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In a two-dimensional parabolic quantum dot charged with N electrons, Thomas-Fermi theory states that the
ground-state energy satisfies the following nontrivial relation: Egs / �����N3/2fgs�N1/4��, where the coupling
constant, �, is the ratio between Coulomb and oscillator ���� characteristic energies and fgs is a universal
function. We perform extensive configuration-interaction calculations in order to verify that the exact energies
of relatively large quantum dots approximately satisfy the above relation. In addition, we show that the number
of energy levels for intraband and interband �excitonic and biexcitonic� excitations of the dot follows a simple
exponential dependence on the excitation energy whose exponent, 1 /�, satisfies also an approximate scaling
relation á la Thomas-Fermi, � / �����N−�g�N1/4��. We provide an analytic expression for fgs based on
two-point Padé approximants and two-parameter fits for the g functions.
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I. INTRODUCTION

Thomas-Fermi theory1–4 has proven to be a valuable tool
for the qualitative understanding of atoms and molecules. In
semiconductor quantum dots,5,6 which are a kind of artificial
Thomson atoms with many possibilities for fundamental re-
search and technical applications, Thomas-Fermi theory was
shown to agree qualitatively and even quantitatively with a
more elaborate approach such as density-functional theory7,8

being asymptotically exact in the limit of large electron
numbers.9

From the computational point of view, Thomas-Fermi
theory with minor corrections is able to reproduce the
ground-state energy of electrons in a quadratic potential10 at
the same level of accuracy of other semiclassical or semiana-
lytic approaches such as large-D expansions11 or two-point
Padé approximants.12

In the present paper, we would like to focus on a less
studied aspect of Thomas-Fermi theory: the highly nontrivial
scaling relations following from it. We show that the number
of electrons, N, and the coupling constant, �, enter the
ground-state energy in a scaled form. We perform extensive
configuration-interaction calculations for quantum dots with
20�N�90 in order to verify this scaling. In addition, on the
basis of the numerical results, we show that similar scaling
relations are valid for the number of excited states in intra-
band and interband excitations. In this way, a universal pa-
rametrization of the density of energy levels in quantum dots
is provided.

We start with the Hamiltonian of a two-dimensional �2D�
parabolic quantum dot charged with N electrons. In oscillator
units, the Hamiltonian can be written as

H

��
=

1

2�
i

�pi
2 + ri

2� + ��
i�j

1

rij
. �1�

The only approximations made in writing Eq. �1� are the
effective-mass description of electrons, the inclusion of an
effective low-frequency dielectric constant, �, to model the
medium, and the description of confinement by means of a
harmonic-oscillator potential. These approximations are very

common and well sustained.6 The coupling constant
�=ECoul / ����=e2m1/2 / �4	��1/2�3/2� is the ratio of the Cou-
lomb and harmonic-oscillator characteristic energies.

The fact that the number of electrons may enter the en-
ergy in a scaled combination with � is, however, not trivial.
Let us write the Thomas-Fermi energy functional9 for the
present problem;

ETF

��
=� d2r�
n2 +

nr2

2
	 + �� � d2rd2r�

n�r�n�r��

r� − r��


,

�2�

where n�r� is the �surface� density at point r and 
 is a
numerical constant. The above functional should be extrem-
ized under the constraint,

N =� d2rn . �3�

Now, it is easy to realize that we can scale r and n in such
a way that the left-hand side of Eq. �3� becomes one and a
factor N3/2 is extracted from the right-hand side of Eq. �2�.
As a result, we get the following relation for the ground-state
energy in the Thomas-Fermi approximation:

Egs

����
� N3/2fgs�N1/4�� . �4�

Notice that the scaled Thomas-Fermi equations depend on
a single parameter, z=N1/4�, which combines in a particular
way the coupling constant and the number of electrons.

II. SCALING IN THE GROUND-STATE ENERGY

We first provide an analytical expression for fgs based on
two-point Padé approximants12 in the large-N limit. It shows
that the scaling predicted by the Thomas-Fermi theory is
quite general and compatible with true quantum effects.

