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The well-known experimentally observed sp-derived Au�111� Shockley surface states with Rashba spin
splitting are perfectly fit by an effective tight-binding model, considering a two-dimensional hexagonal lattice
with pz orbital and nearest-neighbor hopping only. The extracted realistic band parameters are then imported to
perform the Landauer-Keldysh formalism to calculate nonequilibrium spin transport in a two-terminal setup
sandwiching a Au�111� surface channel. Obtained results show strong spin density on the Au�111� surface and
demonstrate �i� intrinsic spin-Hall effect, �ii� current-induced spin polarization, and �iii� Rashba spin preces-
sion, all of which have been experimentally observed in semiconductor heterostructures but not in metallic
surface states. We therefore urge experiments in the latter for these spin phenomena.
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I. INTRODUCTION

Two-dimensional electron gas �2DEG� is known to exist
in various systems, including semiconductor
heterostructures1 and metallic surface states.2 Due to the lack
of inversion symmetry introduced by the interface or surface,
the spin degeneracy, the combining consequence of the time-
reversal symmetry �Kramers degeneracy� and the inversion
symmetry, is removed, and the energy dispersion becomes
spin split. In semiconductor heterostructures, one of the un-
derlying mechanisms leading to such spin splitting is known
as the Rashba spin-orbit coupling,3 which stimulates a series
of discussion on plenty of intriguing spin-dependent phe-
nomena. Well studied phenomena include spin precession,4,5

spin-Hall effect �SHE�,6–8 and current-induced spin polariza-
tion �CISP�,7–10 all of which have been experimentally ob-
served in semiconductor heterostructures. Contrarily, none of
these in metallic surface states is reported even though the
Rashba effect has been shown to exist therein.11,12

To the lowest order in the in-plane wave vector k�, the two
spin-split energy branches are expressed as E�

=�2k�
2 /2m���k� �where m� is the electron effective mass�,

so that the Rashba spin splitting �E=E+−E−=2�k� is linear
in k�. Here the proportional constant � is commonly referred
to as the Rashba coupling constant or the Rashba parameter.
Typical values of � in semiconductor heterostructures are at
most of the order of 10−2 eV Å,8,10,13 while in metallic sur-
face states � can be one or two orders larger.

The first evidence of spin splitting in metallic surface
states was pioneered by LaShell et al.11 on Au�111� surfaces
at room temperature. The origin of their observed spin split-
ting was later recognized as the Rashba effect by performing
the first-principles electronic-structure and photoemission
calculations,14,15 which are in good agreement with the spin-
resolved photoemission experiments.15,16 The concluded
Rashba parameter of the Au�111� surface states is about �
=0.36 eV Å. Subsequent findings of giant Rashba spin-orbit
coupling is also claimed in Bi�111� surfaces17 with �
�0.83 eV Å and in Bi/Ag�111� surface alloy18 with �
�3.05 eV Å.

It is therefore legitimate to expect the previously men-
tioned spin-dependent phenomena to be observed on those

metallic surfaces with strong Rashba coupling. In this paper
we theoretically study nonequilibrium spin transport in
2DEG held by Au�111� surface states, which exhibit not only
strong Rashba coupling but also simple parabolalike
dispersions.19 The latter characteristic enables successful de-
scription of the band structure using the simplest tight-
binding model �TBM�, which then provides the Landauer-
Keldysh formalism �LKF� �Refs. 20–22� with reasonable or
even realistic band parameters.

This paper is organized as follows. In Sec. II we describe
the Au�111� surface band structure by using an effective
TBM, through which the experimentally measured energy
dispersions11 can be perfectly reproduced. Section III is de-
voted to nonequilibrium spin transport on a finite Au�111�
surface channel attached to two external leads, using the
LKF with band parameters extracted in Sec. II. The intrinsic
SHE, the CISP, and the Rashba spin precession will be
shown by directly imaging the local spin densities. We con-
clude in Sec. IV.

