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We present an approach to calculating second harmonic generation from periodically-structured metal sur-
faces. It requires the numerical solution of Maxwell’s equations at both the first and second harmonic, but the
electronic response to these fields is treated by a parametrization scheme developed earlier. Several model
systems are considered, including metal patches of various shapes or holes in a metal film. Detailed calcula-
tions using the finite-difference time-domain method lead to predictions of the frequency dependence of second
harmonic generation for different diffracted beams and polarizations. There is more spectral structure than what
is evident in the linear reflection or transmission.
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I. INTRODUCTION

The optical properties of metallic nanostructures are of
great current interest from both fundamental and practical
points of view.1–3 Most of this interest has focused on linear
properties, but there is a growing body of experimental stud-
ies of nonlinear behaviors.4–33 A variety of theoretical ap-
proaches have also been put forward, usually in the context
of a particular class of experiments.32–46

In this paper we develop an approach which can be ap-
plied to a range of geometric configurations. It is a combi-
nation of analytic parametrizations of second harmonic gen-
eration �shg� �Refs. 47 and 48� and numerical finite-differ-
ence time-domain �fdtd� evaluations.49 The analytic work
builds on the developments of about 20 years ago for the
�top� flat surface of a thick metal slab.50–56 We basically as-
sume that the parametrization scheme for the second-order
driving terms still may be used when the flat metal surfaces
are not of infinite extent but have edges and corners. The
numerical work is needed to determine both the profile of the
linear-response fields and the second harmonic fields they
produce. The fdtd method has become a standard scheme for
calculating the linear behavior of nanostructures,57–60 par-
ticularly those with a spatial scale comparable to the wave-
length of the perturbing fields. Its extension to determine
nonlinear response has been largely unexplored, and here we
describe one way this may be done.

In Sec. II we examine a simple model system that can be
solved either analytically or numerically. The results from
these two approaches do agree, for appropriate mesh choices
in space-time. Then in Sec. III we describe simulations of
shg spectra for a sequence of more realistic systems with
periodic structures: rectangular patches of metal, rectangular
holes in a metal film, and T-shaped patches of metal. Our aim
here is not a direct comparison with experiment, but rather a
search for insight into what physical features and mecha-
nisms can be important or not. We find that the second har-
monic response can yield information that is not obvious in
the linear response.

II. TEST PROBLEM

To aid our development of a numerical scheme, we first
consider a simple test problem for which the answer is
known. The system is the flat interface between semi-infinite
jellium metal and vacuum. On one hand, to get any second
harmonic generation in this case, the incident light cannot
come in along the normal. But on the other hand, obliquely
incident light complicates the fdtd calculation. As a compro-
mise we imagine a coherent pair of p-polarized incident light
beams, with opposite angles of incidence. The complex-
valued, space- and time-dependent fundamental field is then
periodic along the surface and can be written as

E� 1 = E0
c

�
e−i�t�eipx�iQ sin Qy,− p cos Qy,0� + re−ipx�iQ sin Qy,p cos Qy,0� , x � 0,

teip�x�iQ sin Qy,− p� cos Qy,0� , 0 � x ,� �1�

where � is the frequency of the light and the metal lies in
x�0. There is a single plane of incidence and the projection
of the wave vector on the surface is �Q= � �� /c�sin �,
where �� are the opposing angles of incidence. We align our
Cartesian coordinate system with the plane of incidence, us-
ing the surface normal to define the x axis, the intersection of

the surface with the plane of incidence to define the y axis,
and ẑ= x̂� ŷ as the third axis. The three triplets of values in
Eq. �1� give the relative sizes of components along the x̂, ŷ,
and ẑ axes for the incident, reflected, and transmitted light.
The overall strength of the field is set by Eo, while the Fres-
nel amplitudes for reflection and transmission are given by
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r =
	p − p�

	p + p�
, t =

2p

	p + p�
, �2�

where 	 is the metal’s dielectric function at frequency � and
the normal components of the wave vector are p
= �� /c�cos � and p�= �� /c��	−sin2 � for outside and inside
the metal, respectively.