Let us recall the definition of the P4,3 Padé approximant
for the ground-state energy, given in Ref. 12, which interpo-
lates between the �→0 �perturbation theory� and �→�
�Wigner “crystal”� expansions;
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P4,3��� = p0 +
p1� + p2�2/3�q2�2/3 + q3��
1 + q1�1/3 + q2�2/3 + q3�

. �5�

We use the large-N asymptotic expressions for the
coefficients,12 which lead to the following estimation for the
ground-state energy:

Egs

��N3/2 �
2

3
+

0.698z + 1.5z4/3 + 2.175z5/3

1 + 2.149z1/3 + 1.5z2/3 + 2.175z
. �6�

In order to verify the universal relation �6� we performed
extensive configuration-interaction calculations for charged
quantum dots. In these calculations, we follow standard pro-
cedures of quantum chemistry13 or nuclear physics.14

The starting point is the Hartree-Fock solution of the
problem. Then a basis of functions made up from �i� the
Hartree-Fock state, 
HF�, �ii� one-particle one-hole �1p1h�
excitations, which is 
��=e�

†e
HF�, and �iii� two-particle
two-hole �2p2h� excitations, i.e., 
�� ,��=e�

†e�
†ee�
HF�, is

used in order to diagonalize the Hamiltonian. Notice that �
�� are single-particle states above the Fermi level, and 
�� are states below the Fermi level. A schematic represen-
tation is given in Fig. 1. In the Hilbert subspace with the
same quantum numbers of the Hartree-Fock state, the elec-
tronic Hamiltonian takes the form,

H = �EHF 0 D

0 A B

Dt Bt C
 , �7�

where EHF= �HF
H
HF� is the Hartree-Fock energy,
A���,�= ����
H
�� is the Tamm-Dankoff matrix,
DHF,���= �HF
H
�� ,��, B���,���= ����
H
�� ,��, and
C�������,���= ����� ,���
H
�� ,��. Dt and Bt are, respec-
tively, the transposes of matrices D and B. Explicit matrix
elements are given in Appendix A for completeness.

In sectors with quantum numbers other than the Hartree-
Fock state, the first row and column of matrix �7� should be
dropped.

An energy cutoff of 3�� in the excitation energy is used
to control the dimension of the Hamiltonian matrix. The
estimated error in the ground-state energy is below 0.2%.

We computed the ground-state energy of dots with
N=20, 30, 42, 56, 72, and 90 and confinement strengths of
��=6, 12, and 18 meV. Notice that these are closed-shell
quantum dots with ground-state angular momentum and spin
quantum numbers L=S=0. GaAs parameters, m=0.067m0
and �=12.8, were used. We performed the calculations for

three-dimensional dots in which the confinement along
the symmetry axis �the z axis� is modeled by a rigid-wall
well of width, Lz=25 nm. The constant NEz

�e�, where
Ez

�e�=�2	2 / �2mLz
2�, was removed from the ground-state en-

ergy. The results are depicted in Fig. 2 �dots� along with the
large-N Padé estimate given by Eq. �6� �solid line�. Scaling
of the ground-state energy is apparent. The maximum devia-
tions with respect to the Padé estimate are below 10% for the
smallest dots with N=20. Notice that, for the parameters
used in the calculations, the scaled variable N1/4� takes val-
ues around 1, i.e., in the transition interval from weak to
strong coupling.12 In order to test the whole interval, we use
additional control cases: one of them deep in the strong-
coupling regime �N=42 and ��=2 meV� and the other in
the weak-coupling region �N=20 and ��=50 meV�. They
also fit the Padé estimate.

III. INTRABAND EXCITATIONS

We now turn to the intraband excitations. For simplicity,
we consider the excited states of the closed-shell quantum
dots studied above. We restrict the analysis to sectors with
the same quantum numbers as the ground state, L=S=0, in
such a way that the ground and excited states come out from
the same calculation. A sample of the results is shown in Fig.
3�a� for the 42 electron dot with confinement ��=6 meV.
First, we notice that the excitation gap, which is 2�� in the
noninteracting �→0 limit, is renormalized by Coulomb in-
teractions to around 6 meV, that is, 1 ��. In the opposite,
�→�, limit, the excitation spectrum is that of a big �Wigner�
molecule whose small-oscillation frequencies are indepen-
dent of �.12 The lowest of these frequencies, i.e., that one
determining the gap, should go to zero for large N in order to
meet the acoustic phonon of the Wigner lattice. Then, we can
look for a simple interpolation formula in order to fit the
numerical data for the excitation gap;

�E1

��
=

2 + a1�

1 + b1N��
. �8�

FIG. 1. �Color online� Different contributions to the ground-
state wave function entering the configuration-interaction
calculation.