II. Au(111) SURFACE BAND STRUCTURE

A. Effective tight-binding model

We first demonstrate that the sp-derived Shockley surface
states on Au�111� from Ref. 11 can be well described by an
effective TBM �see Fig. 1�a�� for a single sheet of two-
dimensional hexagonal lattice, taking into account only
pz-orbital hopping between nearest neighbors, subject to the
Rashba spin-orbit coupling. The Hamiltonian matrix can be
written as23,24

H = Ep1 + �
tI

eik�·tI�Vpp�1 + VRez · ��� � tI�� , �1�

where 1 is the 2�2 identity matrix, Ep is the p-orbital en-
ergy, tI represents the six nearest-neighbor hopping vectors,
Vpp� is the band parameter describing the orbital integral
under the two-center approximation of Slater and Koster,25

VR is the Rashba hopping parameter, and �� = ��x ,�y ,�z� is
the Pauli matrix vector. The three terms in Eq. �1� are the
energy-band offset, the kinetic hopping, and the Rashba hop-
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ping, respectively. Arranging the two primitive translation
vectors for the hexagonal lattice as t1= ��3 /2,1 /2,0�a and
t2= �−�3 /2,1 /2,0�a, where a is the lattice constant, the six
nearest-neighbor hopping vectors are tI= � t1, �t2, and
��t1+ t2�, and Eq. �1� then takes the explicit form of

H�k�� = 	Ep + G�k�� F�k��
F��k�� Ep + G�k��


 �2�

with

F�k�� = iVR��1 + �3i�sin k� · t1

+ �1 − �3i�sin k� · t2 + 2 sin kya� , �3�

G�k�� = 2Vpp��2 cos
�3kxa

2
cos

kya

2
+ cos�kya�� . �4�

Equation �2� can be diagonalized to yield the energy disper-
sions

E�k�� = Ep + G�k�� � F�k�� . �5�

Noting from Eq. �3� that VR is embedded in F�k��, the above
dispersion contains the Rashba term to all �odd� orders in k�.

In the vicinity of 	̄, i.e., k�a
1, Eqs. �3� and �4� are
approximated by F�k���−3VR�kx− iky�a and G�k���6Vpp�

− �3Vpp�a2 /2�k�
2, respectively, and the Hamiltonian matrix

�2� then takes the form

Hk�a
1 =�E0 −
3Vpp�a2

2
k�

2 − 3VR�kx − iky�a

− 3VR�kx + iky�a E0 −
3Vpp�a2

2
k�

2 � , �6�

where E0�Ep+6Vpp�. Equation �6� is consistent with the
pz-resolved effective Hamiltonian of the earlier TBM by Pe-
tersen and Hedegård,26 who considered all the three p orbit-
als, subject to the intra-atomic spin-orbit coupling.

B. Extraction of band parameters

We now fit our tight-binding dispersions �Eq. �5�� with the
experiment of Ref. 11. This can be done by comparing the
low-k� expansion of Eq. �5�,

E�k��ka
1 � Ep + 6Vpp� −
3Vpp�a2

2
k�

2 � 3VRak� , �7�

with that of the free-electron model, E�k��=E0
+ ��2 /2m��k�

2��k�. In addition to the band offset E0=Ep
+6Vpp�, we identity Vpp�=−�2 /3a2���2 /2m�� and VR
=� /3a. Using the reciprocal vector g1
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FIG. 1. �Color online� �a� Tight-binding energy dispersion E�
TBM and the experimentally measured binding energy E�

exp of Ref. 11 along

the 	̄M̄ direction. The surface Brillouin zone is sketched in the inset. �b� Total density of states and E�
TBM along 	̄K̄ and K̄M̄ directions.
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= �4� /�3a��1 /2,�3 /2,0� and M̄ =1.26 Å−1 from Ref. 11,
we have �2 /2m��15.2 eV Å2, ��0.3557 eV Å, and E0

�−0.415 eV. The norm of g1 gives M̄ such that the lattice
constant is a=4� /�3g1=5.7581 Å. Hence we deduce
Vpp�=−0.3056 eV, VR=0.0206 eV, and Ep=1.4188 eV.
Substituting these parameters into Eqs. �3�–�5�, a nearly per-
fect consistency between our effective TBM and the experi-
mentally measured binding energy of Ref. 11 can be seen in
Fig. 1�a�. The experimentally measured Fermi surface of the
concentric rings slightly distorted from circles19 can be re-
produced as well, but we do not explicitly show this.

III. NONEQUILIBRIUM SPIN TRANSPORT

A. Landauer-Keldysh formalism vs tight-binding model

Next we apply the Landauer-Keldysh formalism,21

namely the nonequilibrium Keldysh Green’s function
formalism27 applied on Landauer multiterminal ballistic
nanostructures. For detailed introduction to the LKF, see
Refs. 20 and 22. To make use of the previously extracted
band parameters in the LKF calculation, we consider the
second-quantized single-particle Hamiltonian,24

H = �
n

�ncn
†cn + �

�m,n�
cm

† �t0 + itR��� � dmn�z�cn, �8�

which is equivalent to Eq. �1�, provided �n=Ep, t0=−Vpp�,
and tR=VR. In Eq. �8�, cn

† �cn� is the creation �annihilation�
operator of the electron on site n, �m ,n� means that sites m
and n are nearest neighbors to each other, and dmn is the unit
vector pointing from n to m. Despite the different system
sizes TBM and LKF consider �infinite for TBM and finite for
LKF� and different functions they provide �simple band cal-
culation by TBM and nonequilibrium transport by LKF�, the
equivalence of the underlying Hamiltonians should contain
the same physics. The explicit correspondence can be shown
by comparing the band structure by the TBM with the total
density of states �TDOS� by the LKF, provided that the same
parameters are used.