Next consider the generation of second harmonic fields.
These are produced by the driving polarization, which can be
divided into surface and bulk types.54,55 The former are
strong but localized near the surface, while the latter are
weaker but extend into the bulk of the metal. These different
functional forms lead to different ways of treating their ef-

fects. For the surface driving polarization P� �s�, one attributes
its integrated �along the surface normal� strength to a 
 func-
tion placed just outside the metal. The normal component of

P� �s� is proportional to the square of the normal component of

E� 1 in Eq. �1� for x=0+, while the only other nonzero compo-

nent of P� �s� is along ŷ and is proportional to the product of

x̂ ·E� and ŷ ·E� , again evaluated at x=0+. In Sec. III we discuss
the proportionality coefficients in more detail, but here we
treat them as free parameters, writing

� dxx̂ · P� �s� = A�cos Ky − 1�e−i�t, �3�

� dxŷ · P� �s� = iB sin Kye−i�t, �4�

where �=2� and K=2Q are second harmonic values of fre-
quency and surface wave vector.

The bulk driving polarization P� �b� that we use here arises
in a jellium picture from the Lorentz �pondermotive� force

on free electrons. It is proportional to E� 1�B� 1, where E� 1 is

the fundamental field of Eq. �1� and B� 1 is the associated
magnetic field. A simple calculation shows that one may

write P� �b� in x�0 as

P� �b� = �D�ip�x̂�cos Ky + 1� − Qŷ sin Ky	e2ip�x
e−i�t

= �D

2
�� �cos Ky + 1�e2ip�x�e−i�t. �5�

Here D is the parameter �with the same units as A and B� that

sets the strength of P� �b�, while the second line shows that P� �b�

is longitudinal.
With the driving polarizations defined by Eqs. �3�–�5�,

one has a straightforward problem to solve for the radiated
second harmonic fields.47,48 The transverse contributions to
these can be written as

E� 2,tran = e−i�t c

�
��−e−iPx�iK cos Ky,− P sin Ky,0� , x � 0,

�+eiP�x�iK cos Ky,P� sin Ky,0� , 0 � x ,�
�6�

where P= �� /c�cos � and P�= �� /c��−sin2 �, with  as
the metal’s dielectric function at frequency �. We find

�− = 4�
�

c
�KA − P�B − DQ�/�P� + P� , �7�

which sets the strength of the second harmonic field radiated
back into vacuum. It is this quantity that we try to duplicate
with an fdtd calculation. Since �− is linear in A, B, and D, we
can proceed with only one of them being nonzero at a time.

For the fdtd calculation of second harmonic fields, we
need to use the driving polarizations in the Ampère-Maxwell
equation. Assuming for the moment that  is a real-valued
constant, one has

�� � H� 2 =


c

�E� 2

�t
+

4�

c

�P�nl

�t
, �8�

where the nonlinear polarization is given by P�nl=P� �s�+P� �b�.
Equation �8� converts into an equation for iteration:49

E2
n+1 = E2

n + ��� � H2
n+1/2� − 2 Re�4�

c
�− i��Pnl

n+1/2��c�t/ ,

�9�

where we have ignored the vector character. The superscripts
are discrete labels for the different time steps, separated by
�t. We have evaluated the exact time derivative of Pnl at the
magnetic time step. The Pnl in Eq. �9� are expressions such
as in Eqs. �3�–�5� and our convention for producing the
physical, real-valued �Pnl /�t is to take twice the real part
�Re� of its complex-valued version.

The different Cartesian components of P�nl are used at the

corresponding spatial mesh points for components of E� 2.

