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We report on a universal band gap modulation by radial deformation found for semiconductor single-walled
carbon nanotubes �SWNTs�. The plausible radial deformation of an individual SWNT under hydrostatic pres-
sure is predicted using the method developed in the previous work �M. Hasegawa and K. Nishidate, Phys. Rev.
B 74, 115401 �2006��. It is found by ab initio electronic-structure calculations that the band gap of zigzag
SWNTs is dictated by the shape of the high-curvature edge region of a deformed cross section perpendicular
to the tube axis: If we let Rmin be an averaged curvature radius in that region, the band gap at the � point
remains almost unchanged when Rmin�3.2 Å, and its closure occurs at Rmin�2.4 Å irrespective of tube size
and cross-sectional shape as a whole. It is also confirmed that the band gap closure is accompanied by the
concentration, in the high-curvature region, of the lowest conduction state at the � point. Possible implications
of these results are discussed.
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I. INTRODUCTION

The electronic structures of single-walled carbon nano-
tubes �SWNTs� have been studied on the basis of how the
band structure of the underlying graphitic sheet �graphene� is
folded when the sheet is rolled up into a seamless cylinder.1

These results predicted on the basis of the zone-folding �ZF�
approximation were found to be modified by the curvature-
induced hybridization effect,2 and the extensive calculations,
mostly based on the density functional theory �DFT�, have
been performed for a number of tubes.3–7 Summary of these
earlier calculations for relatively small SWNTs is given in
Ref. 5. According to these investigations, all the armchair
�n ,n� SWNTs are metallic, and zigzag �n ,0� SWNTs with
n�6 are semiconducting. While, chiral �n ,m� SWNTs are
metallic if the chiral indices satisfy the condition n−m=3i,
where i is an integer, in accordance with the ZF approxima-
tion, and otherwise they are small-gap semiconductors.
These theoretical predictions have been evidenced for par-
ticular SWNTs by the scanning tunneling microscope �STM�
measurements,8 which can simultaneously probe the atomic
structures and electronic properties. In recent years, the
structural and chemical modifications of carbon nanotubes
have attracted increasing attention with a motivation of find-
ing possible technological applications.9 These modifications
include various types of structural distortion and adsorptions
of foreign atoms or molecules. In particular, individual
SWNTs are prone to a significant cross-sectional deforma-
tion under an external stress as demonstrated by
experiments10,11 and theoretical calculations.12–16 The radial
deformation of small SWNTs whose diameters are smaller
than �25 Å is reversible,12,16 while the deformation of
larger tubes could be irreversible and a collapsed state is
metastable or even absolutely stable.11,16 Of particular inter-
est is that the band gap of a semiconductor SWNT varies
with radial deformation and eventually closes at a critical
deformation.17–23 This electronic-structure transformation
has an important implication for device applications. How-

ever, this phenomenon has not been fully investigated partly
because of the difficulty in systematically treating radial de-
formation under an external stress. In the present work we
are concerned with the individual zigzag �3i�1,0� SWNTs
with relatively large band gaps and report on a universal
band gap modulation by radial deformation found for these
tubes. The plausible radial deformation under hydrostatic
pressure is predicted using the method we have developed in
the previous work,16 which enables us to predict deforma-
tions of an individual SWNT quite easily.

In Sec. II we summarize the method used to predict radial
deformation and show the results for particular SWNTs of
interest. In Sec. III we present ab initio DFT electronic-
structure calculations for the radially deformed SWNTs and
discuss on these results. The final section �Sec. IV� is de-
voted to the conclusions.

II. RADIAL DEFORMATION

It has been confirmed by DFT and molecular-mechanics
calculations that the strain energy, defined as the energy in-
crease due to the curvature effect, of undeformed �circular�
SWNTs is well represented as Estrain=� /R0

2, where R0 is the
tube radius and � is a constant insensitive to R0 and chirality
of a tube. This result is in accordance with the classical result
for the continuum elastic shell and has been extended to
radially deformed SWNTs.16 Also included in this extension
are the effects not taken into account in the elastic shell
model. One of these effects is the interwall interaction that
becomes significant when the radial deformation is large
enough to cause overlapping of the electron distribution in
between opposing walls. Another is the van der Waals �vdW�
interaction certainly missed in the standard DFT approxima-
tions such as the local density approximation �LDA� and
generalized gradient approximation �GGA�. The vdW contri-
bution was treated by a semiempirical method, which has
originally been developed to describe the interlayer binding
of graphite.24

