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The applicability of bosonization and the Anderson-Yuval �AY� approach at strong coupling is investigated
by considering two generic impurity models: the interacting resonant-level model and the anisotropic Kondo
model. The two methods differ in the renormalization of the conduction-electron density of states �DOS� near
the impurity site. Reduction in the DOS, absent in bosonization but accounted for in the AY approach, is shown
to be vital in some models yet superfluous in others. The criterion is the stability of the strong-coupling fixed
point. Renormalization of the DOS is essential for an unstable fixed point but superfluous when a decoupled
entity with local dynamics is formed. This rule can be used to boost the accuracy of both methods at strong
coupling.
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I. INTRODUCTION

Several classic models in condensed-matter physics show
logarithmic behavior at high energies followed by qualita-
tively different behavior at low energies. Notable examples
include the x-ray absorption problem,1 the Kondo
Hamiltonian,2 the interacting resonant-level model
�IRLM�,3,4 and different variants of two-level systems
�TLSs�.5,6 Historically devised to model real impurities in
bulk samples, many of these Hamiltonians have recently
found new realizations and generalizations in quantum dots
and other confined nanostructures.

A distinguished place in the theory of such quantum im-
purities is reserved to Abelian bosonization7 and the
Anderson-Yuval �AY� approach,8,9 which remain among the
most powerful and versatile analytical tools in this realm.
With numerous applications over the last 40 years, it is sur-
prising that the applicability of neither approach has ever
been studied systematically for strong couplings. In
bosonization, the bare couplings are generally assumed to be
weak. Strong static interactions are often included ad hoc in
terms of their scattering phase shift. The AY method, which
maps the original impurity problem onto an effective Cou-
lomb gas, is presumably nonperturbative in certain cou-
plings. However, it typically fails to reproduce the correct
scaling equations even at the next-to-leading order.4,10 A re-
liable extension of these approaches to strong couplings is
highly desirable.

The goal of the present Rapid Communication is to criti-
cally test the accuracy of these leading analytical methods
away from weak coupling and to propose an operational ex-
tension to strong couplings. To this end, we resort to Wil-
son’s numerical renormalization group �NRG� �Ref. 11� and
to two generic classes of models as test beds: the IRLM and
the anisotropic Kondo model. Our analysis highlights the
role of the reduction in the conduction-electron density of
states �DOS� near the impurity site, which may hinder the
efficiency of other essential couplings �e.g., tunneling in the
IRLM�. This reduction in the DOS, absent in bosonization

but included in the AY approach, proves vital in some mod-
els and superfluous in others. It is essential in cases where
the strong-coupling fixed point is unstable but superfluous in
models where a decoupled entity with local dynamics is
formed at strong coupling. Hence, the accuracy of bosoniza-
tion and the AY approach can be significantly enhanced by
selectively incorporating the DOS renormalization factor to
match the case in question.

The reduction in the local conduction-electron DOS is
best seen for a simple model where electrons scatter elasti-
cally off a pointlike impurity �s-wave scattering�. The renor-
malized DOS at the impurity site takes the form12

��� � EF� = �0 cos2� , �1�
where �0 is the unperturbed DOS, EF is the Fermi energy,
and � is the scattering phase shift. Since �→� /2 for reso-
nant scattering, this implies ����EF�→0. This fact may
have a dramatic effect, as exemplified below by the two-
channel IRLM. A strong local Coulomb repulsion suppresses
the DOS at the vicinity of the impurity, reducing the hopping
rate between the impurity and the bands. Since reduction in
the DOS is independent of the interaction sign, it equally
applies to an alternating potential. The case of a TLS with a
single coupling �the commutative model�5,6 is qualitatively
similar.

One may expect the same to occur in the anisotropic
Kondo model or the noncommutative TLS with electron-
assisted hopping. For example, consider the single-channel
Kondo model �1CKM� with a large XXZ anisotropy: Jz

� �J�� with Jx=Jy =J�. In the spirit of the AY philosophy,8

one may first treat the larger coupling Jz before incorporating
the smaller J�. In the absence of J�, a large Jz reduces the
local DOS at the impurity site independent of the orientation
of the impurity spin. Incorporating J� at the next step, its
efficiency is expected to be hindered by the reduced DOS
to the extent that it diminishes in the limit Jz→� �when
�→� /2 and ����EF�→0�. Surprisingly, this is not what
we find with the NRG. Rather, spin flips remain governed at
large Jz by the bare transverse coupling J�.
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To unravel the governing rule, we conduct a detailed com-
parison between Wilson’s NRG, bosonization, and the AY
method applied separately to the multichannel Kondo model
and IRLM. The applicability of the latter two approaches at
strong coupling is shown to depend crucially on the stability
of the strong-coupling limit. Whenever a decoupled entity
with local dynamics is formed �i.e., a stable strong-coupling
fixed point is reached�, then the DOS renormalization factor
is superfluous and bosonization works well. If, however, the
strong-coupling limit is unstable, then the DOS renormaliza-
tion factor is essential and the AY approach works well. The
above classification pertains to noncommutative models. For
commutative couplings the AY method always applies as one
can always reorder the perturbation series.

