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We analytically calculate the energy spectrum of a circular graphene quantum dot with radius R subjected to
a perpendicular magnetic field B by applying the infinite-mass boundary condition. We can retrieve well-
known limits for the cases R ,B→� and B→0. Our model is capable of capturing the essential details of recent
experiments. Quantitative agreement between theory and experiment is limited due to the fact that a circular
dot deviates from the actual experimental geometry, that disorder plays a significant role, and that interaction
effects may be relevant.
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I. INTRODUCTION

Shortly after its discovery four years ago,1 graphene trig-
gered tremendous research both theoretically and
experimentally.2,3 The excitement was partly created by the
fact that charge carriers in graphene are described by the
Dirac equation for massless particles and a linear dispersion
relation. In particular, there is no energy gap between va-
lence and conduction band. Impressive experimental results
such as the unconventional quantum Hall effect4,5 and Klein
tunneling6 were achieved and can be explained with these
special properties. First experiments on graphene quantum
dots were carried out to study their energy spectra in a per-
pendicular magnetic field.7,8 The understanding of their spec-
tra, especially how they may differ from a conventional two-
dimensional �2D� electron system described by the
Schrödinger equation, is emerging.9,10

Here we look at the energy spectrum obtained by
magnetic-field spectroscopy in Ref. 8 from the theoretical
side. We derive an analytic expression for the energy spec-
trum in a perpendicular magnetic field in the first part, look
at different limits in the second part, and compare theory and
experiment in the third part of Sec. II. We conclude with
some final remarks in Sec. III.

II. ENERGY SPECTRUM IN A PERPENDICULAR
MAGNETIC FIELD

A. Derivation

We start from the free Dirac equation expressed in
cylindrical coordinates and include a magnetic field
oriented normal to the graphene sheet. We use the symmetric
gauge for the vector potential, A=B /2�−y ,x ,0�
=B /2�−r sin � ,r cos � ,0� with � being the polar angle. The
Hamiltonian then reads

H = vF�p + eA� · � + �V�r��z, �1�

and the Dirac equation is H��r ,��=E��r ,�� with the wave
function being a two-component spinor, ��r ,��
= ��1�r ,�� ,�2�r ,���. The charge of an electron is given by
−e, vF is the Fermi velocity, and �= ��x ,�y� are Pauli’s spin

matrices in the basis of the two sublattices of A and B atoms.
The electron spin is neglected in our analysis. A mass-related
potential energy V�r� is coupled to the Hamiltonian via the
�z Pauli matrix. The mass in the dot is zero, V�r�=0 for
r�R, but tends to infinity at the edge of the dot, V�R�→�.
In this way, charge carriers are confined inside the quantum
dot. This leads to the infinite-mass boundary which yields the
simple condition that �2 /�1=�i exp�i�� for circular
confinement.11 The parameter � takes the two values �1
which leads to a distinction between the two valleys K and
K� described by the Dirac equations of Eq. �1�. Hence, in the
following we can set V�r�=0 and we will respect the differ-
ent energy spectra of the K and K� valleys via the boundary
condition.

Since the operator for the total angular momentum,
Jz= lz+ 	

2 �z, commutes with H, �H ,Jz�=0, we can construct
simultaneous eigenspinors for H and Jz �m being an integer�,

��r,�� = eim�� 
1�r�
ei�
2�r�

� . �2�

Plugging this expression into the Dirac equation and decou-
pling the system of differential equations, we arrive at a
second-order differential equation for, e.g., 
1�r� which de-
pends only on r,

��r
2 +

1

r
�r −

m + 1

lB
2 −

m2

r2 −
r2

4lB
4 + k2�
1�r� = 0. �3�

The energy E is related to the wave vector k according to
E=	vFk. We have introduced the magnetic length
lB=		 / �eB�. In order to solve this differential equation, we
make the ansatz 
1�r�=rm exp�−r2 /4lB

2���r2�. This yields the
associated Laguerre differential equation

�r̃�r̃
2 + �m + 1 −

r̃

2lB
2 ��r̃ +

k2lB
2 − 2�m + 1�

4lB
2 ���r̃� = 0, �4�

with r̃ªr2. The solution is ��r̃�=cL�k2lB
2 /2

− �m+1� ,m , r̃ /2lB
2�, where L�a ,b ,x� is the generalized La-

guerre polynomial and c is a normalization constant. The
second linearly independent solution of Eq. �4�, the confluent
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hypergeometric function of the second kind, does not appear
in the wave function � because it cannot be normalized. With
the final result for � and hence for �1, �2 can be derived
directly from Eq. �1�. The wave functions finally read

