricting ourselves to the isotropic case

2x=
2y =
2, the result is

Re��k
+� = − ReqD
2k4, �21�

Im��k
+� = 0. �22�

Thus, the exact evolution equation for the surface height in
this long-wavelength limit reads

�th = − ReqD
2�
4h �23�

to be compared with Mullins’ result,34,35 namely,

�th = −
Ds�s


kBTnv
2 �4h , �24�

where Ds is the surface diffusivity of mobile surface species,
�s is their concentration, 
 is the surface free energy per area,
kB is Boltzmann’s constant, and nv

−1 is the atomic volume.
From this we see that the corresponding contribution in Eq.
�20� is a generalization of surface diffusion in which the
surface free energy is taken to be anisotropic in the two
substrate directions. Moreover, with the use of dimensional
arguments, we identify parameters in �ad as 
2=
 / �kBTnv�,
D=Ds, and Req=�s /nv, whereby �ad becomes an implemen-
tation of Gibbs-Thomson formula.35 In any case, we see that
the applicability of the two-field approach goes beyond the
specific case of erosion by IBS, and it can serve as an intui-
tive phenomenological reformulation of other phenomena
within surface science.

(b) Surface confined viscous flow. It is also a classic
result41 that viscous flow, when confined to a thin surface
layer, leads to a contribution to the height evolution of a
similar form to Eq. �24�,

�th = −
d3


�s
�4h , �25�

where d is the thickness of the viscous layer and �s is the
viscosity. In the case of IBS erosion of silicon targets, the
relevance of such type of relaxation mechanism has been
pointed out.13 Specifically, it is argued in Ref. 13 that the ion
beam induces this type of flow in such a way that 1 /�s
�E�, where E is the average ion energy. Notice that, under
this assumption, all O�k4� terms in Eq. �20� would become
proportional to ion energy and flux.

In general, one expects both effects, thermal surface dif-
fusion and ion-induced surface viscous flow, to occur simul-
taneously in IBS systems,12 so that an equation such as Eq.
�23� should account for the effects described by Eqs. �24�
and �25�. A form to accommodate this fact is to assume on a
phenomenological basis that Req and D include both thermal
�i.e., beam independent� and beam dependent contributions.
However, in the absence of an explicit relation between these
variables and the experimental conditions �such as the ion
energy, flux, temperature, etc.� in the various kinetic regimes,
Req and D will be considered as independent parameters in
our model. For this reason, in our study we will focus on
general morphological properties which are not restricted by
the particular dependencies of these parameters with the ex-
perimental conditions.

2. Features of the linear instability

We now come back to the full IBS model �i.e., for generic
�0�0�. Note that there are up to three different O�k4� terms
�second and third lines in Eq. �20��. Besides thermal surface
diffusion of the type discussed in Sec. III B 1, the terms pro-
portional to �4ij �on the last line of Eq. �20�� originate in the
high order dependence of the excavation rate �ex with the
height derivatives and correspond to the so-called “effective
smoothing” terms in one-field models.19,42 As is clear from
our present formulation, being independent of Req and D,
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these terms do not originate in actual material transport on
the surface.43 In marked contrast, the remaining O�k4� terms
on Eq. �20� do couple excavation �they are proportional to
�2i� to surface transport �being proportional to either D or
Req
2i�, a feature that is beyond one-field descriptions. In
particular, they may become temperature dependent through
the latter parameters, which will have relevant implications
below. Similarly to one-field models, “surface-diffusion-
like” terms oppose the erosive instability and lead to selec-
tion of a typical length scale in terms of the wave vector
which grows �linearly� fastest. From Eq. �20�, we can obtain
the features �orientation and magnitude� of such mode pro-
viding the ripple structure.

(a) Ripple orientation. Using the results in Appendix C,
for the small physically relevant values of , the ripple struc-
ture can only align along the x or the y directions. Using Eq.
�20�, for isotropic thermal surface diffusion, 
2x=
2y, the
ripple pattern is oriented along the x direction �with crests
aligned in the y direction� if �2x	�2y or in the y direction
�with crests aligned in the x direction� when �2y 	�2x or is a
linear superposition of the two orientations when �2y =�2x, in
which case one has a square-symmetric cell arrangement
rather than a proper ripple structure. These results for the
ripple orientation generalize those of one-field models,16,19

for which there is moreover abundant experimental confir-
mation �see, e.g., Refs. 2 and 3�. When thermal surface dif-
fusion is anisotropic, 
2x�
2y, the possibilities of alignment
for the ripple pattern are again along the x axis, along the y
axis, or simultaneously in both directions �corresponding to
an array of rectangular cells� if �2x

2 
2y =�2y
2 
2x.

(b) Ripple wavelength. In the cases above, the leading
contribution �in powers of � of the wave vector at which the
linear dispersion relation is maximized reads

kx,y
� ���
0�2x,y

2D
2x,y
=� �0��2x,y

2ReqD
2x,y
, �26�

where the x �y� subindex applies when the ripples align in
the x �y� direction. Recalling the order of magnitude of the
model parameters as given in Sec. II A, we can substitute
them into Eq. �26�. Assuming further �2x,y and 
2x,y to be of
the same order of magnitude �e.g., assuming that the only
relaxational mechanism is thermal surface diffusion and em-
ploying the relations given in �a� in Sec. III B 1�, we have
�2x,y =0.18 nm and 
2=3.8 nm using data for Si�001� as in
Ref. 11 for T=500 °C and D�105 nm2 s−1 as measured in
Ref. 12. We thus obtain k���10−4–10−2�Req

−1/2 nm−1, where
we have used values for �0=10−3–102 nm s−1 as above and
the thickness of the mobile surface species layer, Req, must
be given in nanometers. If we consider this thickness to be
comparable to a few atomic diameters, Req�1 nm, we fi-
nally obtain an estimate of the linear ripple wavelength l�

=2� /k�. Thus, l��10–104 nm, in agreement with the ex-
perimental orders of magnitude.3

Subdominant contributions to the ripple wavelength are
physically very informative of the interplay among the
physical mechanisms present in the two-field model. Thus,
for instance, in the case of ripples along the x direction one
gets to next order in ,

l� = 23/2��DReq
2x

��0�2x
−

�x

�
+

�4xx

�2x
	1/2

, �27�

where we have used the parameter combinations

�i =
�̄D


0
− �Req
2i, i = x,y . �28�

In view of the physical interpretation of the various param-
eters entering Eq. �27�, we see that the argument of the
square root in this expression is the sum of a temperature
independent contribution �the term �4xx /�2x� corresponding
to the ion-induced effective diffusion of Ref. 19 and terms
which include both thermal and beam dependent contribu-
tions. Such a compound structure for the linear ripple wave-
length coincides precisely with that employed by Umbach et
al.13 when showing the importance of surface viscous flow in
order to account for the experimental behavior of the ripple
wavelength with flux and temperature. It also has the same
shape as that proposed in Ref. 2, capturing in a phenomeno-
logical way various experimental observations. We again
stress that formula �27� is obtained within a linear approxi-
mation for which the ripple wavelength is a time independent
quantity. Thus, if ripple coarsening takes place in a given
experiment, the finally observed wavelength is expected to
depart from the value given by Eq. �27�.

(c) Velocity of transverse ripple motion. A third pattern
feature that we can extract analytically within linear approxi-
mation is the velocity for transverse ripple motion. This is
the velocity at which, say, a local minimum of the linear
ripple structure travels across the substrate, corresponding to
the phase velocity of a wave mode.44 Note that the imaginary
part of the dispersion relation only depends on the x compo-
nent of the wave vector, so that �linear� ripple motion takes
place only in the x direction. In order to compute its velocity
we simply have to take the ratio between the imaginary part
of the linear dispersion relation and the wave vector, evalu-
ating at the maximum of the real part of �k. Thus, expanding
Eq. �19� to O�kx

3� we obtain

V� = − � Im��kx

+ �

kx

�
kx

�
= ��0�1x +

4�2�0

�l��2 �− ��3x + �x�1x� .

�29�

In the case of one-field models, an analogous expression is
obtained, except for the new term proportional to �x, which
appears here due to the coupling between erosion and trans-
port. Note the importance of an analogous term �that is pro-
portional to the ion-beam flux and whose final sign is op-
posed to that of the combined first and second summands in
Eq. �29�, see, e.g., Appendix A� in order to correctly account
for the experimental direction of ripple motion, as stressed in
Ref. 22. In this reference, thermal spikes were invoked in
order to justify such an extra contribution. In contrast, our
present two-field formulation allows us to obtain a similar
correction �e.g., in the analogous zero-redeposition limit we
get V�=�0�1x− (4�2�0 / �l��2)��3x+Req
2x�1x��, without the
need for mechanisms that differ from, say, linear collision
cascades combined with surface transport. Nevertheless, as
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with the ripple wavelength, nonlinear effects can in general
influence the observed velocity of lateral ripple motion, as
seen in Sec. VI A 2.