Prompted by these findings we proceed to re-examine the
“intimate relation” between the IRLM and the anisotropic
1CKM.4 Close correspondence is established between the
models in the case of the single-channel IRLM but not in the
case of multiple screening channels.

II. INTERACTING RESONANT-LEVEL MODEL

In the IRLM,3,4 a one-dimensional �1D� electron gas is
coupled to a spinless impurity level by two distinct mecha-
nisms: a hopping matrix element V and a short-range Cou-
lomb repulsion U. The hopping rate is enhanced for weak
repulsion but is generally suppressed at large U due to a
reduction in the conduction-electron overlap integrals be-
tween a vacant level and an occupied one13,14 �the so-called
orthogonality catastrophe15�. Consequently, the hopping rate
tends to develop a maximum at some intermediate coupling
U, whose value is pushed toward weak coupling as the num-
ber of screening bands N is increased.14 This behavior stems
from an enhancement of the orthogonality effect with in-
creasing N.

Interest in the IRLM has been recently rekindled by a
Bethe ansatz solution of a two-lead version of the model
under nonequilibrium conditions.16 In its multichannel form,
the Hamiltonian reads H=H0+H1+H2 with

H0 = �
n=0

N−1

�
0�k�2kF

vF�k − kF�akn
† akn + �dd†d , �2�

H1 = U�
n=0

N−1

�an
†an − �1/2���d†d − �1/2�� , �3�

H2 = V�d†a0 + a0
†d� . �4�

Here, akn
† creates an electron with momentum k in the nth

band, d† creates an electron on the level, kF and vF are the
Fermi momentum and Fermi velocity, respectively, �d is the
level energy, U is the Coulomb repulsion, and V is the tun-
neling amplitude into the n=0 band. The operator an

†

= �1 /�N��kakn
† , where N is the number of lattice sites, cre-

ates a localized band electron at the impurity site. Note that
H is particle-hole symmetric for �d=0, which is the case of
interest here.

We study the IRLM using Wilson’s NRG, bosonization,
and the AY approach. Since bosonization and the NRG are

frequently used, we refer the reader to Refs. 7 and 11 for
details of these methods. In the following we briefly review
the AY approach, which relies on a mapping of the impurity
problem onto an effective 1D Coulomb gas of multicom-
ponent charges. The AY mapping is nonperturbative in the
Coulomb repulsion U, which determines the different
charge components through its associated phase shift
�=−arctan���0U /2�. Here �0 is the bare conduction-
electron DOS. The hopping amplitude V fixes the fugacity of
the gas, which is given in turn by

y = V��0�0�1/2cos � . �5�
Here �0=1 /D0 is a short-time cutoff with D0 as the bare
bandwidth. The cos � factor that appears in Eq. �5� encodes
the DOS renormalization. A similar mapping, only without
the cos � factor, can be derived using Abelian bosonization.
Incorporating U by means of its associated phase shift,17 an
identical 1D gas is obtained with y=V��0�0�1/2.

The Coulomb gas is next treated by progressively increas-
ing the short-time cutoff while simultaneously renormalizing
the gas parameters so as to leave the partition function in-
variant. This results in RG equations for the parameters of
the Coulomb gas,14 which are perturbative in the fugacity y
�namely, V� but nonperturbative in U. To illustrate the basic
iterative step, suppose that the short-time cutoff has already
been increased from its bare value �0=1 /D0 to �	�0. Fur-
ther increasing the cutoff to �+�� requires two operations: �i�
integration over charge pairs whose separation falls in the
interval �� ,�+��� and �ii� rescaling of � by �+��. Consecu-
tive charges, having opposite signs, leave no net charge be-
hind. However, they do possess a dipole moment that acts to
screen the interaction between the charges that remain. Inte-
gration over the close-by charge pairs can therefore be ab-
sorbed into a renormalization of the remaining charges. On
the other hand, the rescaling of � is absorbed into a renor-
malization of the fugacity y, as described by the following
set of RG equations:14

�dy/d ln �� = y	�1/2� − z0 − �1/2��
n=0

N−1

zn
2
 , �6�

dzn

d ln �
= 2��n0 + zn�y2. �7�

Here �n0 is the Kronecker delta, while the charge compo-
nents zn take the bare value z=2� /�. Contrary to usual dy-
namical scaling equations, the DOS is also modified in this
procedure due to the rescaling of �. However, this difference
is only formal. Either strategy can be pursued.

