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Traditional mean-field theory is a generic variational approach for analyzing symmetry breaking phases.
However, this simple approach only applies to symmetry breaking states with short-range entanglement. In this
paper, we describe a generic approach for studying two-dimensional (2D) quantum phases with long-range
entanglement (such as topological phases). The method is based on (a) a general class of trial wave functions
known as tensor-product states and (b) a 2D real-space renormalization group algorithm for efficiently calcu-
lating expectation values for these states. We demonstrate our method by studying several simple 2D quantum
spin models exhibiting both symmetry breaking phase transitions and topological phase transitions. Our ap-
proach can be viewed as a unified mean-field theory for both symmetry breaking phases and topological

phases.
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I. INTRODUCTION

Landau’s symmetry breaking theory'? for phases and
phase transitions is one of the foundations of condensed-
matter theory. A central component of this framework is
Ginzburg-Landau effective theory? or, more generally, mean-
field theory. For 7=0 quantum states, such a mean-field ap-
proach is actually a variational approach based on trial wave
functions which are roughly direct product states. For ex-
ample, to study the possible spin-ordered phases in spin-1/2
systems H=2X,S;-J;;-S;, we may start with a trial wave
fanction [Wyi)=® (] 1)+, 1)), where |1); and |1); are
spin states on site i. The different possible spin-ordered
phases can be obtained by changing the order parameters u;
and v; so as to minimize the average energy.

Although this simple mean-field approach cannot describe
the quantitative properties of phases and phase transitions, it
often captures the correct qualitative physics, such as pos-
sible symmetry breaking phases in a phase diagram, as well
as the order of the phase transitions between different phases.
Thus, the mean-field approach is conceptually important be-
cause it captures the physics behind symmetry breaking
phases and phase transitions between them. Moreover, by
applying perturbative methods based on the mean-field ap-
proach, we may quantitatively improve our results.

However, this kind of mean-field theory only applies to
states with short-range entanglement. Even after including
quantum fluctuations in the mean-field ansatz, it still cannot
describe states with nonlocal long-range entanglement. As a
result, we cannot use the traditional mean-field theory to cal-
culate quantum phases (such as topologically ordered states*)
that have a pattern of long-range entanglement® as revealed
by nonzero topological entropy.%’ These kinds of phases are
beyond Landau’s symmetry breaking paradigm.

The key concept in the mean-field approach is that it de-
scribes a many-body quantum state through a set of local
order parameters, such as u; and v; in spin-1/2 system. Al-
though the total dimension of the Hilbert space scales expo-
nentially with the total system size, the relevant low-energy
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states are characterized by a polynomially large set of local
parameters. Thus, we can calculate the low-energy physical
properties in a very simple and efficient way.

Motivated by the success of the mean-field theory for
symmetry breaking phases, we would like to develop a
“mean-field” theory for topologically ordered phases and
phase transitions.®'* The main challenges in developing
such a mean-field-like approach are (a) finding a class of
states that can have the long-range entanglement found in
topological phases and (b) finding a simple way to calculate
the physical properties, such as average energy, of these
states.

The first problem can be solved with a general class of
trial wave functions known as “tensor-product states” (or al-
ternatively “projected entangled pair states”).!>-'® These
states were first discovered in the context of the one-
dimensional (1D) density-matrix renormalization group
(DMRG) method'®?° but were later generalized to higher
dimensions and arbitrary lattices. One can show that tensor-
product states (TPSs) can describe all the string-net con-
densed states constructed in Ref. 21 and hence all nonchiral
topological phases.??

Given this fact, the second problem becomes: can we cal-
culate expectation values of operators in a TPS efficiently?
Consider the case of the square lattice (Fig. 1). On the square
lattice, tensor-product states are defined by the following ex-
pression for the many-body wave function W ({m}):

FIG. 1. Tensor network: a graphic representation of the tensor-
product wave function (1), (a) on a 1D chain or (b) on a 2D square
lattice. The indices on the links are summed over.
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TABLE 1. Error scaling for several variational approaches. T is
the calculation time and € is the achieved relative accuracy of the
calculated average energy for a given many-body state. The acro-
nym VQMC stands for variational quantum Monte Carlo, while
“1D approach” refers to an approximation scheme where one re-
places the infinite 2D lattice by an L X lattice, for L large but
finite, and then computes expectation values using a transfer-matrix
approach (see the Appendix for a derivation).

Method Error

VQMC e~1/T"?

1D approach e~ exp[—const(log T)]
TERG e~ exp[—const(log 7)?]

\P({mz}) 2 gjf[

ijkl---

hgk lqkrT;;lm (1)

Here Tm' is a complex tensor with one physical index m; and
four i 1nner indices i,j,k,l,--. The physical index runs over
the number of physical states d on each site and the internal
indices runs over D values. Beyond one dimension, it is not
easy to compute expectation values in these states. Summing
over all the internal indices is an exponentially long calcula-
tion.

In this paper, we describe a simple solution to this prob-
lem in two dimensions (2Ds). Our approach—which we call
the tensor-entanglement renormalization group (TERG)
method—is an approximation scheme based on the 2D real-
space RG method described in Ref. 23. (A different real-
space RG method can be found in Ref. 24.) The TERG
method allows us to efficiently calculate the averages and
correlations of local operators.