IV. NONLINEAR ANALYSIS AND EFFECTIVE INTERFACE
EQUATION

During the development of the morphological instability,
a time is reached after which nonlinear terms can no longer
be neglected and a nonlinear analysis is needed. Note that the
band of unstable Fourier modes extends from k�=�2kx,y

�

down to k=0, its size being controlled by the square root of
the small parameter , as seen in Eq. �26�. Moreover, the
fastest growing mode k� is also proportional to 1/2. Thus,
−1/2 provides us with a characteristic length scale associated
with the linear instability and makes it natural to define slow
spatial variables that are of order unity at the scale of the
linear ripple wavelength, namely, X=1/2x and Y =1/2y.
Moreover, it is also possible to obtain a estimation of the
time scales associated with the translation �the imaginary
part of �k

+� and growth �the real part of �k
+� of the linear

instability. Thus, by substituting the value of k� in Eqs. �19�
and �20�, the imaginary part scales as 3/2 and the real part as
2. Hence, analogously to the slow spatial variables, we can
define two slow time variables, T1=3/2t and T2=2t, associ-
ated with in-plane translation and vertical growth, respec-
tively. These natural variables will allow us to perform a
multiple-scale analysis in order to obtain a closed equation
for h using the fact that, near the instability threshold
�namely, for small  values�, R tends to its stationary value
much faster than h. This will be seen to allow for an adia-
batical �perturbative� elimination of R from the dynamics.

We will use a frame of reference comoving with the pla-
nar solution �Eqs. �7� and �8�� in order to investigate how the
solution evolves around it. We write

h = hp + h̃ �30�

R = Rp + R̃ . �31�

The strategy consists in expanding h̃ and R̃ in powers of 1/2,
substituting these expressions into Eqs. �1� and �2� and solv-
ing to increasingly higher orders in . Before doing that we
will write Eqs. �1� and �2� in terms of the slow X, Y, T1, and
T2 variables by means of the chain rule,

�x = 1/2�X, �32�

�y = 1/2�Y , �33�

�t = 3/2�T1
+ 2�T2

, �34�

to obtain

3/2�T1
R̃ + 2�T2

R̃ = �̄�̃ex − �̃ad + D�2R̃ , �35�

3/2�T1
h̃ + 2�T2

h̃ = − �̃ex + �̃ad, �36�

with

�̃ad = 
0�R̃ + Req � · �
2 � h̃�� , �37�

�̃ex = 
0Req�3/2�1x�Xh̃ + 2�� · ��2 � h̃� + �h̃ · ��6 � h̃��

+ 5/2��X � · ��3 � h̃� + �Xh̃ � · ��5 � h̃��

+ 3 �
i,j=x,y

�4ij�i
2� j

2h̃� , �38�

where we have used the value of the temporal derivatives of
the planar solutions, Rp and hp, given by Eqs. �5� and �6�,
expressed all space derivatives in the slow variables, and
defined 
2�diag�
2x ,
2y�.

Expanding now R̃ and h̃ in powers of 1/2 as

R̃ = �
n=0

n/2Rn, �39�

h̃ = �
n=0

n/2hn, �40�

we seek to solve for the various orders Rn, hn by substituting
the above expansions into Eqs. �35� and �36�.

Note that from Eq. �35� and substituting the value of �̃ad
we obtain

R̃ = − Req � · �
2 � h̃� +
1


0
��̄�̃ex + D�2R̃

− 3/2�T1
R̃ − 2�T2

R̃� , �41�

which, together with the shape of �̃ex given by Eq. �38�,
indicates that, for any order n, the Rn coefficient depends on

terms of lower orders in the expansion of R̃ and h̃. Thus, the

terms obtained in the expansion of R̃ can be substituted back

into Eq. �36� to get a closed equation for the evolution of h̃.
While details of this procedure are given in Appendix D, the
resulting equation reads, in the original time and space vari-
ables,

�th = �th
p + 
x�xh + �

i=x,y
��i�i

2h + �i
�1���ih�2 + �i�i

2�xh

+ �i��xh���i
2h�� − �

i,j=x,y
�Kij�i

2� j
2h + �ij

�2��i
2�� jh�2� ,

�42�

where we have neglected height derivatives that are of sixth
or higher orders, we have undone the transformation to the
frame comoving with the planar solution, and parameters are
related to those of original two-field models �1� and �2� as


x = − �0��1x,

�x = − �0��2x +
�0

2


0
�̄��1x

2 , �y = − �0��2y ,

�i
�1� = − �0��6i, �i = − �0��5i,
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�i = �0
− ��3i + � �̄D


0
− �Req
2i	�1x� ,

Kij = DReq
2i + �0
��4ij − � �̄D


0
− �Req
2i	�2j� ,

�ij
�2� = − �0� �̄D


0
− �Req
2i	�6j . �43�

Note that in Eq. �43� we have restored the expression of  in
terms of physical parameters. As mentioned in Sec. III A,
after a time of order 
0

−1 the profile erodes uniformly with
velocity v0=−�th

p=��0.
We have obtained a closed evolution equation for h from

which R has been eliminated and whose behavior is equiva-
lent to that predicted by the full two-field model near the
instability threshold. Note that, in particular, the linear dis-
persion relation for Eq. �42� coincides, within our long-
wavelength approximation, with that of the original model as
given by Eqs. �19� and �20�. Moreover, as in previous one-
field descriptions, in Eq. �42� there is not reflection symme-
try in the x direction due to the oblique ion incidence. This
symmetry is restored if the bombardment is perpendicular to
the substrate or else if the target is rotated simultaneously
with irradiation, as described in Ref. 33. Actually, Eq. �42�
generalizes the anisotropic interface �Eq. �A1�� that is ob-
tained by one-field theories19 by the appearance of additional
nonlinear terms �with coefficients �ij

�2��. These, together with
the modified dependence of parameters on physical con-
stants, are the main effects of having explicitly described the
dynamics of the diffusive field R onto the evolution of the
profile and will be seen below to be instrumental in order to
provide an improved description of nanopatterning by IBS.

V. 1D MODEL

Equation �42� is a highly nonlinear and anisotropic system
whose full analysis is rather complex. Before analyzing it in
detail and in order to understand more directly the physical
content of its various terms and parameter dependences on
physical constants, we are going to study first a 1D counter-
part of the erosion model studied in Secs. I–IV. We will thus
consider that the x axis is the only relevant direction to de-
scribe the topography of the system. This simplification is
very frequently done in models for sand ripple
formation,30–32 in which translation invariance is assumed in
the direction perpendicular to the wind. Note that such an
approximation still respects the physically essential lack of
reflection symmetry in the x axis. Thus, by repeating the
approach of Sec. IV in the case that there is no variation in
the fields in the y direction, we obtain the following one-
dimensional equation:

�th = − v0 + 
x�xh + �x�x
2h + �x

�1���xh�2 + �x�x
3h + �x��xh���x

2h�

− Kxx�x
4h − �xx

�2��x
2��xh�2, �44�

where by an abuse of language we will employ similar sym-
bols for parameters to those of Sec. IV, and the relations of

these with the coefficients of the coupled model are

v0 = �0�, 
x = − �0��1x, �x = − �0��2x +
�0

2


0
�̄��1x

2 ,

�x = �0
− ��3x + � �̄D


0
− �Req
2x	�1x�, �x = − �0��5x,

Kxx = DReq
2x + �0
��4xx − � �̄D


0
− �Req
2x	�2x� ,

�x
�1� = − �0��6x, �xx

�2� = − �0� �̄D


0
− �Req
2x	�6x.