�1�r,�� = ceim�rme−r2/4lB
2
L� k2lB

2

2
− �m + 1�,m,r2/2lB

2� ,

�2�r,�� = ciei�m+1��rme−r2/4lB
2 r/lB

klB

��L� k2lB
2

2
− �m + 2�,m + 1,r2/2lB

2�
+ L� k2lB

2

2
− �m + 1�,m,r2/2lB

2�� . �5�

Employing the boundary condition discussed above, we fi-
nally get an implicit equation for determining k, namely,

�1 − �
klB

R/lB
�L� k2lB

2

2
− �m + 1�,m,

R2

2lB
2 �

+ L� k2lB
2

2
− �m + 2�,m + 1,

R2

2lB
2 � = 0. �6�

Since the generalized Laguerre polynomials are oscillatory
functions, there is an infinite number of kn’s for given B, m,
and � which fulfill the above equation. This defines the radial
quantum number n which labels the roots of the left part of
Eq. �6�. Here, we restrict ourselves to positive solutions for k
so that k1
0. Therefore, the energy spectrum E�n ,m ,�� of
electrons confined to a circular graphene quantum dot which
is exposed to a perpendicular magnetic field is determined
through Eq. �6�. The relation −E�n ,m ,��=E�n ,m ,−�� is a
manifestation of the electron-hole symmetry.

B. Limits for B\0 and R Õ lB\�

For a better understanding of Eq. �6�, we will look at the
two limits B→0 and R / lB→� separately. Bessel functions
of the first kind can be expressed as a limit of the generalized
Laguerre polynomial,12

lim
a→�

� 1

abL�a,b,
x

a
�� = x−b/2Jb�2	x� . �7�

Using this property, Eq. �6� can be simplified to

�Jm�kR� = Jm+1�kR� �8�

in the limit B→0. This is the result already derived in Ref.
11. The relation can be used to estimate the number of charge
carriers confined on a graphene dot when the energy of an
excited state is measured.7,8 Moreover, we can deduce that
E�n ,m ,��=E�n ,−m−1,−�� for B=0. This is derived from
the property Jm�x�= �−1�mJ−m�x�. Hence, pairs of states are
degenerate at zero magnetic field. There is no state at zero
magnetic field and zero energy.11 This leads to an energy gap
between negative- and positive-energy states. The size of the
energy gap will be discussed below.

Landau levels should be retrieved from Eq. �6� if the con-
finement is lifted. Mathematically, this is achieved for

R / lB→�. We express the generalized Laguerre polynomial
in terms of the confluent hypergeometric function of the first
kind M�� ,� ,�� �Ref. 12�,

L�a,b,x� = �a + b

a
�M�− a,b + 1,x� . �9�

For R / lB→�, a power expansion of M is possible and yields
to first order12

M��,�,�� =
����
����

e���−��1 + O�
�
−1�� . �10�

Rewriting the binomial coefficients with Gamma functions
��x� and using one of their defining relations,
��x+1�=x��x�, algebraic manipulations of Eq. �6� give

Em = 	vFkm = � vF
	2e	B�m + 1� . �11�

Hence, we retrieve the well-known Landau levels for
graphene. Therefore, there will be a transition, governed by
the parameter R / lB, from a regime where the energies of the
electrons are dominated by confinement �Eq. �8�� to Landau
levels �Eq. �11��. This transition including these two limiting
cases is described by Eq. �6�.

C. Numerical results and comparison to experiment

We evaluate Eq. �6� for a dot of radius R=70 nm which is
about the same size as the device measured in Ref. 8. The
energy spectrum as a function of magnetic field is shown in
Fig. 1 for m=−4, . . . ,4 and n=1, . . . ,6. For B=0, the energy
states are not equidistant. For higher magnetic fields, we can
see the formation of Landau levels as it is expected accord-
ing to the previous discussion. The zero energy Landau level
is formed by states with quantum number �=−1 and E�0
and those with �= +1 and E�0. For completeness, we plot
the first negative-energy states as well in Fig. 1.

The lowest positive-energy state has an energy of about 4
meV for B=0. This gives an energy gap of around 8 meV
between electron and hole states. Since the energy gap to the
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FIG. 1. �Color online� Energy spectrum of a quantum dot with
R=70 nm. The formation of the lowest Landau levels can be seen
as predicted by Eq. �11�. Energy states for �= +1 are drawn with
solid �black online� lines, those for �=−1 with dashed �green on-
line� lines.
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next excited state is much lower, the electron-hole transition
may be detected experimentally by a confinement enhanced
energy.