We can view the TERG approach as a variational ap-
proach. After calculating the average energy of a TPS using
the TERG method, we can choose the tensor to minimize the
average energy and hence obtain an approximate ground
state. This allows us to obtain a mean-field phase diagram for
quantum states that may contain both symmetry breaking
phases and topological phases. In some sense, the TERG
approach plays a role for topological phases like the
Ginzburg-Landau theory for symmetry breaking phases.

Table I compares the efficiency of the TERG method with
other variational methods for 2D gapped systems. We see
that the TERG method is very efficient with €
~ geonstllog D gppop scaling.

The paper is organized as follows. In Sec. II we introduce
the basic method. In Sec. III we demonstrate it with several
spin models with symmetry breaking transitions. Finally, in
Sec. IV we apply the method to spin models with topological
phase transitions, revealing some of the additional subtleties
that occur in this case.

II. TERG METHOD
A. TERG algorithm on square lattice

To describe the TERG method, let us consider a system
with a translationally invariant Hamiltonian H=2;h; where i
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FIG. 2. (a) The graphic representation of the inner product of
TPS (¥| W) in term of the tensor T or the double tensor T [see Eq.
(2)]. (b) After summing over m and identifying (i,i’)— « and
(j,j')— B, we obtain the double tensor T from 7" and T*.

labels the lattice sites. The h; can always be expressed as a
of products of operators: h,-=é?
+éiléjz-=NN(i)+- -+ where j=NN(i) is the next neighbor of i. A
key step in the variational approach is to calculate the norm
and the expectation value of h; for the trial wave function

V({m;}),
(Pwy= X E

mymy e il il

=tTrTeTT® -],

summation local

T2

j’h’g’k" o

r rf/ /]v";li,k

(W) =tT{T°@T@T® - ]+tTT' @ T° @ T ® -]
+...’ (2)

where double tensors T and T“ (a=0,1,2) are defined as
[see Fig. 2(b)]

> 08 T eT" (3)

mm

T= ET’"*@T’” T¢ =

with Oamm, as the matrix elements of local operators O“ in the
local basis |m). The tensor trace (tTr) here means summing
over all indices on the connected links of tensor network [see
Fig. 3(a)]. Note that the inner product is obtained from a
uniform tensor network. The average of the on-site interac-
tion is obtained from a tensor network with one “impurity”
tensor T° at site i (while other site has T). Similarly, for
two-body interactions, the tensor network has two “impu-
rity” tensors T' and T2 at i and ;.

Calculating the tTr is an exponentially hard calculation in
2D or higher dimensions. Motivated by the tensor-
renormalization approach developed in Ref. 23, we can ac-
celerate the calculation exponentially if we are willing to
make an approximation. The basic idea is quite simple and is

(a) (b) (©)

FIG. 3. The indices of the double tensor have a range D?. After
combining the two legs on each side into a single leg, the four-
linked double tensors in (a) can be viewed as a single double tensor
T’ whose indices have a range D*. (c) T’ can be approximately
reduced to a “smaller” double tensor T” whose indices have a range
D? and satisfies t Tr[T' @ T'---]=~t Te[T" @ T"---].
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(b)

FIG. 4. (Color online) (a) We represent the original rank-four
tensor by two rank-three tensors, which is an approximate decom-
position. (b) Summing over the indices around the square produces
a single tensor T'. This step is exact.

illustrated in Fig. 3. After finding the reduced double tensor
T", we can express tTr{ T ® T - ]=tTr[T” ® T"- - -] where the
second tensor trace only contains a quarter of the double
tensors in the first tensor trace. We may repeat the procedure
until there are only a few double tensors in the tensor trace.
This allows us to reduce the exponentially long calculation to
a polynomially long calculation.

The detailed implementation of the above TERG ap-
proach is actually a little more involved. For a uniform ten-
sor network [Fig. 3(a)], we can coarse grain it in two steps.
The first step is decomposing the rank-four tensor into two
rank-three tensors. We do it in two different ways on the
sublattice purple and green [see Fig. 4(a)]. On purple sublat-
tice, we have T,g,,=2,/S,,,/ 5343, and on green sublat-
tice, we have Tz, =2 ,Szm./SwM, Note that «, B, u, and
v run over D? values while y' run over D* values.