�45�

Equation �44� provides the generalization of the 1D counter-
part of Eq. �A1�, through appearance of the additional �xx

�2�

term. Actually, restricting ourselves to even terms in x de-
rivatives �that is, for 
x=�x=�x=0�, Eq. �44� becomes the
mixed Kuramoto-Sivashinsky �KS� equation �see Ref. 45
and references therein� that generalizes the KS equation.46,47

In general note that the coefficients �Eq. �45�� directly repro-
duce those associated with the x direction among the larger
set of parameters in Eq. �43�. Although one dimension, Eq.
�44� is still a highly nonlinear equation with behaviors that
may range from in-plane traveling periodic �ordered� struc-
tures to chaotic �disordered� cell dynamics, as occurs with its
�xx

�2�=0 limit.48,49

A. Physical interpretation of parameters

Before attempting to understand the interplay among the
various terms in Eq. �44�, it is worth giving consideration to
each one of them individually. To this end, it is instructive to
start by studying the two possible limiting cases for param-
eter �.

1. Complete redeposition (�=0)

Equation �44� becomes strongly simplified when the ero-
sive mechanism limits itself to transferring material from the
immobile bulk to the mobile diffusive current, without sput-
tering proper, akin to the role of IBS for ion-beam assisted
deposition.50 In this case, the only nonzero coefficients in Eq.
�45� are

�x =
�0D�1x


0
, �xx

�2� = −
�0D�6x


0
,

Kxx = DReq
2x −
�0D�2x


0
, �46�

the interface equation reading merely

�th = �x�x
3h − Kxx�x

4h − �xx
�2��x

2��xh�2. �47�

This equation has the conserved form expected from the fact
that excavation is here limited to matter redistribution. Actu-
ally, in the absence of the third-order derivative term, Eq.
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�47� is known as the conserved Kardar-Parisi-Zhang �CKPZ�
equation,51–53 relevant to conserved surface growth dynamics
such as in typical molecular-beam-epitaxy systems. Note
that, although the surface diffusion coefficient Kxx of Eq.
�46� includes an erosive contribution that is of a destabilizing
nature as long as excavation is favored at surface minima
��2x	0�, being proportional to �0 this contribution is nu-
merically smaller than the stabilizing �thermal� contribution
also present in Kxx. The only remaining nonlinearity in Eq.
�47� reflects �through �6x� the nonlinear dependence of the
excavation rate with the local surface slope. Moreover, al-
ready this term genuinely couples erosion to transport, being
also proportional to D.

2. Zero redeposition (�=1)

This limit corresponds to the usual assumption in previous
one-field approaches. In this case generically Eq. �44� dis-
plays its full shape, with coefficients

v0 = �0, 
x = − �0�1x, �x = − �0�2x,

�x = − �0��3x + Req
2x�1x�, �x = − �0�5x,

Kxx = DReq
2x + �0��4xx + Req
2x�2x� ,

�x
�1� = − �0�6x, �xx

�2� = �0Req
2x�6x. �48�

Among coefficients in Eq. �48�, all but three of them ��x,
Kxx, and �xx

�2�� are directly as predicted by one-field models
�see Eq. �A2��. As for the three remaining coefficients, com-
mon to all three is that they correspond to conservative terms
in the equation of motion. This allows us to understand the
contributions that they include in which transport �through
dependence on Req� couples to an erosive dependence on a
height derivative two orders lower. For example, �x is asso-
ciated with a third-order height derivative and indeed fea-
tures a direct erosive dependence in the third-order coeffi-
cient �3x. However, it also depends �through Req� on the
first-order erosive coefficient �1x, similarly for Kxx and �xx

�2�.
The surface diffusion coefficient Kxx adds to these the ex-
pected contribution DReq
2x discussed in Sec. III B 1. More-
over, note that the ion effective smoothing term with coeffi-
cient �4xx, which reflects the dependence of the excavation
rate with high �fourth� order surface derivatives, appears as a
direct contribution to the surface diffusion coefficient.

About the coefficient of the conserved-KPZ term, note
that for this �=1 case its sign is opposite to that of �x

�1� in
Eq. �48�. This leads to a cancellation mode and mathemati-
cally invalidates Eq. �44� as a description of the physical
system. Indeed, neglecting the �x nonlinearity that does not
participate in the height saturation of the linear instability,32

the remaining nonlinear contributions read, in Fourier space,
−��x

�1�+k2�xx
�2��F���xh�2�, where F denotes Fourier transform.

Due to the signs of the coefficients, there is a wave vector in
the unstable band �cancellation mode� for which the paren-
thesis in this equation vanishes, rendering the system nonlin-
early unstable.54 This undesirable feature actually also oc-
curs in full 2D one-field models when generalized to
sufficiently high orders.20,24,25

3. Partial redeposition (0���1)

Generically we expect partial redeposition to occur under
usual experimental conditions for IBS nanopatterning. After
Sec. IVA2, we see that not only is redeposition a physical
effect to be included but also it allows us to regularize our
mathematical description of the system. Indeed, using the
parameter combination defined in Eq. �28�, we see that pa-
rameter conditions exist for small but nonzero values 0��
�1, for which �x	0 so that �x

�1� and �xx
�2� have the same sign

and cancellation modes do not occur. The numerical values
of � and �x also affect the remaining coefficients in Eq. �45�
but are of a less critical nature. The only contribution that is
exclusive of these partial redeposition conditions is the sec-
ond term in the expression for �x, which, being positive, is of
a stabilizing nature and opposes the sputtering instability. A
similar term can be found in the formation of macroscopic
ripples under the action of the wind when the number of sand
grains is not conserved55 and reflects the geometrical fact
that erosion tends to smooth out inclined surface features.
Nevertheless, such a term being higher order in powers of
�0, we expect it to be numerically small in most practical
cases within our IBS context. In general, the 0���1 case
interpolates between the two extreme cases considered
above, in that the dependence of coefficients �Eq. �45�� on
physical parameters combines the features discussed in Secs.
V A 1 and V A 2.

B. Effective interface equation versus full two-field model

In order to check the analytical approximations made in
the derivation of the effective interface equation and com-
pare its predictions on the dynamics to those of the full origi-
nal two-field model, we have performed a numerical integra-
tion of the 1D coupled set of Eqs. �1� and �2� and of the
related single equation �Eq. �44�� using a Euler scheme for
the time integration and the improved spatial discretization
introduced by Lam and Shin56 for the nonlinear terms. We
have used periodic boundary conditions, lattice constant �x
=1, and time step �t=0.01, checking that results do not differ
significantly for smaller space and time steps. The standard
system size of our simulation has been L=2048. With the
aim of comparing the evolution of the profile for the two
field and the effective equations, the same random initial
height values were chosen, uniformly distributed between
−0.05 and 0.05, and the corresponding parameters were re-
lated following Eq. �45�.

We show in Fig. 1 the evolution described by the 1D
two-field model of the height profile h and the thickness of
the mobile material above h for certain values of the param-
eters. Since =3�10−3 is small, we see that R is indeed only
slightly altered from its equilibrium value �Req=1�. Note
how the morphological instability leads to formation of a
periodic ripple pattern that, as expected, is not symmetric in
the x direction. The thickness of the mobile surface layer
correlates with the topography all along the dynamics, being
smaller at steeper ripple sides.

In Fig. 2 we compare the evolution of the profile for the
1D two-field coupled model with that described by the effec-
tive height equation �Eq. �44��, where the coefficients of both
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systems are related by Eq. �45�. We can see how, starting
from the same flat random initial distribution for both sys-
tems, a periodic surface structure appears with a wavelength
of about the maximum of the linear dispersion relation, and
the amplitude of height variations increases. For the ex-
amples considered in Fig. 2 the wavelength of the linear
instability is given by Eq. �27�, yielding l�=98. At these
short times, when the slopes are not too large so that nonlin-
ear terms are not yet relevant, both profiles match quite ac-
curately. Far from the linear instability threshold, the profiles
become less similar. Since the space and time-scale separa-
tion and the power expansion performed to obtain the effec-
tive equation are only valid for small values of , it is ex-
pected that the smaller the  is, the more similar the profiles
become. However, if we reduce this parameter, the simula-

tions are more time consuming since the characteristic space
and time scales for pattern dynamics are inversely propor-
tional to powers of , as noted in Sec. IV. In any case, for the
values of  considered in our simulations, the effective equa-
tion captures the main features of the original two-field
model, even in terms of the behavior of observables such as
the global surface rms width or roughness W�t� or the ripple
wavelength l�t� �defined as the mean lateral distance between
two consecutive local minima�, as seen in Figs. 3 and 4,
respectively.