Equation �6� pertains to the fugacity y. It can equally be
written as a scaling equation for the level width 
=�y2 /�,
which serves as the low-energy cutoff in the problem. Spe-
cifically, the perturbative RG procedure terminates at 1 /�
�
 when the fugacity y becomes of order 1. Whether this
condition is met or not depends on the values of N and �. To
see this, consider a sufficiently small y0 such that the renor-
malizations of zn can be ignored. Equation �6� then becomes

�dy/d ln �� = �1/2��1 − 2z − Nz2�y . �8�
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Whether y is relevant or not depends on the sign of the
expression in the parentheses. Since −1�z�0 for repulsive
interactions, y is always relevant for N�3. However, it turns
irrelevant for N	3 if U is made sufficiently large. The sys-
tem flows then to a decoupled level. Careful analysis of the
transition between a strongly coupled and a decoupled level
shows that it is of the Kosterlitz-Thouless type18 analogous
to the ferromagnetic-antiferromagnetic transition line of the
anisotropic Kondo model. Importantly, bosonization and the
AY approach predict the same critical coupling Uc as V→0.

Solution of Eq. �8� in the regime where y is relevant
yields the renormalized level width, or cutoff scale,


ren � D0y0
2/�1−2z−Nz2�. �9�

Here y0 is the bare fugacity of Eq. �5�. For either N=1 or 2,
one can substitute z�−1 in Eq. �9� to obtain 
ren
�D0y0

2/�3−N� at large �0U. Hence 
ren is strongly suppressed
as �0U→� due to the cos � factor that appears in y0. In
contrast, 
ren saturates in bosonization, where the DOS
renormalization factor is absent.

Figure 1 compares the renormalized level width 
ren of
the multichannel IRLM, as obtained by our three methods of
interest. Within the NRG, 
ren was defined from the T→0
charge susceptibility of the level according to 
ren=1 /��c.
In the AY approach and bosonization, 
ren was obtained from
a full numerical solution of Eqs. �6� and �7� with and without
the cos � factor in Eq. �5�.

While both the AY method and bosonization work quite
well for N	2, only the former approach succeeds in tracing
the NRG for N=2. Bosonization fails to produce the suppres-
sion in 
ren at large U, which stems from the renormalized
DOS. In contrast, the AY approach fails to generate the satu-
ration in 
ren for N=1 and large U, in which bosonization
captures quite well. Hence, the DOS renormalization factor
is superfluous in this case. The source of distinction between
N=1 and 2 is nicely elucidated by a strong-coupling
expansion17 in 1 /U. Whereas a decoupled entity with local
dynamics is formed when N=1, for N=2 the strong-coupling

fixed point is unstable. A renormalized IRLM is recovered17

with dynamics that depends on the renormalized DOS. Rel-
evance of the DOS renormalization depends then on the sta-
bility of the strong-coupling fixed point. As shown below, the
same criterion applies to the Kondo model.

III. ANISOTROPIC SINGLE-CHANNEL KONDO MODEL

The anisotropic 1CKM has been intensely studied over
the years8–10,19 as a paradigmatic example for strong corre-
lations. It describes the spin-exchange interaction of an im-

purity spin S� with the local conduction-electron spin density
s�, as modeled by the Hamiltonian term

Hint = JzS
zsz + �J�/2��S−s+ + S+s−� . �10�

In the antiferromagnetic regime, Jz	−�J��, the system flows
to the strong-coupling fixed point of the isotropic model re-
gardless of how large the anisotropy is.

Similar to the hopping V in the IRLM, the transverse
Kondo coupling J� is attached to a factor of cos2� with �
=−arctan���0Jz /4� upon mapping the 1CKM onto an effec-
tive 1D Coulomb gas using the AY approach. This factor,
which stems from the form of the electronic Green’s
function,6 is absent in bosonization and is omitted in the
original works of Anderson and collaborators.8,9 Its inclusion
has profound implications, as the effect of spin flips �and
consequently the Kondo temperature� vanishes in the limit
�→ �

2 �i.e., Jz→��. If these considerations are correct, then
the NRG should give the same result as Jz→�, which turns
out not to be the case.