Next we try to reduce the range of 7’ through an
approximation 23 Say, on purple sublattice, we view Topuv as
a matrix M™ ,=T g,y and do a singular value decomposi-
tion (SVD) yre UAW We then keep o _y the largest D,
singular values N\, and define S;,,,= \')\VV; v and Sz,
=\V\,U,p, Thus, We can approximately express T,g,, by
two rank-three tensors S, and S;

Dcm

a,B,uV E S3aﬂysl,uvy (4)

Similarly, on green sublattice we may also view T,g,, as a
matrix M5.° and do a singular value decompositions, keep

the largest D, singular values, and approximately express

T 4puv by two rank-three tensors S, and S.
DCth
a,B,uV E S2va7S4ﬁ,uxy (5)

After such decompositions, the square lattice is deformed
into the form in Fig. 4(b) (see also Fig. 5). The second step is
to simply contract the square and get a new tensor on the
coarse-grained lattice,

’I}/(T)\p: 2 S]BaVS‘Z;LﬁUS3VM)\S4an' (6)

aBuv

The range of indices for the reduced double tensor T’ is only
D,,, which can be chosen to be D? or some other value.
Repeating the above two steps twice, we can get the reduc-
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FIG. 5. (Color online) Under the TERG procedure, a tensor
network is transformed into a coarse-grained tensor network.

tion from Figs. 3(a)-3(c). After n steps, we can reduce a
system with 2" lattice sites to a single coarse-grained site
with a coarse-grained double tensor T". The norm of our trial
wave function W({m,}) [under periodic boundary condition
(PBC)] can be simply obtained by tracing out this double
tensor,

(V[¥) = E T o (7)

The above TERG procedure is for a uniform tensor net-
work where all the double tensors are the same. However, it
can be easily generalized to a tensor network with “impuri-
ties,” such as the one in Fig. 5 which has four “impurity”
tensors. Evaluating Fig. 5 will allow us to calculate the av-
erages of up to four-body nearest-neighbor interactions
(which includes on-site interaction, nearest-neighbor, and
next-nearest-neighbor two-body interactions). The TERG
procedure is illustrated in Fig. 5. We note that the number
and the relative positions of “impurity” tensors do not
change after each iteration. So we can repeat the same itera-
tive calculation until there are only a few tensors in the ten-
sor trace.

Let us take the nearest-neighbor interaction term, for ex-
ample. For the uniform double tensor T, we can coarse grain
it in the same way as what we do in calculating the norm.
For the impurity double tensors T' and T2, we can initialize
the four impurity double tensors in Fig. 5 as T,=T!, Ty
=T2, Tc=T, and T,=T. We put T, and T on green sublat-
tice and Tp and T) on purple sublattice. We use the same
decomposition rules for each sublattice and keep the largest
D, singular values,

DCln

Tay , = 21 SA(C)ZVMSA(C)4BIW (8)
y=

afuv

and

205116-3



GU, LEVIN, AND WEN

n—2|mn—2
T "H'B

n—2 n—2
j ol

FIG. 6. The tensor trace of this simple tensor network gives us
(W\O}OA?:NNU)PI’). Again, the indices on connected links are
summed over in the tensor trace.

D

cut

)

Tpp)

apuv vy’

= E SB(D)laBySB(DB
y=1

Then, we can sum over the indices on the links for each

small square and produce the coarse-grained tensors. For ex-

ample, T can be calculated as

,:\ya)\p = 2 Slﬁa'ySZ,uB(rSBSV,u)\SA4an' (10)
aBuv

T¢, Ty, and T}, can be calculated in a similar way.

For a system with 2" lattice sites, after coarse graining for
n—2 times, we end up with only four impurity tensors TZ_Z,
TZ’Z, T'gz, and T”D'Z. Under PBC, to obtain the expectation

value <‘I’|éilé]2»:NN(i)|‘I'>, we only need to truncate the four
impurity tensors in the way as shown in Fig. 6

(WO Oy W) =t TH{ T} @ T © T @ T 2.

Thus the calculation of the averages of local operators is
also reduced to a polynomially long calculation. The total
computational complexity is: cost time ~D® log N on
square lattice (N is the total number of sites). For gapped
systems in the thermodynamic limit, the truncation error can
be estimated as e~ exp[—const(log D.,)*].>> After calculat-
ing the inner product and the average of 4; in Eq. (2), we can
obtain the approximate ground state with minimized average
energy by adjusting the elements in the tensor 7.

B. Correlation functions through the TERG method

The correlation functions of two operators with arbitrary
separations for a given TPS can also be calculated in a simi-
lar way. In the following, we assume |r;—r;|=L=2" and use
this simple example to show how the method works. The

two-body correlation functions <\If|é,0j|‘1’> can be repre-
sented as a tensor trace with two impurity double tensors live
on sites i and j and with uniform double tensors T on other
sites, as shown in Fig. 7(a). After one step of coarse graining
(we shrink the shaded region in Fig. 7(a) to a point when
doing coarse graining), we obtain a tensor network in Fig.
7(b). Notice the impurity tensors increase to two in_each
plaquette and the distance between them becomes L/ 2. Af-
ter two more steps of coarse graining, the number of impu-
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FIG. 7. A schematic plot of calculating a two-body correlation
functions with separation [r;—r]=L=2" assuming L=\N/2. The
solid dots represent the impurity tensors and open dots represent the
uniform tensors. We shrink the shaded region to a single point when
doing coarse graining.