C. Nonlinear dynamics for the effective equation

Indeed, at later stages, nonlinearities determine the evolu-
tion of the surface morphology. For the reasons mentioned
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FIG. 1. Height profiles h �dashed line� and thickness of the
mobile material over h �solid line� at different times given by the
1D two-field coupled model with �̄=0.99, �0=0.03, �1=−1, �2

=30, �3=�4=1, �5=−1, �6=−3, Req=
0=
2=1, and D=10. All
units are arbitrary.
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FIG. 2. �Color online� Height profiles at different times given by
the 1D two-field model �black line� for parameters as in Fig. 1 and
by the effective equation �Eq. �44�� �green line� with parameters as
given by relation �45�, namely, v0=−3�10−4, 
x=3�10−4, �x=
−9�10−3, �x

�1�=9�10−4, �x=−0.297, �x=3�10−4, Kxx=1.0993,
and �xx

�2�=0.8901. All units are arbitrary.
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FIG. 3. �Color online� Temporal evolution of the global rough-
ness W�t� given by the two-field model �blue triangles� and by the
effective interface equation �green circles� for the same coefficients
as in Fig. 2. Error bars are smaller than the symbol sizes. All units
are arbitrary.
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FIG. 4. �Color online� Temporal evolution of the lateral pattern
wavelength, l�t�, given by the two-field model �blue triangles� and
by the effective interface equation �green circles� for the same co-
efficients as in Fig. 2. A few representative error bars are given that
represent statistical dispersion. The dashed line corresponds to l�t�
� t0.12. All units are arbitrary.
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above, we will explore this regime through the effective in-
terface equation. Specifically, nonlinear effects induce coars-
ening of structures wherein the cells �ripples� grow in width
and height, their number decreasing in both systems. For
both cases coarsening is such that smaller cells are “eaten”
by larger neighbors until reaching constant amplitude and
wavelength values, while lateral moundlike order is still pre-
served for intermediate distances �more than ten times the
lateral size of the cells�. This behavior is very similar to that
reported in Ref. 45 for the mixed KS equation that corre-
sponds to the 
x=�x=�x=0 limit of Eq. �44� �see also Ref.
33�.

In Figs. 3 and 4 we show the time evolution of the surface
roughness W�t� and ripple wavelength l�t�, averaged over 18
random initial conditions. After a stage in which the ampli-
tude of the linear instability and therefore W grow exponen-
tially, a coarsening process begins �roughly at t�3�105� for
the ripple wavelength. Around t=2�106 this process stops
and the wavelength and amplitude of the pattern reach sta-
tionary values. Specifically, the lateral pattern wavelength
grows from its initial value corresponding to the linear insta-
bility l�=98 until a saturation value, close to l=121. At in-
termediate times this coarsening behavior can be described
by an effective power law l� t0.12, as suggested in Fig. 4. In
the presence of coarsening, the dependence of the asymptotic
values of the ripple amplitude and wavelength with system
parameters differs from those of the linear instability regime.
If one assumes32 that the odd-derivative terms in Eq. �44� do
not contribute to such a coarsening process, approximate val-
ues can be obtained through comparison with coarsening dy-
namics in the conserved KS equation.45 Such estimates are
more accurate in the normal-incidence case,33 to which we
refer the interested reader.

Additional important features of these systems, which are
not present in the equation studied in Ref. 45, are the asym-
metry of the profile and the lateral movement of the pattern.
As we have checked in our simulations, the asymmetry on
the pattern depends only on the �advective� terms corre-
sponding to the coefficients �x and �x of the effective equa-
tion. For negative values of �x and/or positive values of �x
the cell structure tends to be leaning to the right. This can be
observed in Figs. 1 and 2, where the right slopes of the cells
are clearly larger than the left slopes. If �x is positive and/or
�x is negative, the pattern is leaning to the left. If both terms
have the same sign, the orientation of the structure depends
on their relative magnitude.

Considering lateral ripple motion, note first that the linear
prediction for the velocity �Eq. �29�� has the form V�=−
x
+4�2�x�l��−2. The contribution due to 
x is a uniform trans-
lation �along a direction on the x axis that is opposite to the
sign of 
x� that can actually be canceled out by an appropri-
ate choice of reference frame. Thus, the only remaining
terms which influence in-plane displacement of the pattern
are again �x �linear� and �x �nonlinear�. For the values we
have considered for the remaining parameters, a positive sign
of �x and/or �x induces ripple motion toward positive x,
while negative values of these parameters lead to lateral
ripple motion in the opposite direction. In Fig. 5 we observe
the lateral movement of the pattern as described by Eq. �44�
for parameters as in Fig. 2. Simultaneously with erosion and

mean height evolution toward larger negative values, the pat-
tern is moving toward the left. Here, the movement is domi-
nated by 
x and �x, which induce motion toward the nega-
tive x values.

The results reported in this section allow us to conclude
that both the effective interface equation and the two-field
model, whose coefficients are related through Eq. �45�, cap-
ture common features observed in experiments such as the
coarsening process of the pattern wavelength, the short-range
lateral order, and the nonuniform lateral displacement of the
structure. On the other hand, due to the fact that the scales
associated with the experimental linear instability are very
large �of the order of −1/2�, one needs very large simulations
in order to compare with experiments. These are available to
the effective equation, in which parameters can be rescaled
with the aim of accelerating the simulations. For these rea-
sons, in going to the physical 2D case in Sec. VI, we will
limit our study to the 2D effective height �Eq. �42��. We will
consider some illustrative examples of the ensuing surface
dynamics that allow us to understand the richness of the
behaviors that can be described by such a complex nonlinear
system.

VI. FULL 2D EFFECTIVE INTERFACE EQUATION

Equation �42� generalizes one-dimensional Eq. �44� to the
case of fully anisotropic two-dimensional targets, in a way
that is consistent with reflection symmetry in the y direction,
as expected from the ion incidence geometry. As mentioned
earlier, Eq. �42� generalizes one-field Eq. �A1� through ap-
pearance here of the �anisotropic� conserved-KPZ-type terms
�i

2�� jh�2. In turn, Eq. �A1� already provided an anisotropic
generalization �through the presence of odd derivatives in the
x coordinate� of the two-dimensional KS equation.17,23 To the
best of our knowledge, Eq. �42� adds to the relatively small
number48 of �local� evolution equations for fully anisotropic
two-dimensional pattern forming systems, which are derived
from constitutive laws. In the context of hydrodynamic mod-
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FIG. 5. Height profiles between t=1.5�106 �top� and t=1.8
�106 �bottom� evaluated at equally spaced intervals of 104 time
units for the effective Eq. �44� and parameters as in Fig. 2. All units
are arbitrary.
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els of ripple formation on aeolian sand dunes, isotropic 2D
equations, when available, are limited to conservative
dynamics,57 while in the cases of thin-film surfaces nonlin-
earities that arise are of a different type.58–60

Although the parameter space of Eq. �42� is much larger
than that of its one-dimensional counterpart �Eq. �44��, the
physical interpretation of the various terms and coefficients
is completely analogous, corresponding to a natural generali-
zation of those appearing in the latter. Given that the main
linear features of the two-dimensional equation were already
discussed �and compared with typical experimental data� in
Sec. III B 2, we next consider numerical simulations of Eq.
�42� that show the main morphological features of its full
dynamics, which will be later compared with experimental
results. Some peculiarities on the cancellation modes that
may arise in Eq. �42� are considered analytically in a specific
section.

A. 2D dynamics: Numerical results

Far from a complete analysis of Eq. �42�, we will limit
ourselves in this section to a qualitative study of its main
properties and how it successfully reproduces some experi-
mental features which are not included in previous con-
tinuum descriptions.

Thus, we have performed a numerical integration of Eq.
�42� using a scheme that generalizes that employed in the
one-dimensional case, namely, an Euler updating rule with
�t=10−3 for the time evolution and the finite difference pre-
scription of Ref. 56 for the nonlinear terms, with �x=1. The
standard size of our simulations was L�L=256�256 with
periodic boundary and random initial conditions. We con-
sider a reference plane comoving with the eroded surface
with a constant velocity −v0; thus the effective equation that
we integrate is Eq. �42� for v0=0.

The evolution of the height as described by Eq. �42� is
depicted in Figs. 6–8 for different values of the coefficients,
with the x axis oriented along the horizontal direction �see
also supplementary videos�.61 In each figure three snapshots
�top views and lateral cuts� are provided for a given param-
eter condition, with time increasing from panel �a� to panel
�c�. In all these examples and resembling experimental
morphologies,3 both the amplitude and the wavelength of the
ripples grow with time, while the pattern disorders in heights
for long lateral distances. The detailed shapes of the topog-
raphies, however, are quite different depending on the values
of the parameters. We can obtain longitudinally disordered
ripples which are frequently interrupted along the direction
of the crests, as in Fig. 6, or else ordered straight and wide
ripples occur for different parameter conditions as in Fig. 7.
An even more disordered pattern is depicted in Fig. 8, where
the ripples group into domains of about three cells whose
crests run along the x axis, as expected from the parameter
values �note �x	0 in this example�.