FIG. 2. �Color online� Scaling of the ground-state energy in
medium-sized dots. The large-N expression for the Padé estimate
�Eq. �6�� is shown as a solid line.
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The parameter � appears to be very close to 1/4; thus we
fixed it to 1/4 and fit again the data in order to obtain a1 and
b1. The results are shown in Fig. 3�b� as a function of z
=N1/4�. We stress that this is only a useful representation
because �E1 does not scale with z even though Fig. 3�b�
shows an approximate scaling for intermediate couplings.
For the parameters a1 and b1, we get a1=3.659 and
b1=1.878. The result of the fit is excellent, with maximum
deviations below 10%, the same as for the ground-state en-
ergy. Notice also that N1/4�E1 / ���� goes to a universal
value, a1 /b1, in the strong-coupling limit, �→�. Expres-
sions similar to Eq. �8� for the gap to the first excited state
should be valid in other angular momentum and spin sectors
and also for the energy of collective states �spin-density and
charge-density excitations�.

The second point to notice in Fig. 3�a� is the exponential
growth of the number of states for excitation energies above
6 meV. This simple exponential dependence on excitation
energy is known in nuclear physics as the constant tempera-
ture approximation �CTA� �Ref. 15�;

Nstates = N0 exp��E

�
� . �9�

It seems to be a quite general property of the excitation spec-
trum of quantum systems. We verified it, for instance, in the
energy spectrum of small quantum dots in strong magnetic
fields.16

We fit the numerical data corresponding to the first 25
excited states of the quantum dots mentioned above in order
to extract the “temperature” parameter, �, in Eq. �9�. We
took the first excited state as the reference of energy. The
next 24 states are only a few �1–4� meV above the first
excited state.

In order to deduce the universal properties of � let us
recall the �→0 and �→� asymptotic regimes. In the
�→� limit, we expect for � a behavior similar to �E1, that
is, N1/4� / ���� should take a universal value. On the other
hand, in the �→0 limit the excitation energies �with respect
to the first excited state� are proportional to �; thus we may
write a simple interpolation formula for the temperature pa-
rameter;

N1/4�

��
=

a2z

b2 + z
, �10�

where a2=0.360 and b2=1.226. The quality of the fit is also
very good as can be seen in Fig. 3�c�.

IV. INTERBAND EXCITATIONS: EXCITONIC STATES

Next, we study the interband excitonic excitations of dots
with N=20, 30, and 42 and ��=6, 12, and 18 meV. The two
control cases in the strong-coupling and weak-coupling re-
gimes are also included. A basis for excitonic states in these
dots is built up in the following way: �i� states with one
additional electron above the Fermi level in the conduction
band and a hole in the valence band, 
� ,��=e�

†h�
†
HF�, �ii�

states with two additional electrons above the Fermi level in
the conduction band, a hole in the conduction band, and a
hole in the valence band, 
�� ,� ,�=e�

†e�
†h�

†e
HF�. Details
of the computational scheme in the present case can be found
in Ref. 17. The Hartree-Fock single-particle states for holes
are obtained from the Kohn-Luttinger Hamiltonian in the
presence of the electronic background. In our model calcu-
lations, the oscillator lengths for electrons, heavy holes, and
light holes are equal. Kohn-Luttinger parameters for GaAs
are used.18 With a cutoff in the excitation energy of 3��, the
basis dimension is reduced to around 5000.

We show in Fig. 4�a� a typical spectrum of excitonic
excitations, corresponding to a dot with N=42 and
��=18 meV. The states are characterized by the total angu-
lar momentum, F=Le+Lh−Mh=−3 /2, and total electronic
spin projections, S=1 /2. Le and Lh are orbital angular mo-
menta of electrons and holes, respectively, and M is the band
momentum of holes along the z axis. In Fig. 4�a�, the x-axis
excitation energies are measured with respect to the first ex-
citonic state. The lowest 40 states shown in the figure follow
two different CTA fits, corresponding to �E�12 meV and

FIG. 3. �Color online� �a� The number of excited states in the
42-electron quantum dot as a function of the excitation energy. The
confinement strength is ��=6 meV. �b� The excitation gap to the
first excited state as a function of the scaled variable z=N1/4�.
�c� The temperature parameter, �, in scaled variables. Fits in �b�
and �c� correspond to Eqs. �8� and �10�.
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12��E�16 meV. The discontinuity in the slope seems to
be a quite general fact16 related to different mechanisms of
formation of the states.