rity tensors increases to four in each plaquette but the dis-
tance between them becomes L/2v2, as shown in Figs. 7(c)
and 7(d). However, after increasing to four impurity tensors
in a plaquette, the number of impurity tensors will not in-
crease in subsequent coarse graining procedures, as shown in
Fig. 7(e). Finally, if L is equal to the half of the linear system
size (L=VN/2), we can end up with a tensor network where
two impurity-tensor plaquettes touch each other, as shown in
Fig. 7(f). Under PBC, after truncating the up and down legs
and left and right legs of this tensor net, we obtain the two-
body correlation functions in this case. In more generic cases
L<\N/2, we need to do more steps of coarse graining start-
ing from the configuration in Fig. 7(e). As in Fig. 8, we can
do a series of coarse graining steps from Figs. 8(a)-8(f).
However, Fig. 8(f) will come back to the case shown in Fig.
8(c) after one step of coarse graining and thus we do not
need to consider other possible configurations. In conclusion,
for an arbitrary m in |r;—r;/=2", we may stop at a configu-
ration from Figs. 8(a)-8(f). Under PBC, we can obtain the
correlation function by performing the tensor trace on the
resulting tensor network.
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€3]
FIG. 8. A schematic plot of possible final configurations when
calculating correlation functions with a separation \rj—ri|=L=2’".

(e)

C. TERG algorithm on other lattice geometries

The detail implementation of TERG algorithm will be
slightly different on other lattices. Here we discuss three
other simple lattice geometries, namely, the honeycomb,
Kagome, and triangle lattices. We would like to remark that
the lattice geometry of TPS does not need to be the same as
the lattice geometry of the physical model in generic cases.

1. Honeycomb lattice

On honeycomb lattice, we assume the tensors 7, and Tp
in TPS to be different on sublattice A and B. As a result, the
norm of the wave function can be represented as a tensor
trace with two different double tensors T, and Ty on sublat-
tice A and B. To apply the TERG algorithm, we may first
apply a basic move for two adjoint double tensors (see Fig.
9). Mathematically, the basic move in Fig. 9(a) is expressed
as

DCUI
A 7B
2 Taﬁy uvy E SAvaySBﬁp,y' (1 1)
Y r=1
This step can be realized by a SVD decomposition
approximately.?
Py O Yol (o}
a v SINAS > \ﬁ
a v _ r IS[i 4
' A
T>l<rg = /1
i A
B u ) v
L H S,’,ﬁ 73; == )&
d c P
(a) (b)

FIG. 9. The deformation and renormalization of double tensor
Ty (p) on the honeycomb lattice.
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FIG. 10. (Color online) The tensor network on a honeycomb
lattice with six impurity double tensors can also be coarse grained
without generating more impurities.

By applying the basic move for all the links in the dashed
boxes as shown in Fig. 10, we can deform the honeycomb
tensor network into the triangle-honeycomb tensor network.
Then we can sum over the inner links on each triangle and
realize the coarse graining procedure. For example,

V;‘)\Up= E SAB}/)\S/,laBoSXyap' (12)
aBy

Similar on square lattice, this step is exact.

Again, the expectation value of a local Hamiltonian could
also be represented by a contraction of tensor network with
impurity double tensors. After coarse graining, the type of
impurity tensors will also not increase. Simulating the tensor
network with six impurity double tensors shown in Fig. 9(b)
will allow us to evaluate up to six-body nearest-neighbor
interactions (which include on-site interaction and nearest-
neighbor, next-nearest-neighbor, next-next-nearest-neighbor
two-body interactions as well as six-body plaquette interac-
tion term on a hexagon).

2. Kagome and triangle lattices

The implementations of TERG algorithm on Kagome and
triangle lattices can be very similar to honeycomb lattice.
Actually, after one step lattice deformation, both of them can
come to the case of honeycomb lattice. For simplicity, we
consider the case of calculating a uniform tensor net.

Figure 11(a) shows that by decomposing rank-four double
tensors on Kagome lattice into a summation of two rank-
three tensors (the same as on square lattice, this step can be
realized approximately by SVD decomposition), we can de-
form the Kagome lattice into triangle-honeycomb lattice, see
in Figs. 11(b) and 11(c). Then by summing over the inner
indices of each triangle, we end up with a honeycomb lattice
geometry, see in Fig. 11(d).
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(a) (b)

(© (d

FIG. 11. A tensor network on Kagome lattice can be deformed
into a tensor network on honeycomb lattice.

Figure 12(a) shows that by decomposing rank-six double
tensors on triangle lattice into a summation of four rank-
three tensors (this step can be realized approximately by sev-
eral SVD decompositions as shown in Fig. 13), we can de-
form the triangle lattice into a geometry as shown in Fig.
12(c). Then again by summing over the inner indices of each
triangle, we end up with a honeycomb lattice geometry [see
Fig. 12(d)].

By applying the above geometry deformation and coarse
graining procedure on tensor network (with and without im-
purities), we can also evaluate average energy and correla-
tion functions for systems on Kagome and triangular lattices.

III. EXAMPLES OF SYMMETRY BREAKING PHASE
TRANSITIONS

To test our TERG algorithm, we first calculate ground
state and its magnetization along x and z directions for the
transverse field Ising model,

H=-2 ol - hE (13)
@)

We choose the tensor T in Eq. (1) to be real and has 90°
rotational symmetry. We also choose the inner dimension

%Yﬁ@ﬁ
20!