For the LKF calculation, we consider a 80�a�3 /2�
�11a�398.9�63.3 Å2 �total number of sites N=931�
channel made of an ideal Au�111� surface, in perfect contact
with two unbiased normal-metal leads at the left and right
ends of the sample. We will further image the nonequilib-
rium spin transport on this two-terminal setup later. As
shown in Fig. 1�b�, the range of the calculated nonvanishing

TDOS is consistent with the TBM dispersion along the 	̄K̄
direction, which corresponds to the nearest-neighbor hopping
direction as we considered in the underlying Hamiltonian
�8�.

B. Injection of unpolarized current: Intrinsic spin-Hall effect
and current-induced spin polarization

Combination of the consistency between the experimental
and the TBM dispersions, and that between the dispersion by
the TBM and the TDOS by the LKF, indirectly demonstrates
that the following imaging of local spin densities by the LKF
stands on an experimental footing. As a first demonstration

of the nonequilibrium spin transport, we turn on the bias of
potential difference eV0=0.2 eV between the two normal-
metal leads. We will denote �eV0 /2 on the leads by the �
sign. With such injection of an unpolarized electron current,
we expect �i� the SHE of the intrinsic type, and �ii� the CISP,
which follows the Rashba eigenspin direction of the lower
energy branch. Both of these can be seen, respectively, in
Figs. 2�a� and 2�b�. The former shows an antisymmetric out-
of-plane spin accumulation with �Sz�max=1.2�10−3�� /2� at
lateral edges, while the latter shows that the in-plane compo-
nents of spins mostly point to the +y axis28 with average
value �Sy�=3.16�10−4�� /2�. Note that the local spin densi-
ties shown here represent, by definition, the site-dependent
total number of spins.22 Dividing �Sy� by the hexagonal unit-
cell area �3a2 /2, we deduce that the obtained spin �area�
density due to CISP is on average 1101 �m−2, which is
clearly much stronger than that observed in the CISP experi-
ment of Ref. 9, where the spin �volume� density less than
10 �m−3 �corresponding to an even weaker spin area den-
sity� is reported.

C. Injection of spin-polarized current: Rashba spin precession

Next we inject spin-polarized currents by replacing the
left �source� lead with a ferromagnetic electrode. Previously,
the self-energy due to the normal-metal lead, which is as-
sumed to be semi-infinite, in thermal equilibrium and in per-
fect contact with the sample, can be obtained by solving the
surface Green’s function of the lead,20 subject to Hamil-
tonian Hlead=p2 /2m+V. The momentum operator
p= �px , py� is two dimensional and the potential V describes
an infinite potential well of a semi-infinite rectangle shape.
The exact form of the lead self-energy reads

R�p1,p2� = −
2t

Nd + 1�
n=1

�

sin
n�p1

Nd + 1
sin

n�p2

Nd + 1

� 1
eikna sin�kna�

kna
�9�

with kna=��E−En� / t and En= �n� / �Nd+1��2t. Here p1�2�
=1,2 , . . . ,Nd is the lateral position �implicitly in units of
lattice constant a� of the edge site in the sample in contact
with the lead, t is the coupling between the sample and the

+ −

(a)

+ −

(b)

FIG. 2. �Color online� Local spin density of �a� the out-of-plane
component �Sz� and �b� the in-plane component ��Sx� , �Sy�� in a
398.9�63.3 �total number of sites N=931� conducting sample
made of Au�111� surface. The size of each local marker depicts the
magnitude. In �a�, red/dark �green/light� dots denote �Sz��0��Sz�
�0�. The maximum of �Sz� is 1.2�10−3�� /2� while the mean of
�Sy� is 3.16�10−4�� /2�.
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lead and is usually set equal to the kinetic hopping t0 in the
sample, and �Nd+1�a is implicitly assumed to be the width
of the lead.