We use the lowest ten states in order to find a temperature
parameter in the studied dots and a law such as Eq. �10� to fit
the data. The found parameters are: a3=1.373 and b3
=0.559. It is remarkable that the fit performs very good, as
shown in Fig. 4�b�, signaling that the electronic background
determines global properties of the excitonic excitation spec-
trum. Unlike the intraband excitations, however, we expect
the parameters a3 and b3 to depend weakly on the dot mate-
rial �GaAs in this case� because of the Kohn-Luttinger
Hamiltonian entering the calculations. We shall test in the
future to what extent this happens.

V. INTERBAND EXCITATIONS: BIEXCITONIC STATES

Finally, let us consider the interband biexcitonic excita-
tions in our medium-sized dots. The basis functions for the
configuration-interaction calculations contains two additional
electrons above the Fermi level in the conduction band and
two holes in the valence band, 
�� ,���=e�

†e�
†h�

†h�
† 
HF�, with

��� and ���. A schematic representation is given in Fig.
5. In Appendix B, we give explicit expressions for the
Hamiltonian matrix elements.

With a cutoff in the excitation energy of 2��, the Hamil-
tonian matrix has dimension around 3000.

We draw in Fig. 6�a� the spectrum of biexcitonic excita-
tions in the dot with 42 electrons and ��=6 meV. The
quantum numbers of the states shown in the figure are
F=0 and S=0. We see that in a single CTA fit we may
comprise the first 35 states. These first states are to be used
in the determination of the temperature parameter.

The scaling of �xx is shown in the lower panel of Fig. 6.
Notice the power of N, which is now 1/2 instead of 1/4. We
verified that by taking this power, the dispersion of points is
reduced notably. Thus, we fit the data with the formula,

N1/2�xx

��
=

a4z

b4 + z
, �11�

where a4=3.230 and b4=5.503. The quality of the fit is very
good. The same comment about the dependence of the pa-

FIG. 4. �Color online� �a� The interband �excitonic� excitations
in the quantum dot with 42 electrons and ��=18 meV. In the x
axis the reference energy is the first excitonic state. �b� Scaling of
the temperature parameter for the lowest-energy excitonic states.

FIG. 5. �Color online� Structure of the biexcitonic wave func-
tion in the configuration-interaction calculations.

FIG. 6. �Color online� �a� The interband �biexcitonic� excita-
tions in the quantum dot with 42 electrons and ��=6 meV. In the
x axis the reference energy is the first biexcitonic state. �b� Scaling
of the temperature parameter for the biexcitonic excitations.
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rameters on the dot material, made above for the excitonic
states, applies in the present situation.

VI. CONCLUSIONS

In conclusion, we have performed extensive
configuration-interaction calculations for medium-sized
quantum dots in order to verify universal relations for the
ground-state energy and the intraband and interband �exci-
tonic and biexcitonic� excitation spectra. The coefficients in
the right-hand side of Eqs. �6�, �8�, and �10� do not depend
even on the material the dots are made of. On the other hand,
the coefficients a3, b3, a4, and b4, we believe, are specific for
GaAs but independent of N and ��.

The work can be extended in many directions. We may try
to parametrize in a universal way the correlation energy, the
excitonic and biexcitonic binding energies, the excitation
gaps to different angular momentum and spin sectors, the
energy of collective �plasmonic� excitations, etc. On the
other hand, more efforts toward the understanding of the
empirical relations obtained for the � parameters are needed.
Research along these lines is in progress.
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APPENDIX A: EXPLICIT MATRIX ELEMENTS FOR
INTRABAND EXCITATIONS

In Eq. �7�, EHF is the Hartree-Fock total energy,14

EHF =
1

2 �
�F

��
�e� + �

k,l,Sz


RklSz

�� 
2�klsz

�0� 	 , �A1�

where F is the Fermi level, �
�e� is the Hartree-Fock energy

of the electron state , �klSz

�0� is the energy of 2D oscillator

states characterized by the quantum numbers k �radial num-
ber�, l �angular momentum�, and Sz �spin projection�. That is,

�klsz

�0� = Ez
�e� + ���2k + 
l
 + 1� . �A2�

The state  is expanded in oscillator states as follows:


� = �
k,l,Sz

Rk,l,Sz

�� 
k,l,Sz� . �A3�

In the studied closed-shell dots, l and Sz are good quantum
numbers of 
� and the above sum run only over k.