FIG. 12. A tensor network on triangular lattice can be deformed
into a tensor network on honeycomb lattice.
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K==
(a) (b) (c)

(d)

FIG. 13. A schematic plot of realizing the decomposition in Fig.
12(a) by several SVD decompositions.

D=2 and keep 18 singular values at each iteration (D,
=18). The total system size is up to 2° X 2° sites. The average
energy for a tensor 7 is calculated using the TERG approach.
We use Powell minimization method to find the minimal
average energy and the corresponding tensor which gives us
the variational ground state.

In Fig. 14 we plot the polarization along x and z directions
in the variational ground state. We note that despite the o©
— —0° symmetry in the Hamiltonian, the tensor 7 that mini-
mize the average energy may break the 0°— —o° symmetry
and give rise to nonzero polarization in z direction. We find a
second-order phase transition at 4.~ 3.08. We further fit the
critical exponent

(14)

with 8~0.333 =0.003. Both the values of critical field and
critical exponent 3 here are very close to the quantum Monte
Carlo (QMC) results, with A9M€=3.044 (Ref. 25) and
BMC=(.327.26 They are much better than the mean-field
results 7.=4 and B=0.5.

To see the truncation error caused by D.,, we plot the
ground-state energy (per site) of Eq. (13) as a function of
D, for h=2.8,3.2, and h=h,=3.08 (see Fig. 15). The ener-
gies for different 4’s are shifted by different constants so that
the three curves can be fitted into one window. Notice that
for off-critical systems (h=2.8,3.2), the energy converges
very quickly for small D, (~26). Even at the critical point

I <o’ A he=308
; ' p=0333
Fa v
P s =}
/ | ~_ —-3
/ I M. -10 06
/ . Inh-h,l
/ (a) \ (b)
O 1 2 3 4 3.0 35

h h

FIG. 14. (Color online) (a) Magnetization along the x direction
(o%) versus transverse field 4. The derivative of magnetization has a
singularity around /2 ==3.1, indicating the second-order phase tran-
sition. (b) Magnetization along the z direction (o°) versus transverse
field 4. In the inset is the log plot of (o%) versus |h—h.|, where h, is
the critical field.
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[ h=2.8
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h=h =3.08

103 Energy

-H_._/‘\izk'/o—o—o—o—o—o—o—a

20 D 32

cut
FIG. 15. Ground-state energies (with some constant shifts) of
the transverse Ising model for different D,,.

h=h.=3.08, the error in energy per site is of order the 1
X 107*. The truncation error is much smaller for gapped off-
critical states. Note that the nonmonotonic behavior of the
error versus D, can be understood as there are both trunca-
tion errors in (¥ |W¥) and (¥|h|V¥) and those errors are in-
trinsically random.

As another test, we also apply the TERG method to a
gapless system—Heisenberg model: H=2;)S;-S; on square
lattice. Here we choose D=2,3, or 4, D =18, and total
system size 2° X 27 sites. We choose tensors T, and T} to be
real and has 90° rotational symmetry on sublattices A and B.
We find the ground-state energy to be —0.330, —0.3323, and
—0.3338 per bond for D=2, 3, and 4, which is quite close to
the best QMC results —0.3350.2728 The TERG method also
allows us to calculate correlation function using tensor net-
work with two “impurity” tensors with arbitrary separations.
Through the long-range correlation function, we find that the
total magnetization is m= \r’/<SfS;+S{S}Y+SfS§>=0.39 for D
=2, which is larger than the QMC results (0.307).272% We see
that a small error in ground-state energy (which depends
only on short-range correlation) can lead to a larger error on
correlations at long distances.

IV. EXAMPLES OF TOPOLOGICAL PHASE TRANSITIONS

In this section, we apply the TERG approach to a few
models with string-net condensation. We calculate the phase
diagram of these systems and study phase transitions from
string-net condensed states to states without string-net con-
densation. These transitions are examples of continuous
phase transitions between phases with different topological
orders but the same symmetry.®~'3 As such, they are beyond
the Landau symmetry breaking paradigm. Thus the TERG
approach is capable of describing phases and phase transi-
tions that cannot be described by Landau’s symmetry break-
ing theory.

A. Z, gauge model

The first system that we study is a spin-1/2 system where
the spins live on links of a square lattice. The Hamiltonian is
given by

H=UE(1 —Hoi)—gE Moj-sX . (15
v lev p lep !

Here I, 07 is the product of the four o7 around a square p
and X, sums over all the squares. II;.,07 is the product of the
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four o} around a vertex v and X, sums over all the vertices.
>, sums over all links. We will assume that U= and study
the quantum phases of the above system as we change g and
J. We will assume J>0 and g>0.

When J=0, Eq. (15) is exactly soluble.?’ To understand
the exact ground state in the string language,’® we interpret
the 0°=—1 and 1 states on a single link as the presence or
absence of a string. The appropriate low-energy Hilbert
space in large U limit is made of closed string states that
satisty II;_,07=1 at every vertex. The ground state is simply
an equal weight superposition of all closed string states
|W2,)=ZxcelosealX), Which is called a string-net condensed
state. Such a state is the simplest topologically ordered
state.!