For quantum dots in semiconductors, the Darwin-Fock
model is often used to qualitatively explain the experimental
observations. In contrast to the model presented in this paper,
the Darwin-Fock model is based on harmonic confinement
giving rise to equidistant and highly degenerate energy levels
at B=0. However, the general evolution from single-particle
states at B=0 to Landau levels at high magnetic fields is
similar in the two scenarios.

We recently performed transport spectroscopy measure-
ments on Coulomb blockade resonances in a graphene dot
with a radius of about 70 nm �Ref. 8�; Fig. 2 is the main
result of that experiment. It shows the position of conduc-
tance resonances as a function of magnetic field. The vertical
energy axis was obtained by converting plunger gate voltage
into energy using the measured lever arm. Employing the
constant-interaction model, the ground-state energy of an
N-particle quantum dot can be written as

Egs�N� = �
i=1

N

�i�B� +
e2N2

2C�

− eN�Vg. �12�

The single-particle energy �i�B� of the ith particle is given by
E�n ,m ,��. The second summand is the electrostatic contri-
bution to the energy with the total capacitance C� of the
experimental device which we assume to be independent of
B. The ground-state energy can be tuned by a gate voltage
Vg. The lever arm � is deduced from Coulomb diamond
measurements. The experiment described in Ref. 8 was done
in the zero-bias regime; in other words we measured the
chemical potential �N=Egs�N�−Egs�N−1� of the Nth
Coulomb resonance. Hence, the single-particle energy
�N�B� can experimentally be determined by �N�B�
=e�Vg

res�N ,B�+const. In Fig. 2, the constant part is sub-

tracted so that consecutive Coulomb resonances �labeled
with red triangles and blue circles, respectively� touch each
other in one point. Since there is no well-defined zero energy
�the electron-hole transition could not be determined in the
experiment�, an arbitrary offset was subtracted.

We compare the experimental data to our theoretical
model. For this purpose, we zoom into a particular region of
Fig. 1. Since we are now interested in states with a constant
number of particles, these are—in analogy to Fig. 2—shown
consecutively with red dashed and blue solid lines in Fig. 3.
The kinks in the energy spectrum for a constant number N of
particles occur whenever the Nth particle changes its quan-
tum state to stay in the lowest possible single-particle state.
In Fig. 3, the slopes are constant and vary between 7 and 12
meV/T. This is in reasonable agreement with our experimen-
tal data where we measured slopes of 2.5 meV/T. The fol-
lowing three reasons might limit the quantitative agreement
between experiment and theory. �i� The circular shape is a
simplification of the experimental device. �ii� Disorder is ex-
pected to play a significant role in graphene nanostructures.
This is not included in the theoretical model. �iii� Since the
experiments were not performed in the single-electron re-
gime, interaction effects should be included in a thorough
theoretical analysis. Numerical tight-binding calculations or
quasiclassical simulations are capable of implementing these
aspects.13

III. SUMMARY

In this paper, we derived an analytic expression for the
energy spectrum of a circular graphene quantum dot which is
exposed to a perpendicular magnetic field. The boundary
condition we employed is the infinite-mass boundary intro-
duced in Ref. 11. This straightforward model is in good
qualitative agreement with our recent experiments.8 We dis-
cuss possible limitations of the model.

The validity of the infinite-mass boundary condition for
graphene is discussed in recent papers.14,15 One needs to
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FIG. 2. �Color online� Experimental data of a quantum dot with

R=70 nm. This figure is taken from Ref. 8. The single-particle
energy of nine consecutive states �labeled with triangles �red online�
and circles �blue online� respectively� is shown. The characteristic
slopes of the dashed lines are about �2.5 meV /T.
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FIG. 3. �Color online� A closeup of the single-particle spectrum
shown in Fig. 1. For comparison to the experimental data, states
with a fixed number of particles are consecutively denoted by
dashed �red online� and solid �blue online� lines. An arbitrary offset
is subtracted as described in the text. Slopes marked by the two fat,
dashed lines vary between 7 and 12 meV/T.
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evaluate the consequences of different boundary conditions
for energy spectra of confined graphene quantum structures.
However, apart from the reasonable agreement between
theory and experiment, instructive models such as the one
presented here can be solved analytically with the infinite-
mass boundary and give an intuitive understanding of the
physics behind such systems.

Note added. During preparation of this paper, we became

aware of similar and more extensive calculations by Recher
et al.16
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