This prescription is straightforward for P� �b�, but for P� �s� it

requires special care. For x̂ ·P� �s� we use from Eq. �3�

x̂ · P� �s� =
A

�x
�cos Ky − 1�e−i�t, �10�

where �x is the spatial step size along x̂. Equation �10� is
used only in the first layer of x points outside the metal. A

similar recipe applies for ŷ ·P� �s�.
In our actual calculations  is not a constant but exhibits

�Drude� dispersion. We account for this by the method of
auxiliary differential equations.49 The quantities inside the
curly brackets in Eq. �9� are not changed by this modifica-
tion. Another technical feature is that the driving terms are
turned on gradually around t=0 using

e−i�t → e−i�t�e−�t/t0�2
, t � 0,

1, 0 � t ,
� �11�

where t0 in the Gaussian factor is large enough to require
more than a thousand time steps to “turn on.”

In a series of evaluations we used a fundamental wave-
length �=800 nm and �=53.1° so p, Q, and � /c are in a 3,
4, 5 ratio. The square surface unit cell then has side 2� /Q
=1 �m. The metal parameters were those for Al—see Sec.
III. A typical result is shown in Fig. 1, which plots the nor-

mal component of E� 2 far outside the metal versus time at the

fixed value of y=0 �so ŷ ·E� 2=0�. The analytic and fdtd re-
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sults agree quite well, in both phase and amplitude. Similar
agreement was found for other cases, with different field
components and/or different nonzero A, B, and D. For all
these calculations we used a spatial step size of �x=�y
=�z=4 nm and a temporal step size of c�t=2 nm. The
agreement, such as seen in Fig. 1, sets in for ct�2 �m.
Reducing t0 in Eq. �11� degrades the agreement. It is also
important to choose the spatial mesh points to be consistent
with the expected symmetries of the field components; e.g.,
since y=0 is a symmetry line, mesh points should be equally
spaced on either side of y=0. We conclude from this exercise
that our fdtd scheme can, given the driving polarizations,
determine the strength of radiated second harmonic fields
with a good quantitative accuracy.

III. MODEL CALCULATIONS

Now we turn to more complicated structures. The incident
light will come in along the normal to the �average� surface
plane and either asymmetries in the structure or detection
away from the normal will allow a shg signal to be nonzero.
We will consider configurations that can be built with peri-
odic arrays of finite flat surfaces. In this paper we shall ig-
nore for simplicity the effects of any supporting dielectrics.
Thus we have only metal-vacuum interfaces, which are the
best understood. With this limitation, one can be fairly con-

fident about the size of parameters for P�nl, at least for simple
metals such as Al.47

The parametrization scheme is based on a jellium picture
of the metal. We use, if x̂ is along the local surface
normal,47,54–56

x̂ · P� �s� =
a/2
�x

e

8�m

�1 − 	�2

�p
2 �x̂ · E� 1�2, �12�

ŷ · P� �s� =
b

�x

e

8�m

�1 − 	�2

�p
2 �x̂ · E� 1��ŷ · E� 1� , �13�

P� �b� = − d
e

4�m

�1 − 	��1 − �
�p

2

��E� 1 �  i�

c
�B� 1 +

�

� + �i/��
�E� 1 · �� �E� 1� . �14�

Here e�0 and m are the charge and mass of the conduction
electrons and �p

2 =4�ne2 /m with n the bulk density is the
plasma frequency. The two dielectric functions have the
Drude form with a common frequency-independent scatter-
ing rate 1 /�:

	 = 1 −
�p

2

��� + i/��
,  = 1 −

�p
2

��� + i/��
. �15�

The fields E� 1 and B� 1 are at the fundamental frequency �. For

P� �s� they have to be evaluated just inside the metal. The cal-
culation of these fields will be done with fdtd codes. For all
the configurations considered here, each local surface normal

is along one of our �fixed� Cartesian axes. In general P� �s� will
have all three components nonzero, which means that one
needs to supplement Eq. �13� with an equation wherein ŷ
→ ẑ but the parameter b remains unchanged. As in Sec. II,

the equations for P� �s� describe the strength of “
-function”
terms placed just outside the metal at appropriate �different�
lattice points for each component.