PHYSICAL REVIEW B 78, 195403 �2008�

1098-0121/2008/78�19�/195403�6� ©2008 The American Physical Society195403-1

http://dx.doi.org/10.1103/PhysRevB.78.195403


The second step toward the prediction of radial deforma-
tions of a SWNT under an external stress is to assume a
plausible cross-sectional shape. Following the previous
work,16 we assumed a model shape whose circumference
consists of two ellipsoids smoothly connected by two circu-
lars, as illustrated in Fig. 1. This model shape is character-
ized by four parameters, and one of them can be eliminated
by assuming that the perimeter of a deformed cross section
remains unchanged and is equal to 2�R0, where R0 is the
circular radius of the undeformed tube. Then, for a given
fractional change �decrease� in cross-sectional area S,

X = 1 − S/S0�S0 = �R0
2� , �1�

remaining shape parameters are determined so as to mini-
mize the strain energy. Here, we also assumed that no defor-
mation occurs in the axial direction, which implies that X
also represents the fractional change in volume of a de-
formed tube and provides a useful parameter in treating ra-
dial deformation. The cross-sectional shape optimized in this
way for a given X is expected to be, though approximately,
consistent with the applied hydrostatic pressure. In fact, the
model cross-sectional shapes determined by this method are
quite similar to those predicted by constant-pressure
molecular-dynamics simulations using empirical atom-atom
interaction potentials.13–15

We considered zigzag �8,0�, �10,0�, and �14,0� SWNTs
with relatively large band gaps. Figure 2 shows the opti-
mized deformation energy �E, defined as the strain energy
per atom relative to the undeformed circular tube, as a func-

tion of X and the corresponding hydrostatic pressure neces-
sary to deform these tubes. This pressure is given by

P = − 2�R0	� ��E

�V
� =

2	

R0
� ��E

�X
� , �2�

where 	 is the atomic number density of the underlying
graphene and V is the volume of the tube per unit length
along the tube axis. The results in Fig. 2 indicate that the
radial deformations of all those tubes are reversible up to
large deformation; i.e., flattened tubes are inflated on pres-
sure release. The minimum pressure P0 required for the de-
formation to occur is given by the above pressure at X=0 and
is nothing but the circular-to-oval transition pressure.15,16

Since the deformation energy �E in the small deformation
regime scales as R0

−2 in accordance with the classical result,
the transition pressure P0 is closely proportional to the in-
verse cube of tube radius and given by 22.4, 11.8, and 4.4
GPa for the �8,0�, �10,0�, and �14,0� SWNTs, respectively.
We also note that an elliptic shape often assumed for a de-
formed cross section22 is unlikely because the optimized �E
for such a shape is much higher than that obtained for a more
flexible shape assumed in our calculations �Fig. 1�a��. If we
assume an elliptic cross section the pressure required to de-
form these tubes also increases more rapidly with increasing
deformation �Fig. 2�b��. We find that once the �14,0� SWNT,
and larger tubes,16 have started to deform at P0, the defor-
mation spontaneously proceeds up to a flattened shape with
X�0.4, which is peanutlike rather than oval-like.

At this stage we note a general feature of the radial de-
formation of SWNTs.16 A circular SWNT remains unde-
formed and simply shrinks below a critical pressure, at
which radial deformation starts to occur, in accordance with
the classical buckling theory. This critical pressure is nothing
but P0 defined in the above. Following the previous work,16

the tube radius R0 at P= P0 was assumed to be the same as
that under zero pressure and equal to that obtained by rolling
up the graphene sheet. In fact, the shrinking of a circular tube
is very small because its radial bulk modulus is very high
compared to P0.

III. ELECTRONIC STRUCTURES OF DEFORMED TUBES

To calculate electronic structure of a deformed SWNT we
assumed an atomic configuration obtained by the conformal
mapping of carbon atoms on the deformed tube surface de-
termined on the basis of the continuum model. This configu-
ration has also been used to test the validity of the simple
method in calculating the deformation energy.16 The DFT
electronic-structure calculations were performed using the
Vienna Ab Initio Simulation Program �VASP� code.25 In these
calculations we employed the LDA with the exchange-
correlation energy functional of Ceperley and Alde,26 as pa-
rametrized by Perdew and Zunge,27 and the projector-
augmented wave �PAW� method.28 The k-space integration
was made using the Monkhorst-Pack method29 with the spe-
cial points in the irreducible Brillouin zone generated from
1
1
8 mesh. We used a large supercell in the plane per-
pendicular to the tube axis to simulate an isolated SWNT,
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FIG. 1. �Color online� Model cross-sectional shape of a radially
deformed SWNT. The z axis is taken to be in the direction of the
tube axis. The circumference of each shape consists of two ellip-
soids connected by two circles on the top and bottom. Each shape,
�a� oval or �b� peanut, transforms into another through a racetrack-
like shape, in which circular parts are parallel, straight lines �i.e.,
circles with infinite curvature radii�.
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FIG. 2. �Color online� Calculated deformation energies of the
�8,0� �dotted line�, �10,0� �dashed line�, and �14,0� �solid line�
SWNTs, and the hydrostatic pressures necessary to deform these
tubes as functions of the deformation parameter X defined by Eq.
�1�. The thin line for each tube shows the result when an elliptic
cross section is assumed.
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and the cutoff energy of 500 eV was used in the plane-wave
expansion.