Similar to the one-dimensional case, before slopes are
large enough to make nonlinear terms non-negligible, the
evolution of the morphology is governed by linear terms.
This will allow us to separate the dynamics into two different
regimes, linear and nonlinear, according to the type of terms
that control the evolution.

1. Linear regime

As noted in Sec. IV, the linear dispersion relation of Eq.
�42� coincides with that of the original model described in
Sec. III B. Thus, for isotropic thermal surface diffusion, the
ripple crests are oriented along the y �x� axis if �x ��y� is
more negative than �y ��x�, thus reproducing the ripple ori-
entation as predicted by the BH theory. Numerical integra-
tion within linear regime indeed retrieves the dependence of
the ripple orientation as a function of the values of �x and �y
as shown in Figs. 6–8. Furthermore, we have also checked in
our simulations that the lateral wavelength of the pattern is
given by the relation between the surface-tension and diffu-
sion terms. One way to do that is to measure the distance
from the origin to the first maximum in the height autocor-
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FIG. 6. Time evolution of relatively disordered ripples with mild
wavelength coarsening �see also supplementary video� �Ref. 61�.
Snapshots at increasing times: �a� t=10, �b� t=106, and �c� t=953
for Eq. �42� with v0=0, 
x=−0.1, �x=−1, �y =−0.1, �x=1, �y

=0.5, �i=0.1, �x
�1�=1, �y

�1�=5, �i,j
�2�=5, and Ki,j =1. Top views �left

column� and corresponding transverse cuts at y=L /2 �right col-
umn�. Inset in �a� is its corresponding height autocorrelation. All
units are arbitrary.
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relation function which is represented in the inset of Figs.
6�a�, 7�a�, and 8�a�. Since Kij =1 is considered for all these
examples, we have l�=2� /ki

�=2��−2 /�i�1/2.
While even linear derivatives in Eq. �42� are responsible

for amplification or attenuation of the ripple amplitude, they
do not induce lateral motion of pattern. Conversely, odd de-
rivatives breaking the x→−x symmetries indeed induce in-
plane lateral ripple motion. We have checked in our simula-
tions that, as expected, the term corresponding to the
coefficient 
x does not alter the shape of the morphology but
merely produces a uniform movement along the x axis. As in
the one-dimensional case, the direction of this movement is
opposite to the sign of 
x. On the other hand, again as in the
1D case, the �i terms are responsible for both lateral move-
ment of the structure and shape asymmetry. These effects can
be observed in Fig. 9 where we show the time evolution �as

seen from a comoving reference frame� of transverse cuts of
the surface for a given parameter condition. We have
checked that, indeed, transforming back to a rest reference
frame, the ripple velocity coincides, for times within linear
regime, with that predicted by Eq. �29�. Already visual in-
spection of Fig. 9 suggests deviations from a uniform veloc-
ity for transverse ripple motion. This is a signature of non-
linear effects �specifically, due to ripple coarsening
manifested by a non constant ripple wavelength l�t��, that are
considered next.

2. Nonlinear regime

For long enough times, nonlinear terms have to be con-
sidered in order to understand the evolution of the morphol-
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FIG. 7. Time evolution of relatively ordered ripples with size-
able wavelength coarsening �see also supplementary video �Ref.
61��. Snapshots at increasing times: �a� t=10, �b� t=106, and �c� t
=953 for Eq. �42� with the same parameters as in Fig. 6, except for
�x

�1�=0.1. Top views �left column� and corresponding transverse
cuts at y=L /2 �right column�. Inset in �a� is its corresponding
height autocorrelation. All units are arbitrary.
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FIG. 8. Time evolution of relatively disordered ripples with siz-
able wavelength coarsening �see also supplementary video �Ref.
61��. Ripple orientation as for typical large incidence angle condi-
tions. Snapshots at increasing times: �a� t=10, �b� t=106, and �c�
t=953 for Eq. �42� with v0=0, 
x=0.1, �x=1, �y =−0.95, �i=
−0.5, �i=0.1, �x
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�1�=1.0, �i,x

�2�=0.5, �i,y
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Top views �left column� and corresponding transverse cuts at x
=L /2 �right column�. Inset in �a� is its corresponding height auto-
correlation. All units are arbitrary.

MUÑOZ-GARCÍA, CUERNO, AND CASTRO PHYSICAL REVIEW B 78, 205408 �2008�

205408-14



ogy. Those containing even derivatives are reflection sym-
metric in x and, therefore, are not responsible for lateral
movement or any asymmetries of the pattern. On the other
hand, we have checked that the terms corresponding to the
coefficients �i indeed induce lateral motion of the pattern and
asymmetry in the x axis. For the parameters considered in
our simulations, positive values of �i induce a nonuniform
lateral motion of the pattern toward positive x values. Since
the contributions of the �i nonlinearities to the evolution of h
increase in the nonlinear regime, these can even induce a
change in the direction of the pattern movement as observed
in Fig. 10, where we plot the time evolution of a transverse
cut of the surface. In this figure �i=−2�0; thus, as noted in
Secs. V C and VI A 1, this induces a movement of the pat-
tern toward negative x. These terms dominate during the lin-

ear regime but, as a result of the increase in the values of
lower order surface derivatives, the �i=4.5	0 terms take
over and change the direction of lateral ripple motion toward
positive x values. This example underscores the complex
ripple dynamics induced by nonlinear effects, which should
be taken into account in the discussion of the potential limi-
tations of the current BH picture to quantitatively describe
ripple motion.2,22

A simpler type of nonuniform ripple motion that has been
reported experimentally corresponds to movement in a fixed
direction, but with a nonuniform velocity �see, e.g., Ref. 62�.
As mentioned above, this behavior correlates with the occur-
rence of wavelength coarsening �see below�, and Eq. �42� is
the first two-dimensional continuum equation to describe it
within the IBS context. As an example, in Fig. 11 we show
the �nonuniform� ripple velocity V�t� in the nonlinear regime
as a function of time for the same simulations as shown in
Fig. 9. Here the velocity is computed for a single surface
minimum once the pattern is completely formed. At longer
times the ripple velocity seems to reach a negligible value
compatible with arrest of ripple motion. This might be re-
lated with a similar interruption of ripple coarsening that is
illustrated below.

Nonlinear terms containing derivatives that are reflection
symmetric in x are responsible for the eventual saturation of
the ripple amplitude and for the quality and range of in-plane
order of the ripple pattern. As checked in our simulations and
described for the 1D effective equations studied in Sec.
V C,45 the larger the value of the ratio of �i,j

�2� to �i
�1� terms is,

the longer the coarsening process is, and the more ordered
the morphology becomes for the same total time �i.e., ion
dose�. This is shown in Figs. 12 and 13, in which the time
evolutions of the global surface roughness and of the lateral
wavelength of the pattern are depicted for different values of
this ratio, denoted as r. In general, the roughness increases
exponentially �linear instability regime�, after which the non-
linearities are able to stabilize the system and induce slower
growth for the roughness, W�t�, finally reaching a time inde-
pendent value. For very small r ratios, this stationary state
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FIG. 9. In-plane nonuniform ripple motion as seen from the
evolution of transverse cuts of the surface at y=L /2 for equally
spaced times between t=0 and t=1500. Results from the numerical
integration of Eq. �42� with v0=0, �x=−1, �y =−0.1, 
x=�i=0, �i

=−2, �x
�1�=1, �y

�1�=5, �i,x
�2�=50, �i,y

�2�=5.0, and Ki,j =1. All units are
arbitrary.
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FIG. 10. Change in the direction of in-plane ripple motion as
seen from the evolution of transverse cuts of the surface at y
=L /2 for equally spaced times between t=0 and t=5000. Results
from the numerical integration of Eq. �42� for parameters as in Fig.
9 except for �i=4.5. All units are arbitrary.
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FIG. 11. �Color online� Temporal evolution of the lateral ripple
velocity, V�t�, given by the numerical integration of Eq. �42� in the
nonlinear regime for the same coefficients as in Fig. 9. A few rep-
resentative error bars are given. All units are arbitrary.
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seems to be reached earlier, and the intermediate slow
�power-law� growth regime of the roughness is shorter. For
larger values of r, this intermediate regime has a wider du-
ration and can be more accurately described by a power law
with the form W�t�� t� for some effective value of the
growth exponent �. Note that, in the r→� limit �equiva-
lently, �i