Earlier work47–56 has shown that for jellium b=−1 and
d= +1 for all ���p /2, while a is frequency dependent and
complex valued. For ���p the real part of a dominates and
is negative with a magnitude of around 10. In real metals

additional contributions to P�nl may exist47,48 due, say, to
asymmetries in crystal surface structures or interband excita-
tions. We ignore these complications for now. The second
term in the square bracket in Eq. �14� is due to the long-
ranged contribution of the “convective derivative.” This term
appears in the equation of motion for the electron velocity

field v� in the form �v� ·�� �v� . One may only keep its bulk
contribution since its surface contribution is classically ill
defined but is properly included in the quantum-mechanical
calculations of the a parameter. For the test problem in Sec.

II, the �E� 1 ·�� �E� 1 term is nonzero but produces no radiation.
For the more complicated configurations to be considered
here, it will produce radiation of a similar strength as the
pondermotive term in Eq. �14�.

Again we note that we are also ignoring the effect of any
supporting dielectrics. A priori calculations of how these
would affect the a and b parameters have not been done,
although experimental measurements do indicate that
changes can be significant.47 The dielectrics also complicate
the fdtd calculation of radiated second harmonic fields be-

cause the P� �s� 
 functions could not then be placed in
vacuum, which would lead to additional screening. The dif-

ficulty lies with the normal component of P� �s� and E� 2 and
further clouds the question of what value to use for a.48

In our fdtd calculations we suppress from P�nl the dimen-
sionless factor of

9.0 9.5 10.0
ct (µm)
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FIG. 1. Comparison of analytic and fdtd calculations of second
harmonic fields from a surface driving polarization described by
A�0 and B=0=D. The thick �thin� curve is from the fdtd �analytic�
calculation. See text for other parameters used.

SECOND HARMONIC GENERATION BY PERIODICALLY-… PHYSICAL REVIEW B 78, 195416 �2008�

195416-3



eE0/m�p
2l = E0/Es, �16�

where E0 is the incident electric field amplitude and l
=1 �m. The scaling field can be re-expressed as

Es = 4�2 e

�p
2� l

r0
, �17�

where �p=2�c /�p is the bulk plasmon wavelength and r0
=e2 /mc2 is the classical electron radius. For �p=0.1 �m,
Eq. �17� yields Es=2�1015 V /m. The strength of shg is set
by a Poynting flux. For a measure independent of the inci-
dent flux, one often uses the ratio

� = �x̂ · S�2�/�x̂ · S�1�2, �18�

where S�1 and S�2 are the Poynting vectors at the first and
second harmonic, respectively, and the angular brackets de-

note a time average. Since �x̂ ·S� �= �c /8���E� �2cos � we can
write, noting that for an incident beam along the normal �1
=0,

� =
8�

c
�E� 2�2cos �2/�E� 1�4 =

8�

c
 e

m�p
2l
�2

� , �19�

where �2 is the emission angle of the second harmonic ra-
diation. We calculate the dimensionless �, but plot it with
arbitrary scales. We do note the maximum value of � in each
case. The inverse of the factor preceding � in Eq. �19� is the
flux associated with ES. Using it one may convert our �
values to absolute shg efficiency magnitudes.

In all the calculations to follow, the metal is treated as Al
with ��p=12.6 eV and 1 /�p�=0.007. We also set a=−10.
For each shg frequency point, we need two separate fdtd
time iterations. The first uses an incident pulse plus a subse-

quent time-Fourier transform to find E� 1�x� ,�� and B� 1�x� ,��.
Using these the P�nl are calculated from Eqs. �12�–�14�. Then
the second fdtd iteration is done using the analog of the

recipe given in Sec. II �see Eq. �9�	 to find E� 2. The mesh in
space-time is the same as in Sec. II. Convergence is gener-
ally as good as there except near Rayleigh-Wood anomalies,
where diffracted beams change from propagating to evanes-
cent, which makes the field vary slowly as one moves away
from the surface.

A. Rectangular patches

Our first example is a two-dimensional �2D� square array
with period d of rectangular patches, each with dimensions
wx, wy, and wz. The experimental system we have in mind is
described in Refs. 18 and 26 but it had Au nanoparticles on
an indium tin oxide–coated glass substrate. Our patches are
“free-standing” Al. We set d=480 nm, wx=20 nm, and wz
=96 nm, and vary wy. In Fig. 2 we plot the reflectivity R for
several choices of wy. The incident light is polarized along ŷ.
We are particularly interested in the strong resonance whose
location moves steadily with wy.