Figure 3 illustrates, as an example, the energy-band struc-
tures of the �14,0� SWNT along the direction in the Brillouin
zone parallel to the tube axis. The band gaps Eg at the �
point of the undeformed circular tubes �X=0� were found to
be 0.553, 0.903, and 0.633 eV for the �8,0�, �10,0�, and
�14,0� SWNTs, respectively. These values are in the range of
the previous calculations in either LDA or GGA,2–7 i.e.,
0.43–0.73 eV for the �8,0�, 0.76–0.91 eV for the �10,0�, and
0.63–0.90 eV for the �14,0� SWNTs. We note that the details
other than DFT approximations such as the geometrical op-
timization have some influence on the electronic structures
of these SWNTs. We actually find some, but insignificant,
differences between our results for Eg and those of Zolyomi
and Kürti,5 which are Eg=0.59, 0.77, and 0.72 eV for the
�8,0�, �10,0�, and �14,0� SWNTs, respectively. These results
have been obtained by similar LDA calculations with geo-
metrical optimization. Recently, Kamal and Chakrabarti7

suggested the need of complete geometrical optimization and
all-electron calculations for very small tubes, typically
smaller than the �6,0� tube. Such computational details may
not have a crucial influence on the electronic structures of the
relatively large tubes under consideration. As the radial de-
formation increases, the band gap becomes narrower and
eventually closes at a critical deformation depending on the
tube size as already found for the relatively small zigzag
SWNTs.17–23 These behaviors can be seen more clearly in

Fig. 4, where the variations in the band energies at the �
point are shown as a function of the deformation parameter X
defined by Eq. �1�. For the �8,0� tube, the singlet state is the
lowest conduction band and is responsible for the band gap
narrowing and closure with increasing radial deformation.
These band gap behaviors are essentially the same as those
found by Gülseren et al.22 for the �7,0� and �8,0� SWNTs by
assuming an elliptic cross section and may be interpreted as
the effect of the enhanced ��−�� hybridization.17,20 For the
�10,0� tube, the singlet state originally above the doubly-
degenerate state lowers �in energy� with increasing deforma-
tion and crosses a low-lying conduction state, and after
crossing, the role of the singlet state is similar to that in the
�8,0� tube: At the first stage without crossing �X�0.015�, the
band gap remains almost unchanged because the lowest con-
duction state and the highest valence state vary very little
with X in that range. This behavior has been found, but not
clarified, by Mazzoni and Chacham18 for the same �10,0�
tube with a racetracklike cross section, which consists of two
circular edge part connected by two straight lines. For larger
zigzag �3i�1,0� SWNTs, this characteristic behavior for the
�10,0� tube is more pronounced as demonstrated for the
�14,0� SWNT. For this relatively large tube, the effect of the
radial deformation on the conduction-band minimum �CBM�
and the valence-band maximum �VBM�, both at the � point,
are minimal, and the band gap remains almost unchanged up
to a large deformation �X�0.10� �Figs. 3 and 4�c��. In this
case, the lowering of the split band, originally �X=0� the
second lowest in the conduction bands, crosses the lowest
conduction state at X�0.10, and after crossing the lowered
state is responsible for the band gap narrowing and closure.
We find that, for all these �3i�1,0� SWNTs, the lowering of
the singlet state with increasing deformation is accompanied
by that of the split band, which is doubly degenerate in the
circular �X=0� tube and lies just above the singlet state.

The band gaps at the � point are summarized in Fig. 5�a�
as a function of X, and we find that the critical deformation
corresponding to band gap closure is larger for larger tubes.
But we also find that the band gap narrowing and closure are
dictated by the local shape with the highest curvature as il-
lustrated in Fig. 5�b�, which shows the variations in the band
gaps as a function of the mean curvature radius averaged
over the high-curvature region,
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FIG. 3. �Color online� Energy-band structures of the circular and
radially deformed �14,0� SWNT along the direction in the Brillouin
zone parallel to the tube axis. The Fermi energy is taken to be zero.
The solid lines near the � point show the singlet state.
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FIG. 4. �Color online� Variations in the calculated band energies
at the � point with the deformation parameter X defined by Eq. �1�.
The Fermi energy is taken to be zero. The solid line for each tube
shows the singlet state, and all the other states—both in the valence
�dotted lines� and conduction �dashed lines� bands—are doubly de-
generate in the circular �X=0� tubes and are split as X increases.
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Rmin =
1