�1�=0�, Eq. �42� does not seem to have a stationary
state, similarly to the conserved KS �CKS� equation.45,63

Note that the growth exponent for this case is63 �CKS=1. The
gradual change in the duration of this intermediate power-
law regime with physical parameters �that enter the value of
the ratio r� and the different values for the effective growth
exponent that can be obtained when trying to fit a power law
to such type of data may account for the spread in the related
growth exponents experimentally reported in the context of

ripple formation �see references in Refs. 2 and 3�.
Regarding the quality and range of order in the ripple

pattern at intermediate and long times, Fig. 12 already shows
that the morphology is more disordered �the roughness is
larger� for smaller values of r. Moreover, for these cases, as
seen in Fig. 13, the stationary value of the pattern wave-
length is smaller and is achieved earlier. A qualitatively simi-
lar behavior has been experimentally found in IBS of silicon
targets under normal-incidence conditions.64 Note that stan-
dard one-field continuum Eq. �A1� corresponds to the r=0
limit, for which there is no coarsening and the system is
roughest �the roughness being larger almost by an order of
magnitude, as seen in Fig. 12�. Hence, such an equation was
not able to account for the observed ripple coarsening and
improved ordering, in marked contrast with present Eq. �42�.
As in the case of the roughness, for the opposite CKS-type
limit r→� ��i

�1�=0�, the ripple wavelength does not reach a
stationary value. Rather, both the amplitude and l�t� increase
indefinitely, similarly to the CKS case for which l�t�CKS
� t0.5 until a single ripple �with a parabolic cross section�
remains in a finite system.63

Results obtained for one-dimensional anisotropic Eq. �44�
and for the 1D and 2D isotropic counterparts33,45 lead us to
expect disorder to dominate the morphological features at the
largest length and time scales in the system, as long as can-
cellation modes do not arise �namely, as long as �x

�1� and �y
�1�

have the same signs, see Sec. VI A 3�. Thus, we expect scale
invariant morphologies and rough surfaces for much larger
distances than the pattern wavelength. The statistics of the
surface fluctuations at these scales are expected to be char-
acterized by the critical exponents of some of the universal-
ity classes of kinetic roughening.52 However, the case of the
isotropic KS equation not being even completely
understood,65 we can only conjecture, by analogy with the
1D case, that the asymptotic scaling of Eq. �44� is in the 2D
KPZ universality class.

3. Cancellation modes

Equation �42� can display CMs, analogously to its own
1D counterpart �Eq. �44�� and to the anisotropic Kuramoto-
Sivashinsky �AKS� equation.18,23 Recall that CMs in Eq. �44�
arise due to cancellation between the nonconserved ��xh�2

and the conserved �x
2��xh�2 KPZ nonlinearities and lead to

�possibly� finite time blow up of the solutions to the differ-
ential equation. We will refer to these as mixed Kuramoto-
Sivashinsky �MKS� CMs. In marked contrast, CMs in the
AKS system appear only when the coefficients of the two
nonlinear terms �x

�1� and �y
�1� have different signs and lead to

a long-time ripple pattern that is oriented along an oblique
direction in the xy plane,18,23 the system apparently support-
ing such type of solution for long times. We will denote these
as AKS CMs.

Given the large parameter space of Eq. �42�, the two types
of CMs mentioned can arise, and we consider separately the
conditions for appearance of each of them. Notice that it
suffices to consider the nonlinearities that are reflection sym-
metric in x, as they are the only ones involved in the evolu-
tion �and putative blow up� of the ripple amplitude.

(a) MKS-type CMs. The nonconserved and conserved-
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FIG. 12. �Color online� Temporal evolution of the global rough-
ness, W�t�, given by the effective equation Eq. �42� with v0=0, �x

=−1, �y =−0.1, 
x=�i=�i=0, Ki,j =1, �i
�1�=0.1, and �i,j

�2�=0.1r for
different values of r. The solid and dashed lines show the fit to
power laws for �i

�1�=0 and r=100 where W� t1.00 and W� t0.71,
respectively. All units are arbitrary.
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FIG. 13. �Color online� Temporal evolution of the lateral wave-
length of the pattern, l�t�, given by the effective equation �Eq. �42��
for the same coefficients as Fig. 12. The dashed line shows the fit to
a power law for r=100 where l� t0.38. The fit in the same region for
�i

�1�=0 yields l� t0.48 �not shown�. All units are arbitrary.
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KPZ nonlinearities in Eq. �42� read explicitly

N�h� � �x
�1���xh�2 + �y

�1���yh�2 − �xx
�2��x

2��xh�2 − �xy
�2��x

2��yh�2

− �yx
�2��y

2��xh�2 − �yy
�2��y

2��yh�2, �49�

whose Fourier transform reads

F�N�h�� = QxF���xh�2� + QxF���yh�2� , �50�

where we have defined

Qx = �x
�1� + �xx

�2�kx
2 + �yx

�2�ky
2, �51�

Qy = �x
�1� + �xy

�2�kx
2 + �yy

�2�ky
2. �52�

Now, using Eq. �43�, we get

Qi = �i
�1��1 +

�

�
k2	 , �53�

where we have assumed isotropy in the surface-tension co-
efficients as done in Appendix C, 
2x=
2y =
2, and intro-
duced �= �̄D /
0−�Req
2. As a function of system param-
eters, there are two possibilities:

�i� If ��0, then Qx, Qy �0, so that there are no cancel-
lations among nonconserved and conserved-KPZ terms
along any direction. This is the 2D generalization of the
analogous 1D condition discussed in Sec. V A.

�ii� If ��0, then cancellation occurs simultaneously in
the x and y directions for all Fourier modes on the circle
kMKS= �� / ��1/2, and we expect the solutions of Eq. �42� to
diverge for long times. However, as long as we are close to
the instability threshold, the putative CMs �being kMKS
�O�1�� are outside the band of linearly unstable modes, so
that no divergence occurs and Eq. �42� still provides a math-
ematically well-defined model.

(b) AKS-type CMs. Even in the most favorable case ��
�0� considered in the previous discussion, there is still the
possibility that cancellation takes place, not between nonlin-
earities of different order �MKS type� but, rather, for specific
directions on the xy plane, as in the AKS type. In order to
assess such a possibility, we make the ansatz23 that solutions
are of the form h�x ,y , t�= f�x−uy , t� and see how this reflects
into the KPZ nonlinearities �Eq. �49��. Thus,

N�h� = ��x
�1� + u2�y

�1����f��2 −
��1 + u2�

�
��f��2��� , �54�

where primes denote differentiation of f with respect to its
first argument. As a consequence, exactly as in the AKS case,
whenever the coefficients of the nonconserved KPZ nonlin-
earities, �x

�1� and �y
�1�, have different signs �as a result of their

dependence on physical parameters�, cancellation takes place
for a Fourier mode that is oriented at an angle tan−1�
−�x

�1� /�y
�1��1/2 with the x axis. Actually, for an appropriate

choice of the function f additional cancellation may take
place irrespective of the signs of the �i

�1� coefficients, but
such special cases are not generic. In Fig. 14 we show an
example of the evolution of the morphology in case of can-
cellation modes oriented at 45° to the x axis. It is tempting to
interpret the obliquely oriented ripples recently found66 on Si

at 2 keV as some type of cancellation mode of this AKS
type.