The only other evident structures in Fig. 2 are Raleigh-
Wood anomalies, which occur near

� = d/�j2 + k2�1/2, �20�

where j and k are integers that define diffracted beams
through the 2D reciprocal lattice vectors: G> = �2� /d��jŷ
+kẑ�. Note the structures due to the �1,0� beams near �
=480 nm and due to the �1,1� beams near �=480 /�2
=340 nm. For the shg calculation we will use wy =280 nm,
so the resonance in R is centered on 808 nm. One might then
expect a peak in shg radiation near 400 nm, which for the
fundamental light is in the middle of a range of smooth
variation in R.

Since our patch system has inversion symmetry, there are
no shg beams moving along the normal, i.e., no �0,0� beams.
We show in Fig. 3 the shg efficiency, � of Eq. �19�, versus
fundamental wavelength for the �1,0� p-polarized reflected
beam. We also replot R from Fig. 2 for easier comparison.
Both R and � have been scaled here to have a maximum of
unity. The absolute maximum of this � is �p

�1,0�=7.0�108.
For the alternate s-polarized �1,0� reflected beam, we find a
�s

�1,0� that is zero to within our numerical accuracy.
The peaks in the first harmonic R and the second har-

monic �p
�1,0� have different locations and shapes. There is no

hint in the reflectivity plot as to where the shg peak will
occur.

The �1,0� shg beam can propagate to the far field only for
fundamental wavelengths less than 960 nm. This constraint
accounts for the sharp cutoff of ��1,0� at larger wavelengths.
It is in fact difficult to calculate ��1,0� as �→960 nm be-
cause the shg beam fields vary slowly with x and we must

move the plane at which E� 2 is used to compute ��1,0� farther
out into vacuum. The shg efficiency does have a Rayleigh-
Wood anomaly near �=960 /�2=680 nm, but it is not vis-
ible on the scale used in Fig. 3.

A rationale for the distinct behavior of � and R in Fig. 3
can be based on the following premise: the second harmonic

driving polarizations P�nl can excite patch modes that are
symmetrically inaccessible within linear response to light at

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
λ (µm)

0.0

0.2

0.4

0.6

0.8

R

wy=240nm
wy=280nm
wy=320nm

FIG. 2. Normal-incidence reflectivity R versus wavelength � for
a 2D square array of rectangular Al patches. The length of each
patch along the direction of polarization is varied for different
curves. See text for other parameters.

W. L. SCHAICH PHYSICAL REVIEW B 78, 195416 �2008�

195416-4



normal incidence. To justify this claim, we need to note some
facts and to make a few simplifying assumptions. The results
for � are dominated by the surface driving terms in the form
of Eq. �12�. We have calculated �p

�1,0� vs � either setting d to
zero or setting both b and d to zero. The shape of the plots is
essentially the same as in Fig. 3, aside from a change in
overall strength. The peak value of �p

�1,0�, at �=900 nm,
grows to 8.2�108 when b=0=d and grows further to 1.0
�109 when only d=0. The fact that � is larger when some
driving terms are suppressed is a reminder that contributions
from a, b, and d can interfere in producing �. Here we use
the fact that a terms dominate to ignore for the sake of a
qualitative argument all the others, and further to consider
only contributions from the top or bottom of the patch since
these surfaces have the greatest area and will produce reso-
nances at the longest wavelengths. For light incident along
the normal, polarized along ŷ, currents will be produced in
linear response that flow primarily along ŷ. This is certainly
reasonable for wy �wx ,wz, when the patch becomes a linear
antenna. The induced current, as well as the electric field that
drives it, must be symmetric about the center of any patch.
Placing y=0=z at the center of a patch, the currents near the
top or bottom of that patch can be written in the approximate
standing-wave form,61–63

J��y,z;t� � ŷJ0 cos��jy/wy�e−i�t, �21�

where J0 is a complex amplitude and j is an odd integer.