When g=0, the ground state is the spin-polarized state
with no-down spins and no-closed strings. The above two
states have the same symmetry. But due to the nontrivial
topological order in the string-net condensed state, the two
states belong to two different quantum phases. We would like
to use the TERG approach to study the phase transition be-
tween the above two states with different topological orders.

We would like to mention that the low-energy effective
theory of Eq. (15) is Z, gauge theory.?>*!32 The transition
between the string-net condensed and noncondensed phases
is nothing but the transition between the deconfined and con-
fined phases of Z, gauge theory.

One way to study such a phase transition is to introduce a
variational wave function,

W= > wHXx), (16)

X eclosed

where Ly is the number of links on the string X. When w
=1, [V, becomes the string condensed state |\Ifzz>. When
w=0, |W¥,) is the state with all spins in up direction which
does not contain any strings. We see that w behaves like the
string tension which controls the density of strings. |¥,,_;) is
the ground state of Eq. (15) when J=0 and |V¥,_,) is the
ground state of Eq. (15) when g=0.

Since |¥,_,) and |¥,_,) have the same symmetry, one
might expect that as we change g/J, |V,_;) would change
into |W,,_) smoothly and the ground-state energy of Eq. (15)
would be a smooth function of g/J, implying that there was
no quantum phase transition. In fact, we will see below that
the ground-state energy of Eq. (15) is not a smooth function
of g/J indicating that there is a quantum phase transition at a
critical value (g/J).,..

In order to calculate the energy expectation values in
these states (and also to pave the way for generalizations) we
write the trial wave function |¥,,) as a tensor-product state,

W)= 2 (Tre, 70" m,m,,...),  (17)

my,my,...

where m;=0,1 labels the up-spin and down-spin states on
link /. To define the tensor trace, one can introduce a graphi-
cal representation of the tensors [see Fig. 16(a)]. Then tTr
means summing over all indices on the connected links of
tensor network. The variational state [Eq. (16)] that we in-
troduced above is given by the following choice of tensors:
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(a) (b)

FIG. 16. (a) The spin-1/2 model Eq. (15) on links of a square
lattice. The dots represent the physical spin states which are labeled
by m=0,1. The above graph can also be viewed as a tensor network
where each dot represents a rank-three tensor g and each vertex
represents a rank-four tensor 7. The two legs of a dot represent the
a and B indices in the rank-three tensor g’o’fﬁ. The four legs of a
vertex represent the four internal indices in the rank-four tensor
T,pp- The indices on the connected links are summed over which
define the tTr. (b) A tensor network of the double-line tensors,
where each dot represents a double-line tensor g and each vertex
represents a double-line tensor 7. The four legs of a dot represent
the @ ; and B, ; indices in the tensor g";’l“z?ﬁlﬁz' The eight legs of a
vertex represent the internal indices in the rank-four tensor
T oy ay:8, By, vin h,- The indices on the connected links are summed
over which define the tTr.

1 if a+B+y+0J even

Tors= 18
B0 if a+B+y+d odd, (18)

go=1, g =w, others=0, (19)
with internal indices like & running over O and 1. The rank-3
tensor g behaves like a projector which essentially sets the
internal index equal to the physical index so that a=1 rep-
resents a string and =0 represents no string. The meaning
of the tensor T,g,s is also clear; it just enforces the closed
string constraint, only allowing an even number of strings to
meet at a vertex.

Once we have expressed the trial wave function as a TPS,
we can use the TERG method to calculate the average energy
in a very efficient way>® and minimize the average energy by
varying w. The resulting (minimized) average energy as a
function of g/J is plotted in Fig. 17. From the discontinuity
in the slope, we see that there is a first-order phase transition
at g/J=2.3 between the two states with and without string-
net condensation (see Fig. 19).

How good is this result? On a quantitative level, it is not
very good: the phase transition is known to occur at (g/J).
~3.044.% However, this is not surprising since we used the
simplest possible variational wave function. We expect the
estimate for (g/J), to improve when we increase the number
of variational parameters—for example, by considering g
and T with larger dimension.

A more serious problem is that the result is wrong on a
qualitative level: the phase transition is known to be of sec-
ond order not first order. This problem cannot be overcome
by blindly generalizing the tensors g and 7. Instead, we have
to choose these tensors in a special way. To understand the
basic issue, let us consider another set of variational tensors.
In this scheme, the internal indices for the 7 and g tensors
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-0.8
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12t ' ota
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14l %
L I "1
-16 %,

1.8+
20+
_22 N 1 N 1 N 1 N
0 1 2 3 4
glJ

FIG. 17. (Color online) The black squares are (minimized) av-
erage energies of the Z, model (15) for the single-line tensor net-
work Egs. (18) and (19)]. The red dots are (minimized) average
energies for the double-line tensor network [Egs. (22) and (21)].
(Here again we choose D, =18 and total system size is 2° X 2°)

still run from O to 1, but each leg now has two internal
indices, see in Fig. 18,

Toppn= Ta|“2§:31ﬁ2271 Yok T T(;]ﬁl 1M 6“271 572132531)\25)\1“1
(20)

with a, a5, 81,82, Y1, Y2, N ,A=0,1 and

0 0 1 1
gi1=80w0=1  &io10=80n,0 =1 others=0.
(21)

In such constructions, our tensors have a double-line struc-
ture [see Fig. 16(b)]. Again, g™ are projectors that relate the
internal indices with physical indices. Here, on each leg of g
and T tensors, the double line with the same value is pro-
jected to the spin-up state and the double line with different
values is projected to the spin-down state.