B. 2D dynamics: Comparison to experiments

Along the discussion on the detailed surface dynamics
predicted by Eq. �42�, we have already pointed out relation
to experimental features that are described by this effective
equation. In our discussion, we have assumed as a reference
case that dependencies of coefficients �ikj on the physical
parameters, such as average ion energy and flux, tempera-
ture, and characteristics of the distribution of energy deposi-
tion in the target, are as in BH-type approaches for amor-
phizable targets. Within such an assumption, all
dependencies of linear features on the latter are as in one-
field models,19 whose comparison to experiments has been
reviewed in detail elsewhere.1–3,19 Whenever discrepancies
arise, some may be due to deviations of the actual collision
cascade statistics from Sigmund’s Gaussian formula, and this
is a matter of current active research.38,39

There are other features of our two-field model and of the
ensuing Eq. �42�, which seem more robust to modifications
in the values of the parameters entering �ex, provided there is
a morphological instability in the “surface-tension” coeffi-
cients. Thus, the formation and fast stabilization of a station-
ary value for the thickness of the amorphous mobile layer
have been assessed, e.g., for Si both in molecular-dynamics
simulations9 and in experiments �see Ref. 5 or 6� �for ener-

(a) (b)

(c)

FIG. 14. Long time development of oblique ripple patterns at
45° to the x axis due to cancellation modes �see text�. Top views of
morphologies obtained by numerical integration of Eq. �42� with
v0=0, �x=−1, �y =1, 
x=�i=�i=0, Ki,j =1, �x

�1�=0.1, �y
�1�=−0.1,

�i,x
�2�=0.5, and �i,y

�2�=−0.5 at increasing times: �a� t=25, �b� t=50, and
�c� t=185. All units are arbitrary.
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gies of tens of keV�. Specifically, in the last reference, Si
ripples with asymmetric cross sections have been observed
by high-resolution transmission electron microscopy �ripple
asymmetry has been also assessed by techniques in recipro-
cal space in the case of sapphire,14 for instance�. However,
Ziberi et al.6,66 found a time independent ripple wavelength
and exponential growth followed by fast saturation for the
roughness. This is at variance with our model, in which
wavelength coarsening and long-range roughness are ex-
pected for a wide range of parameters. Also the high quality
of lateral ripple order in these experiments contrasts with the
fluctuations in ripple shapes that we generically encounter in
our simulations, which are much closer to experimental
ripples such as those produced on fused silica in Ref. 67 or to
those obtained on Si surfaces in Refs. 10 and 11. Note that
while wavelength coarsening occurs in the experiments of
Ref. 67, a time independent wavelength is observed in Si that
remains crystalline under irradiation in Ref. 10. Wavelength
coarsening has been documented in many other studies, such
as in Ref. 62 for Si amorphized by Ga ions, although a large
spread remains in the values of the effective coarsening ex-
ponents �see references in Ref. 3 and more recently, e.g., Ref.
68 for SiC�. Moreover and in agreement with our expecta-
tions, ripple coarsening is accompanied in the experiments of
Habenicht et al.62 by transverse in-plane motion with a non-
uniform velocity. Similarly, height disorder �roughness� at
long distances has been frequently reported, characterized by
power-law growth of the roughness with fluence, as in the
experiments in, e.g., Ref. 69 for graphite. Again, a large
spread exists in the experimental values of the associated
kinetic roughening exponents.3 As mentioned above �see
Sec. VI A 2�, within our model the wide variation with ex-
perimental conditions of the effective exponents describing
the power-law behavior of the roughness and ripple wave-
length can be understood as due to crossover behavior that
masks true asymptotic behavior.

VII. CONCLUSIONS

In this paper we have considered in detail a two-field
continuum description of nanopatterning by IBS in the most
general �anisotropic� case of oblique ion incidence. The ex-
plicit coupling of the dynamics for diffusing species at the
surface with the evolution of the topography assumes ex-
change between mobile and immobile materials at the upper
boundary of the latter. This description goes beyond the IBS
case and can be employed as a phenomenological formula-
tion of more general phenomena in surface science. In the
particular case of IBS, this approximation leads to a station-
ary value for the density of diffusing surface species that is
very quickly reached at, as compared with the dynamics of
the surface morphology. This fact and the shape of the effec-
tive interface equation are robust to the specifics of the dis-
tribution of energy deposition, while these reflect in the val-
ues of the model parameters. For the sake of reference, in
this work we have been assuming BH behavior for the latter.
Under this assumption, we have explored the qualitative
properties of the two-field model and seen that it indeed
provides a more comprehensive framework than previous

continuum descriptions fulfilling most of the desiderata for-
mulated in Sec. I. The adoption of a two-field description is
not for mere mathematical convenience; rather, it responds to
its enlarged set of physical mechanisms �such as redeposi-
tion� entering the constitutive laws in a more natural way
�e.g., the coupling between excavation and surface transport
or corrections to BH prediction for the linear velocity of
transverse ripple motion�. The parameter range for cancella-
tion modes is partially restricted, and important experimen-
tally observed nonlinear behavior, such as wavelength coars-
ening and nonuniform ripple motion, can be accounted for.
Analogous conclusions can be reached at in the cases of
normal incidence or oblique incidence onto rotating targets,
which are considered in detail in a forthcoming work.33

Still, some features remain theoretically unexplained,
such as, for instance, the lack of wavelength coarsening and
long-range disorder in the experiments in Ref. 6 or the lack
of pattern formation altogether for IBS of Si at near normal
incidence in many experimental settings. The latter may be
due to, e.g., inaccuracies in Sigmund’s description of the
statistics of energy deposition through collisions inside the
target.39 Note that, once these are improved upon, the result-
ing effective parameters could be used in turn as inputs for
local excavation rate �3�. Thus, the two-field model is not
restricted in principle to Sigmund’s Gaussian statistics.
Moreover, through the mentioned natural coupling between
transport and topography and through the incorporation of
redeposition effects, it already provides �albeit, admittedly, in
a simplified form that is susceptible to refinement� descrip-
tion of additional material rearrangement due to ion impinge-
ment, which currently seems necessary for a theoretical de-
scription of IBS with an improved predictive power.70
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APPENDIX A: SIGMUND’S ENERGY DISTRIBUTION

In Ref. 19, the most general equation of motion for the
local surface velocity reads

�th = − v0 + 
x�xh + �1�x
3h + �2�x�y

2h + ��x��xh� + �x���x
2h�

+ ��y��xh� + �y���y
2h� − Dxx�x

4h − Dyy�y
4h − Dxy�x

2�y
2h

+
�x

2
��xh�2 +

�y

2
��yh�2, �A1�

where all coefficients are functions19 of physical parameters,
such as �, E, and �, and the characteristics of Sigmund’s
Gaussian energy distribution,7,15 such as the average penetra-
tion depth, a, and the lateral widths of the distribution � and
�. In particular, the coefficients Dij correspond to the so-
called ion-induced effective smoothing terms whose terms
have the same shape as those characteristics of surface dif-
fusion but are of a mere “geometric” origin related with de-
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scribing the surface height at sufficiently high order in a
Taylor expansion in height derivatives. For this �standard�
choice, the values of coefficients �ikl in the excavation rate
�ex in Eq. �3� are

�0 = v0, �1x = − 
x/v0, �2x,y = − �x,y/v0,

�3x = − �1/v0, �3y = − �2/v0, �4ij = − Dij/v0,

�5x,y = − �x,y/v0, �6x,y = − �x,y/v0. �A2�

APPENDIX B: FORMULAS FOR SEC. III

a = 
0 + �
j=x,y


D + Req
0�
2j − �2j +  �
i=x,y

�4ijki
2	�kj

2,

�B1�

b = 
0Reqkx��1x − �
j=x,y

�3jkj
2	 , �B2�

c = 
0ReqD�kx
2 + ky

2� �
j=x,y

�
2j − �2j +  �
i=x,y

�4ijki
2	kj

2

+ �
0
2Req �

j=x,y
�− �2j + �

i=x,y
�4ijki

2	kj
2, �B3�

d = 
0Reqkx�D�kx
2 + ky

2� + �
0���1x − �
j=x,y

�3jkj
2	 .

�B4�

APPENDIX C: RIPPLE WAVELENGTH
AND ORIENTATION

In this appendix, we determine the ripple orientation and
wavelength within linear theory. Our starting point is Eq.
�20� which, neglecting O�2� terms, can be rewritten as

Re��k� = − �xkx
2 − �yky

2 − Kxxkx
4 − Kyyky

4 − Kxykx
2ky

2,

�C1�

where

�x = − �
0Req�2x, �y = − �
0Req�2y , �C2�

Kxx = DReq
2x + Req
0
��4xx − � �̄D


0
− �Req
2x	�2x� ,

�C3�

Kyy = DReq
2y + Req
0
��4yy − � �̄D


0
− �Req
2y	�2y� ,

�C4�

Kxy = DReq�
2x + 
2y� + Req
0
2��4xy −
�̄D


0
��2x + �2y�

+ �Req�
2x�2y + 
2y�2x�� . �C5�

Note that the above O�k4� form is a consequence of our

long-wavelength approximation to �k. However, the precise
shape of the coefficients is sensitive to the order considered
in the �independent� expansion in powers of , resulting in
Eqs. �C2�–�C5�. Thus, for instance, given that 
2x and 
2y are
positive, Kxx, Kyy, and Kxy are also always positive to O�0�.
However, the signs of their O�� contributions can change
with experimental conditions �see, e.g., Ref. 19�.