On the other hand, in Eq. �7�, A is the Tamm-Dankoff
matrix,14

A���,� = �EHF + ��
�e� − �

�e�������� + ����,

1

ree

�,�˜� ,

�A4�

where the antisymmetrized Coulomb matrix elements are de-
fined as

���,

1

ree

�,�˜� = ���,


1

ree

�,�� − ���,


1

ree

�,�� .

�A5�

Coulomb matrix elements ��� ,
1 /ree
� ,�� are com-
puted in terms of matrix elements among oscillator states by
using expansion �A3�.

Finally, matrices D, B, and C are explicitly written as

DHF,��� = ��,�

1

ree

�,�̃� , �A6�

B���,��� = ���,�

1

ree

�,�˜����� + �,�


1

ree

�,�˜�����

+ ���,�

1

ree

�,�̃��� + ���,


1

ree

�, �̃����	 ,

�A7�

C�������,��� = �EHF + ��
�e� + ��

�e� − �
�e� − ��

�e���������������� + ���,�

1

ree

�,��˜��������� + ���,�


1

ree

��,�˜�������

+ ���,

1

ree

�,��˜�������� + ���,�


1

ree

�,�˜�������� + ���,


1

ree

�,�˜��������� + ���,�


1

ree

�,��˜�������

+ ���,�

1

ree

�,��˜������� + ���,�


1

ree

��,�˜������� + ���,��


1

ree

�,�̃������� + ���,


1

ree

��,�˜��������

+ ���,

1

ree

��,�˜�������� + ���,


1

ree

�,��˜�������� + ���,�


1

ree

�,�˜�������� + ���,�


1

ree

�,�˜��������

+ ���,�

1

ree

�,�˜��,������ + ���,


1

ree

�,�˜��������� + ���,


1

ree

�,�˜��������� + ���,


1

ree

�,�˜���������	 .

�A8�

UNIVERSALITY IN THE ENERGY SPECTRUM OF… PHYSICAL REVIEW B 78, 205320 �2008�

205320-5



APPENDIX B: EXPLICIT MATRIX ELEMENTS FOR BIEXCITONIC EXCITATIONS

In the biexcitonic sector, the Hamiltonian matrix elements take the form,

�����,����
H
��,��� = �EHF + ��
�e� + ��

�e� + ��
�h� + ��

�h������������������ + ����,��

1

ree

�, �̃��������� + ����,��


1

rhh

�,�̃���������

− �����,��

1

reh

�,���������� − ���,��


1

reh

�,���������� − ���,��


1

reh

�,����������

+ ���,��

1

reh

�,���������� − ���,��


1

reh

�,���������� + ���,��


1

reh

�,���������� + ���,��


1

reh

�,����������

− ���,��

1

reh

�,���������� − ���,��


1

reh

�,���������� + ���,��


1

reh

�,���������� + ���,��


1

reh

�,����������

− ���,��

1

reh

�,���������� + ���,��


1

reh

�,���������� − ���,��


1

reh

�,����������

− ���,��

1

reh

�,���������� + ���,��


1

reh

�,����������

− �

�F

��
,��

1

reh


,������ − �
,��


1

reh


,������ − �
,��


1

reh


,������ + �
,��


1

reh


,���������������	 .

�B1�

The total Hamiltonian, H, in addition to the terms of Eq. �1�, now includes the single-particle energy of holes, electron-hole,
and hole-hole interactions. The Hartree-Fock electron and hole states should be expanded in oscillator functions when Cou-
lomb matrix elements are to be computed. For hole states, coming from a Kohn-Luttinger Hartree-Fock problem, we have the
expansion,


�� = �
k,l,m,kz

Rk,l,m,kz

��� 
k,l,m,kz� , �B2�

where k and l are oscillator quantum numbers, m= �3 /2, �1 /2 is the hole �band� angular momentum projection, and kz
=1, . . . ,6 labels the subband states in the well. The relatively large number of terms entering expansion �B2� makes the
calculation of Coulomb matrix elements for holes lengthy.
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