To maintain the 90° rotational symmetry, we choose 7° to
have the form (assuming 79,,,=1)

x(1) = To0s
x(2) = 73111 = 7(1)011 = 7(1)101 = 7(1)110’

M A

Y7o

FIG. 18. The graphic representation for the double-tensor ansatz
in Eq. (20).
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FIG. 19. (Color online) (B,) versus g/J. The single-line varia-
tional wave function shows a jump in (B,), which indicates a first-
order phase transition around g/J=2.3 (black squares). The double-
line variational wave functions have no jump in (B,) but the
discontinuity in the derivative indicates a second-order phase tran-
sition around g/J=3.2 (red dots).

x(3) = T000=T0100= T0010= T0001-
x(4) = 7(1)100 = 78011 = 78110 = 7(1)001»

x(5)= 7(1)010 = 78101- (22)

We note that for such a choice of 7° and g, the trial wave
function contains only closed string states.

Using the TERG approach to minimize the average en-
ergy, we find the variational ground-state energy which is
plotted in Fig. 17. We find that there is a phase transition
between the two phases with and without string-net conden-
sation. But now the phase transition is a second-order phase
transition at g/J=~3.2 (see Fig. 19). Note that this result is
better than our previous result both quantitatively and quali-
tatively.

The quantitative improvement is perhaps not surprising
since we are using more variational parameters. A more im-
portant issue is that the double-line mean-field theory cor-
rectly describes a second-order phase transition, while the
single-line mean-field theory did not. Why is this?

Note that there is a Z, redundancy in the double-line ten-
sors (like the gauge redundancy in gauge theory). As we
exchange values of 0 and 1 for all the internal indices of the
double-line tensors, we induce a Z, transformation on those

double-line tensors: (T,g™)— (T,g"). However, such a Z,
transformation does not change the physical wave function:
T ®,T®,¢™]=tTt[®,T®,g"]. Thus (T,g") and (T,g") are
two labels that label the same physical state.

The variational approach used here is similar to calculat-
ing an average in a local classical statistical system. The
presence of a Z, symmetry allows a classical system to have
a Z, symmetry breaking transition which is a second-order
phase transition. This is the reason why the double-line ten-
sors are capable of producing a second-order phase transi-
tion. In contrast, for the single-line tensors, the correspond-
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Y|Y

FIG. 20. (Color online) The double-semion model on the hon-
eycomb lattice. The ground-state wave function (26) has a TPS
representation given by the above tensor network. Note that 7 and g
has a double-line structure. The vertices form a honeycomb lattice
which can be divided into A and B sublattices.

ing classical system does not have any symmetry and, as a
result, it cannot describe a second-order transition.

We would like to mention that there is a duality transfor-
mation that relate the 2D Z, gauge theory to transverse field
Ising model.** Such a duality mapping allows us to relate the
phase transition between the deconfined and confined phases
of the Z, gauge theory to the spin-ordered and disordered
transitions in the transverse field Ising model. This is how we
know that the transition between the string-net condensed
and noncondensed phases is a second-order phase transition
and that it occurs at critical coupling g/J=~3.044. In fact, the
double-line tensors exactly realize the duality mapping be-
tween the 2D Z, gauge theory and transverse field Ising
model. From the structure of the double tensors in Egs. (21)
and (22), we see that each square loops in Fig. 16(b) carries
the same value of internal indices, which correspond to the
value of a dual spin (located at the center of the square) in
the dual Ising model. The string formed by the down spins
on the links corresponds to a domain wall in the dual Ising
model.

B. Double-semion model

Next we consider a more complicated model where spins
are located on the links of a honeycomb lattice (see Fig. 20),

=vE(1- 1 o)-sSoi-s3( I o)

legs of I p \edges of p
><< I1

legs of p

i““f’z), (23)

where i labels the links, I labels the vertices, and p labels
hexagons. Again we consider U= limit.>> When J=0, the
above model is exactly soluble and the exact ground state is
given by?! [W_ Y=3(—)"¥|X), where =y sums over all the
closed string configurations and /(X) is number of closed
loops in X. The ends of string in such a state have the semion
statistics. When g=0, the model is also exactly soluble and
the spins all point up (i.e. no strings) in the ground state.
To study the phase transition between the above two
states, again we choose the double-line tensors to construct
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FIG. 21. (B,) versus g/J; the discontinuity of the derivative
around g/J=5.0 indicates a second-order confinement-
deconfinement phase transition. (Here again we choose D =16
and total number of lattice sites is 2 X 313.)