The experimentally observed pattern is oriented along the
direction which yields the maximum value of the real part of
the dispersion relation, and its wavelength is associated to
the wave vector, k�= �kx

� ,ky
��, which maximizes Eq. �C1�.

This vector must verify

� Re��k�
�kx

�k�� =
� Re��k�

�ky
�k�� = 0. �C6�

These conditions have the following independent solutions:

k0 = �0,0�, k1 = �� − �x

2Kxx
,0	, k2 = �0,� − �y

2Kyy
	 ,

k3 = ��2�xKyy − �yKxy

Kxy
2 − 4KxxKyy

,�2�yKxx − �xKxy

Kxy
2 − 4KxxKyy

	 . �C7�

The solution k3 exists provided the arguments of the square
roots of its two components are positive and Kxy

2 −4KxxKyy
�0. Otherwise, the only solutions to Eq. �C6� are k0, k1, and
k2. Moreover, as noted above, for large angles of incidence,
�x is positive and k1 is not defined.

Note that wave vector k3 implies a surface morphology
with a periodicity that is aligned neither with the x nor with
the y directions �“oblique ripples”�. In order to study this
solution, we write

Re��k1
� − Re��k3

� =
�Kxy�x − 2Kxx�y�2

4Kxx�Kxy
2 − 4KxxKyy�

, �C8�

Re��k2
� − Re��k3

� =
�Kxy�y − 2Kyy�x�2

4Kyy�Kxy
2 − 4KxxKyy�

, �C9�

so that the signs of Eqs. �C8� and �C9� are given by that of

Kxy
2 − 4KxxKyy . �C10�

Moreover, straightforward algebra shows that the sign of the
determinant of the Hessian matrix evaluated at k=k3 is op-
posite to that of Eq. �C10�. In summary, �i� for positive val-
ues of Eq. �C10�, k3 is a saddle point, so that the absolute
maximum of Eq. �C1� takes place either at k1 or at k2 and �ii�
for negative values of Eq. �C10�, k3 provides the absolute
maximum of Eq. �C1�.

These results are valid for any value of . To order O�0�,
it is easy to see from Eqs. �C3�–�C5� that Kxy =Kxx+Kyy, so
that Eq. �C10� equals �Kxx−Kyy�2	0 and condition �i� above
holds. This is the situation that occurs in most of the physical
systems we will be considering due to the smallness of the
corresponding values of . Higher order corrections are sen-
sitive to high order details of the distribution of energy depo-
sition. Thus, the sign of the O�� term in Eq. �C10� is given,
for isotropic thermal surface diffusion �
2x=
2y�, by the sign
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of 2�4xy −�4xx−�4yy. Hence, for specific choices of these ef-
fective smoothing coefficients it is conceivable that oblique
ripples occur in our two-field model for large  values, but
we will not consider such situations in what follows.

In order to decide which of the remaining solutions pro-
vide the absolute maximum of Re��k�, we finally substitute
the wave vectors given by Eq. �C7� into Eq. �C1�; we obtain
simply

Re��k0
� = 0, Re��k1

� =
�x

2

4Kxx
, Re��k2

� =
�y

2

4Kyy
.

Further discussion on the final orientation of the ripple struc-
ture can be found in the main text in Sec. III B 2

APPENDIX D: MULTIPLE-SCALE ANALYSIS

In this appendix, we provide the details for the derivation
of the effective interface �Eq. �42��. The setting is provided
by formulas �35�–�38�. For further convenience, we obtain a
useful expression through addition of Eqs. �35� and �36�,

3/2�T1
h̃ + 2�T2

h̃ = − ��̃ex + D�2R̃ − 3/2�T1
R̃ − 2�T2

R̃ .

�D1�

We will introduce expansions �39� and �40� into Eqs. �41�
and �D1� and solve order by order in powers of 1/2.

Order 0. To this order, as provided by Eq. �41�, there is
no contribution and we obtain

R0 = 0. �D2�

This means that the most important contribution to R̃ van-
ishes near the instability threshold. Hence, as we already
noted when we obtained the planar solution, R will be only
slightly altered from its planar value.

Order 1/2. Again, there are no contributions to this order
and from Eq. �41� we obtain

R1 = 0. �D3�

Order 1. At this order, Eq. �41� reads

R2 = − Req � · �
2 � h0� , �D4�

which yields the first correction to the expansion of R̃ and
depends on the curvatures of h0. As anticipated in the main
text, Rn contributions indeed depend of lower order hm terms.

Order 3/2. From Eq. �41� to this order we obtain

R3 = − Req � · �
2 � h1� + �̄Req�1x�Xh0. �D5�

We can substitute the previous values for the expansion of R̃
into Eq. �D1� to finally obtain

�T1
h0 = − �
0Req�1x�Xh0, �D6�

which allows us to formally solve for h0. Note that this equa-
tion provides in-plane propagation as the leading contribu-

tion to h̃ in the slow time scales, with the same velocity as
predicted by the imaginary part of the linear dispersion rela-
tion �Eq. �19��.

Order 2. Following the previous scheme, from Eq. �41�
we have

R4 = − Req � · �
2 � h2� +
�̄


0
�̃ex�2� +

D


0
�2R2, �D7�

where we have used �̃ex�2� to denote the order 2 contribu-

tion of �̃ex, given by

�̃ex�2� = 
0Req��1x�Xh1 + � · ��2 � h0� + �h0 · ��6 � h0�� .

�D8�

From Eq. �D1� we obtain again a closed evolution equation

for h̃ to order 2, namely,

�T1
h1 + �T2

h0 = − ��̃ex�2� + D�2R2. �D9�

As we can see from the previous results, to obtain the tem-

poral derivatives of h̃ to order n/2 we need to know R̃ to
order Rn−2. Since we already know the value of the expan-

sion of R̃ up to R4, we can obtain a closed evolution equation

for h̃ to order 3.
Order 5/2. From Eq. �D1� we have

�T1
h2 + �T2

h1 = − ��̃ex�5/2� + D�2R3 − �T1
R2, �D10�

where we have again used �̃ex�5/2� to denote the 5/2 order

contribution to �̃ex. The time derivative of R2 can be com-
puted by making use of Eqs. �D4� and �D6� to get

�T1
R2 = �
0Req

2 �1x � · �
2�Xh0� . �D11�

Order 3. Similarly to the previous step, from Eq. �D1� we
now have

�T1
h3 + �T2

h2 = − ��̃ex�3� + D�2R4 − �T1
R3 − �T2

R2.

�D12�

Noting that �̃ex�n� do not depend explicitly on R̃ and since
we �formally� know the values of R2, R3, and R4 as functions

of terms of the expansion of h̃, we can finally obtain a closed

equation for the evolution of h̃ up to order 3. To this end,
using the relation between the slow temporal variables given
by Eq. �34�, we can write the time derivative of the expan-

sion of h̃ �Eq. �40�� as

�th̃ = 3/2�T1
h0 + 2��T2

h0 + �T1
h1� + 5/2��T2

h1 + �T1
h2�

+ 3��T2
h2 + �T1

h3� . �D13�

Since all terms in Eq. �D13� are known, substituting Eqs.
�D6�, �D9�, �D10�, and �D12� into Eq. �D13� and using Eq.
�D9� in order to simplify the O�3� contribution in Eq.
�D13�, we obtain
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�th̃ = 3/2�− �
0Req�1x
�Xh̃� + 2�− �
0Req�� · ��2 � h̃�

+ �h̃ · ��6 � h̃�� − DReq�
2�� · �
2 � h̃���

+ 5/2�− �
0Req��X � · ��3 � h̃� + ��Xh̃�

� � · ��5 � h̃�� + �1x � · ���̄DReqI − �
0Req
2 
2�

� � �Xh̃�� + 3�− �
0Req�
ij

�4ij�i
2� j

2h̃

+ � · ���̄DReqI − �
0Req
2 �
2� � �� · ��2 � h̃�

+ �h̃ · ��6 � h̃�� + �̄�
0Req
2 �1x

2 �X
2 h̃� , �D14�

where I stands for the 2�2 identity matrix, we have again

employed the expansion of h̃ �Eq. �40��, and we have ne-

glected sixth order derivatives of h̃.
In order to compare with the original model and the dis-

persion relation obtained in Sec. III, we return to the original

variables. Recalling that h=hp+ h̃, X=1/2x, Y =1/2y, and 
=�0 / �
0Req�, we finally obtain Eqs. �42� and �43� of the
main text.
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