Figure 2 compares the Kondo temperature TK obtained by
our three methods of interest. Within the NRG, TK was de-
fined from the T→0 impurity spin susceptibility according
to TK=1 /4�s. In the AY approach and bosonization, it fol-
lowed from a full numerical solution of the RG equations9

with and without the cos2� factor attached to J�. Evidently,
bosonization works quite well for the 1CKM, reproducing
the saturation of the Kondo temperature as Jz→�. The AY
prediction of a vanishing TK is clearly discredited by the
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FIG. 1. �Color online� Renormalized level width for the IRLM
with up to four screening channels, as obtained by the NRG,
bosonization, and the AY approach. Here 
0=��0V2 with V /D0

=0.02 �we use �0D0=1 /2�. �a� The AY approach works quite well
for N=2,3 ,4 but fails for N=1. �b� Bosonization works well for
N=1,3 ,4 but predicts an exact mapping �Ref. 17� between U→0
and U→� for N=2 and thus a saturated width. Note that the AY
approach systematically underestimates 
ren at large U, whereas the
opposite is true for bosonization.
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FIG. 2. �Color online� The Kondo temperature of the one- and
two-channel Kondo models as a function of Jz for fixed �0J�

=0.1. While bosonization works quite well for the 1CKM, the AY
approach incorrectly predicts a vanishing TK as Jz→�. The roles
are reversed for the 2CKM. Here the AY method is qualitatively
correct, whereas bosonization predicts �Ref. 21� an exact mapping
between Jz→0 and Jz→� and thus a saturated TK. The dotted-
dashed line shows a one-parameter fit �the prefactor of 
� in Eq.
�47� of Ref. 21� to the strong-coupling expansion of the 2CKM.
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NRG, proving the redundancy of the DOS renormalization
factor. As anticipated, a decoupled entity is formed at large
Jz, signaling the stability of the strong-coupling fixed point.

A critical test of our picture is provided by the anisotropic
two-channel Kondo model �2CKM�, whose strong-coupling
fixed point is known to be unstable. Instead, the model flows
to an intermediate-coupling, non-Fermi-liquid fixed point
characterized by anomalous thermodynamic and dynamic
properties.20 Similar to the two-channel IRLM, we expect the
DOS renormalization to be essential in this case. The results
shown in Fig. 2 well support our picture. While bosonization
predicts21 an exact mapping between Jz→0 and Jz→�, and
thus a saturated TK, the AY approach correctly reproduces the
vanishing of TK. Although quantitatively less accurate at in-
termediate Jz, agreement with the NRG is clearly very good
both at small and large couplings.

Above two screening channels, the anisotropic Kondo
model undergoes a Kosterlitz-Thouless transition with in-
creasing Jz	0 to a ferromagneticlike state.21 Since spin flips
are suppressed to zero, the distinction between bosonization
and the AY approach loses its significance at strong coupling
similar to the IRLM with N	3.

IV. COMPARISON OF THE TWO MODELS

Prompted by these results, we have set out to carefully
test the accepted mapping4 of the one-channel IRLM onto
the 1CKM, as the mapping involves large couplings. Within
bosonization, one finds the following correspondence of
parameters:22 V↔J� /�8 and �U↔�2�z+���2−1� /2 with
�U=−arctan���0U /2� and �z=−arctan���0Jz /4�. Our NRG
results for the low-energy scales of both models are summa-
rized in Fig. 3. Evidently, there is close correspondence be-
tween the two models using the above mapping of param-
eters, confirming the predictions of bosonization. Note that
TK varies by a factor of 30 in Fig. 3. The agreement does not
extend to the two-channel IRLM, which similarly flows to a
strong-coupling Fermi-liquid fixed point �unlike the non-
Fermi-liquid fixed point of the 2CKM�. The DOS renormal-
ization factor, absent in the 1CKM, proves essential in this
case.

V. CONCLUSIONS

We have critically examined the accuracy of the AY and
bosonization methods away from weak coupling by consid-
ering two generic impurity models. The reduction in the
conduction-electron DOS, accounted for by the AY approach
but absent in bosonization, was shown to be vital in the case
of an unstable strong-coupling fixed point yet superfluous in
models where a decoupled entity with local dynamics is
formed. The two methods thus display complementary accu-
racies at strong coupling controlled by the stability of the
strong-coupling fixed point. Accuracy of these powerful
methods can thus be significantly enhanced by selectively
incorporating the DOS renormalization factor, making them
adequate tools for tackling strong-coupling physics.
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FIG. 3. �Color online� Renormalized level width of the one- and
two-channel IRLMs vs the Kondo temperature of the 1CKM ob-
tained using the NRG. Here J�=�8V. As predicted by bosonization,
there is close correspondence between the 1CKM and the N=1
IRLM upon equating �2�z+���2−1� /2 with �U.
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