Even values of j are forbidden by the conditions that ŷ · J� be
even in j and vanish at �y�=wy /2. We have calculated profiles
of fields and currents within a patch. For ��700 nm they do
have the form of Eq. �21� with j=1 and J0 showing a weak
resonant peak near 800 nm.

With a current density along ŷ and proportional to
cos��y /wy�, the equation of continuity implies that the in-
duced charge density varies as sin��y /wy�, which in turn
produces by Gauss’s law a normal component of electric
field at the top or bottom surface with the same y depen-
dence. Thus one has at the larger surfaces of a patch �sup-
pressing the time dependence� the following:

x̂ · E� 1 � Ex0 sin��y/wy� ,

ŷ · E� 1 � Ey0 cos��y/wy� . �22�

Referring to Eqs. �12� and �13�, we then find

x̂ · P� �s� � sin2��y/wy� = �1 − cos�2�y/wy�	/2,

ŷ · P� �s� � cos��y/wy�sin��y/wy� = sin�2�y/wy�/2. �23�

Such driving terms can excite a mode with sinusoidal cur-
rents and fields of argument 2�y /wy. Recalling Eq. �21�, we
see that the nonlinear couplings lead to a j=2 mode from
either a or b terms. We believe the sharp resonance in Fig. 3
arises in essence from the j=2 mode. Profiles of the second
harmonic near fields within a patch are consistent with this
interpretation.

To further support our view, we ran our fdtd codes for �

using for P�nl one or the other line in Eq. �23�, evaluated just
outside the top of the patch. The proportionality coefficient
was independent of � and adjusted to produce a maximum
value for � of unity. As shown in Fig. 3 these extreme sim-
plifications reproduce quite well the shape of the full calcu-
lation of � vs �.

We end this subsection with the comment that we also
calculated � for the �0,1� beams. Only the p-wave � is sig-
nificant but the maximum value �at �=830 nm is at 8.3
�106��p

�0,1�, almost 2 orders of magnitude smaller than the
maximum of �p

�1,0�.

B. Rectangular holes

Our second example is a �rough� Babinet complement of
the first:64 a 2D square array of period d of holes in an
unsupported Al film of thickness h. Each hole has a rectan-
gular cross section wy �wz. The motivating experimental
system is that of Ref. 25, which had a hole array in a Au film
on glass. We set d=480 nm, h=160 nm, and wy =96 nm,
and vary wz. In Fig. 4 we plot the normal-incidence trans-
mission T for several choices of wz. The incident polarization
is along ŷ. Our focus is on the longest wavelength resonance,
an example of “extraordinary optical transmission,”65–67

which moves monotonically with wz.
68,69

As an aside, we remark that the peaks just above 500 nm
are due to a second resonance which is distorted by the
Rayleigh-Wood anomaly near 480 nm. This interpretation is
supported by further calculations in which we varied either h
or d. The former variation moves the resonant peak loca-
tions, suggesting that they arise from Fabry-Pérot resonances
within the holes.

In Fig. 5 we plot shg efficiencies for two different beams
along with the corresponding transmission from Fig. 4.

0.650 0.700 0.750 0.800 0.850 0.900 0.950
λ (µm)

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 3. Reflectivity �solid line� and shg �dots� versus fundamen-
tal wavelength � for the system in Fig. 2 with wy =280 nm. Both
quantities have been scaled to have a maximum of unity. The shg
efficiency is for the reflected p-wave �1,0� beam, while the reflec-
tivity is specular, i.e., the �0,0� beam polarized along ŷ. The dashed
curves are estimates of �p

�1,0� based on drastic approximations to

P�nl—see text.
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Again by inversion symmetry there are no shg beams mov-
ing along the surface normal. The absolute maxima are
�p

�0,1��3.2�106 and �p
�1,0��1.6�106, while the s-polarized

beams are at least 2 orders of magnitude weaker. Comparing
to Fig. 3 we again have sharp peaks at locations shifted away
from the linear resonance. The shift is here toward shorter
wavelengths and the sharp structures lie slightly above the
�1,1� Rayleigh-Wood anomaly. We are not sure whether to
attribute these structures to the expected anomaly or to exci-
tation of surface plasmons. Such a choice has been contro-
versial. Unlike in Fig. 3, the sharp structures are accompa-
nied by broad resonances close to and with a similar width as
the transmission resonance.