To take into account the exchange field inside the ferro-
magnetic lead, we adopt the Weiss mean-field approximation
and add a Zeeman term −�B�� ·Bex ��B�5.8�10−5 eV T−1

the Bohr magneton� to Hlead. The typical exchange field may
be as high as Bex�10−3 T,29 leading to �BBex�5.8
�10−2 eV. We will take this value in the forthcoming spin
precession demonstration. The explicit form of the self-
energy is obtained by substituting in Eq. �9� kna→kn

�a
=��E−En+��BBex� / t and 1→��=�n���n�, where n��
is the spin-1/2 state ket with quantization axis n.30

Applying the same voltage difference of 0.2 V and mag-
netizing the ferromagnetic source lead along the +x axis,
Figs. 3�a� and 3�b� show the out-of-plane and in-plane com-
ponents of the local spin densities, respectively. The injected
x-polarized spins moving along +x and encountering the
Rashba effective magnetic field pointing to −y are forced to
precess about the −y-axis counterclockwise, and hence the
Rashba spin precession is observed. In the free-electron
model, the spin precession length �the distance within which
the spin completes a precession angle of �� is Lso
= �� /����2 /2m���134 Å. Thus the channel length 398.9 Å
is about three times Lso, which is consistent to what we ob-
serve in Figs. 3�a� and 3�b�. Note that here the SHE compet-
ing with the spin precession is relatively weak due to the
strong exchange field we consider in the source lead. How-
ever one can still observe the tiny asymmetry of the �Sz�

pattern of Fig. 3�a� along the lateral direction �more +�Sz�
and −�Sz� accumulations near the bottom and top edges, re-
spectively�. In the following we will concentrate on the spin
precession only.

To compare the LKF results with the free-electron model
in further detail, we recall the spin vector formula �see Eq.
�6� of Ref. 31�, which takes the form of ��Sx� , �Sy� , �Sz��
= �cos �� ,0 , sin ��� here with ��= �2m� /�2��x=2.34
�10−2x, where x is in unit of angstroms. Note that a factor of
�3 /2 responsible for the net and actual hopping distances has
to be taken into account in x since the crystal structure infor-
mation remains. Accordingly, good agreement between the
LKF and the spin vector formula can be seen in Fig. 3�c�.
Note that in view of both Figs. 2 and 3, size and edge effects,
arising from the charge distribution, are also observed. The
former, the size effect, appears in the modulation along the y
direction with roughly four peaks corresponding to a wave-
length �32 Å, roughly shorter than the Fermi wavelength
2� /kF�38 Å; the latter, the edge effect, appears in the ab-
normal charge accumulation near the side and drain edges.

IV. CONCLUSION

In conclusion, we have shown that the sp-derived Shock-
ley surface states on Au�111�,11,14,16–19 which extend over the
first few layers, can be well described by an effective TBM
for a two-dimensional hexagonal lattice, taking into account
pz-orbital and nearest-neighbor hopping only. Required pa-
rameters in the nonequilibrium spin transport calculation by
the LKF, demonstrating �i� intrinsic SHE and CISP due to
injection of unpolarized current and �ii� the Rashba spin pre-
cession due to injection of spin-polarized current, thus stand
on an experimental footing of the pioneering work of
LaShell et al.11 Calculated local spin densities in all the three
spin phenomena are much stronger than those in semicon-
ductor heterostructures. Whereas the magnetic optical Kerr
effect �MOKE� can sensitively detect a spin volume density
of less than 10 spins/�m3,9 our results of more than 103

spins/�m2 suggest definitely measurable nonequilibrium spin
transport supported by the Au�111� surface states and others
with even stronger Rashba coupling such as Bi�111�
surfaces17 or Bi/Ag�111� surface alloys.18 Last, in addition to
the stronger local spin densities induced by stronger Rashba
coupling, the spin precession length �typically of the order of
1 �m in semiconductor heterostructures� in these surface
states is greatly reduced �134 Å for Au�111� reported here�,
such that the fine structure of the spin patterns due to spin
precession or the intrinsic SHE requires high-resolution ap-
paratus such as spin-polarized scanning tunneling
microscopy.32
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FIG. 3. �Color online� Local spin density of �a� the out-of-plane
component �Sz� and �b� the in-plane component ��Sx� , �Sy�� in a
conducting sample made of Au�111� surface, subject to a ferromag-
netic source lead with +x magnetization. �c� �Sx�, �Sy�, and �Sz� as a
function of x at y=0, i.e., along the dashed line sketched in �a�.
Computed values are compared with the previously obtained spin
vector formula based on quantum mechanics.
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