the trial wave function (see Fig. 20). The T tensors in the
vertices are given schematically by

sublattice A: Taa’;ﬁﬁ’;'yy’ = TA

aﬂy‘saﬁ’ Sy Oyar

sublattice B: Taa’;BB’;)/y’ = Tgﬁ’y&a’ﬁéﬁ' ,),57/&, (24)

where each internal index represented by one of the double
lines runs over 0 and 1. The tensors 7" and 7% are given by

x(1) = Toy =Ty = Thios () = Too1 = Tigo = To0

x(3) =T}, x(4)=Thys

x(5)=T5, =Tio =T x(6)=Tg, = Tioo=To0-

x(7)=T%,, x(8)=Thy. (25)

The g tensors on the links are given by Eq. (21). The trial
wave function is obtained by summing over all the internal
indices on the connected links in the tensor network (see Fig.
20),

|‘Pdsemion> = E tTr[®uT®lgm1]|m17m2a .. > (26)
{ml}

Again, the physical indices and the internal indices have a
similar relation as in the Z, double-line tensors. When x(1)
=x(5)=—i, x(2)=x(6)=i, and x(3)=x(4)=x(7)=x(8)=1, the
tensor reproduces the right sign oscillations ()" essentially
by counting the number of left and right turns made by the
string.

We used the TERG approach to find the variational
ground states for different g/J. The detailed implementation
is a little different from the square lattice, as shown in Figs.
9 and 10. Then we used the TERG approach to calculate (B,
for those variational ground states with minimized energies.
The result is presented in Fig. 21. We see that there is a
second-order phase transition at g/J=5.0, which should cor-
respond to the transition between the string-net condensed
and noncondensed states. This agrees with the Monte Carlo
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result where a second-order phase transition appears at
(g/J).~4.768.25 (Note that in the infinite U limit, the above
model is equivalent to the usual Z, gauge model on honey-
comb lattice by applying a global unitary mapping, which is
dual to the transverse Ising model on triangle lattice.)

V. CONCLUSION

The TERG approach is a generic method to obtain various
quantum phases and quantum phase transitions for 2D quan-
tum systems. The most important feature of TERG approach
is that it can handle quantum states with long-range entangle-
ment (such as topologically ordered states). When we use
traditional mean-field theory to calculate a quantum phase
diagram, the topological ordered phases cannot appear in
such a mean-field phase diagram since the mean-field states
are limited to those with short-range entanglement. The
TERG approach solves this problem and can generate phase
diagrams that contain both symmetry breaking states and to-
pologically ordered states. Thus the TERG approach may
play a role for topologically ordered states analogous to the
Ginzburg-Landau theory for symmetry breaking states.

We have seen that to use the TERG approach to study
topological phases and topological phase transitions, one
needs to choose the variational tensors carefully. An impor-
tant question is how to choose the tensors in more general
situations. One hint is that all the string-net states con-
structed in Ref. 21 can be expressed naturally in terms of a
generalization of the double-line tensor network, which in-
volves triple-line tensors.?> This triple-line tensor network
may correspond to the dual representation of the string-net
states and may correspond to a suitable choice for the varia-
tional TERG approach. This may lead to a systematic varia-
tional approach for topological phases and topological phase
transitions.

We would like to remark that the variational ansatz with
small D often does not produce good long-range correlation
functions even though the local energy can be very good
(which is shown in the example of square Heisenberg
model). Actually, this is a common weakness suffered by any
kind of variational method, such as VQMC, DMRG. How-
ever, by using better global minimizing methods, we can
increase D from D=2 used in this paper to a larger value
which will produce better results and eliminate the above
weakness. This will be part of our future work. Other spin
models, such as Heisenberg model on Kagome lattice and
J1-J, model, are more interesting physically and the results
will be presented in future publications.

Finally we would like to mention that the TERG varia-
tional method may also be useful in analyzing interacting
fermion models since these models can be mapped back to
local spin models.’*—3® Indeed, in Sec. IV we already saw
examples of models with fermion and anyon excitations
which could be studied by the TERG method.
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APPENDIX: SCALING OF ERRORS IN SEVERAL
VARIATIONAL METHODS

In a VQMC calculation, the error € is a statistical error
that scales like 1/N'? where N is the number of samples.
The computational time 7 scales like N. Thus the scaling of
the error with computational time is given by e~ 1/T"2,

In the 1D approach, the error € is a finite-size error that
comes from the truncation of the infinite 2D lattice to an L
X oo Jattice. In a gapped system we expect this error to fall
off as e™¥/¢ where & is the correlational length. On the other
hand, the computational time 7 is exponential in L since the

PHYSICAL REVIEW B 78, 205116 (2008)

method requires diagonalizing a transfer matrix whose size is
exponentially large in L. We conclude that the error scales
with the computational time as e~ e¢~comstlog D),

In the TERG approach, the truncation error for each itera-
tion step scales as e, ~ ecomstllog Dcut)z, since calculating the
norm and averages is like calculating the partition function in
Ref. 23. The total truncation error for a system of size L is
€,~ (log L)econstllog Pew’ gince such a system requires log L
iterations. On the other hand, the finite-size error is e
~¢71¢, Minimizing the sum of the two errors, we see that
the optimal L is given by L~ (log D,,)?. Since the compu-
tational time scales polynomially in D, we conclude that
the total error scales like e~ e—comstliog D)’ (neglecting sub-
leading log corrections).
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