Our interpretation of the results in Fig. 5 is that the pri-
mary excitations in this system are extended surface plas-

mons which can be readily scattered by the hole array into
different directions. This picture qualitatively holds at both
the first and second harmonic energies. Moreover, in contrast
to the patch array, no new structure locations arise in the shg
although the appearance of structures may be considerably
modified—contrast T near 340 nm in Fig. 4 and the � near
700 nm in Fig. 5.

C. T patches

The last system we consider removes the inversion sym-
metry present in the first two. It is a collection of T-shaped Al
patches arranged in a 2D square array. Each T-shaped patch
is described by two adjacent rectangles: wy1�wz1 and wy2
�wz2. The height of the T is along ŷ and, with wz2=2wz1, the
crossbar is along ẑ. Each patch has thickness wx and the array
period is again d. For a similar experimental system, see Ref.
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FIG. 6. Normal-incidence reflectivity R versus wavelength � for
a 2D square array of T-shaped Al patches. The direction of polar-
ization is aligned with the height of each T, which is varied for
different curves. See text for other parameters.
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FIG. 7. Various diffracted beams and polarizations of shg versus
fundamental wavelength � for the system in Fig. 6 with wy

=288 nm. The shg efficiencies � have not been rescaled.
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FIG. 4. Normal-incidence transmission T versus wavelength �
for a 2D square array of rectangular holes in Al film. The width of
each hole along the direction normal to the polarization is varied for
different curves. See text for other parameters.
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FIG. 5. Transmission �thick line� and shg �circles� versus fun-
damental wavelength � for the system in Fig. 4 with wz=320 nm.
All quantities have been scaled to have a maximum of unity except
for �p

�1,0�, which is on the same scale as �p
�0,1�. The shg efficiencies

are for the transmitted p-wave beams, while the transmission is for
the straight-through �0,0� beam.
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27, which used Au T patches on a silica substrate. We set
d=480 nm, wz1=128 nm, and wz2=256 nm, and with wy1
=wy2 vary wy =wy1+wy2. Figure 6 shows the specular reflec-
tivity at normal incidence with the polarization along ŷ for
several choices of wy. We again are interested in the reso-
nance at the longest wavelength, but note the stronger �and
more varied� Rayleigh-Wood anomalies compared to those
in Fig. 2.

In Fig. 7 we plot shg efficiencies for several beams using
the exact scale for �. Since there are so many curves, we
omit redrawing R from Fig. 6. In the absence of inversion
symmetry, the �0,0� beam can be nonzero, although it is rela-
tively weak. The polarization of this beam is along ŷ; the �
for the orthogonal polarization is, like �s

�1,0�, at least 3 orders
of magnitude weaker. Note, however, that for the �0,1� beams
the � for the p and s polarizations are comparable.

In general terms one has broad peaks in � near the long
wavelength resonance in R plus sharp structures near the
Rayleigh-Wood �1,1� point at 680 nm. We do not believe that

the sharp structures arise from a broken symmetry by the P�nl,

as is the case in Sec. III A, because the T-shaped patches
already have no special symmetry along ŷ, even for the lin-
ear fields. This is why so many beams and polarizations have
a significant � in Fig. 7. The location and generally asym-
metric shape of the sharp structures suggest that they arise
from Rayleigh-Wood anomalies, which apparently are much
stronger for the second harmonic than the linear response.

To sum up, we have derived and evaluated a scheme for
calculating shg from periodically-structured metals in the
form of patches or holes of different sizes but always rect-
angular shapes. The results show a strong qualitative depen-
dence on geometric configuration. Experimental studies of
the spectra of shg would be useful for exhibiting the various
spectral features found here.
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