2�s
	

−�s

�s

R�s�ds , �3�

where R�s� is the local curvature radius along the circumfer-
ence and takes its minimum value at s=0, the edge point of
a flattened tube. Here, we used the value of �s=2.46 Å,
which is the distance between the carbon atoms along the
circumference in case of zigzag tubes and is nothing but the
lattice constant of graphene. This integration range was cho-
sen because the local curvature is appropriately defined over
the range in which two neighboring atoms are involved. If
the high-curvature edge region of a flattened tube is circular
as it is in the model used by Park et al.17 and Mazzoni and
Chacham,18 Rmin is simply given by that radius. In the
present model that part is elliptic, and the model shape used
by Gülseren et al.22 is also an ellipsoid as a whole. The
results in Fig. 5�b� indicate that the band gap remains un-
changed when Rmin�3.2 Å and closes at Rmin�2.4 Å irre-
spective of tube size and cross-sectional shape as a whole.
This universal feature is consistent with that undeformed zig-
zag �3i�1,0� SWNTs with small diameter are metallic. We
also note that the results of Gülseren et al.22 are based on the
electronic-structure calculations with fully optimized tube
structures under the constraint that the cross-sectional shape
is fixed to be elliptic. Their results for the �7,0� and �8,0�
tubes also support the universal feature as exemplified for the
�7,0� tube in Fig. 5�b�, suggesting that geometrical optimiza-
tion does not much affect the general feature. A similar
analysis can be made in terms of the aperture angle formed
by three neighboring atoms along the same circumference of
a deformed tube. This angle takes its minimum value, 
min,
when the central atom is on the edge point, and we find that
the band gap closure occurs at 
min�110°.

Figure 6 illustrates the state density �SD� due to the band-
edge states at the � point of the �14,0� SWNT. The SD is
nothing but an actual charge density in case of the occupied
conduction state. In the small deformation regime with X
�0.10, the SD due to the CBM state is almost symmetric on
the inner and outer sides of the tube. For large deformations
with X�0.10, the SD due to the rapidly lowering CBM state
�Figs. 3 and 4�c�� becomes asymmetric with lager concentra-

tion on the outer side. This SD also tends to concentrate in
the high-curvature edge region as the tube is flattened. On
the other hand, the SD due to the VBM state is almost sym-
metric on both sides and shows no appreciable concentration
in a particular region. These behaviors of the SD in the
�14,0� tube are similar to those found by Park et al.17 and
Gülseren et al.22 for the small-gap �9,0� SWNT. The results
in Fig. 6 imply that once the tube is metallized by flattening
the electronic conduction along the tube occurs through the
high-curvature edge regions. In other words, a pair of paral-
lel nanowires is formed in a single tube. Recently, Giusca et
al.30 made challenging STM measurements on the flattened
tube, identified as the armchair �21,21� SWNT with diameter
�28 Å. They observed in these experiments that the flat
region shows a metallic nature with a finite density of states
at the Fermi level, while the band gap opens in the edge
region at either side of the flattened tube, indicative of a
semiconducting nature. These observations for the armchair
SWNT are in marked contrast to the implications found for
the zigzag SWNTs, which shows the reversed natures of the
flat and edge regions. This difference between the armchair
and zigzag SWNTs may arise from the different natures of
the band-edge state near the Fermi level, but the microscopic
picture is not resolved.

IV. CONCLUSIONS

We have elucidated the band gap modulation by radial
deformation in the zigzag SWNTs by assuming a realistic
cross-sectional shape expected under hydrostatic pressure. In
particular, we found a universal feature indicating that the
narrowing and closure of band gaps are dictated by the local
shape with high curvature along the circumference of a de-
formed cross section. If we let Rmin be an average curvature
radius in that region, band gap remains unchanged when
Rmin�3.2 Å, and its closure occurs at Rmin�2.4 Å irre-
spective of tube size and cross-sectional shape as a whole. It

0.0
0.2
0.4
0.6
0.8
1.0

0 0.1 0.2 0.3 0.4

(14,0)

(10,0)

(8,0)

(a)

(7,0)
0.0
0.2
0.4
0.6
0.8
1.0

2 3 4 5 6
Rmin (Å)

(8,0)
(14,0)

(10,0)

(7,0)

(b)

(9,0)

Ba
nd
Ga
p(
eV
)

Ba
nd
Ga
p(
eV
)

X

FIG. 5. �Color online� Variations in the band gaps of the de-
formed �8,0� �dotted line�, �10,0� �dashed line�, and �14,0� �solid
line� SWNTs as functions of X and Rmin defined by Eqs. �1� and �3�,
respectively. Also included are the previous results for the �7,0� tube
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FIG. 6. State density �charge density in case of the VBM� due to
the band-edge states at the � point for the �14,0� SWNT in the
atomic planes at z=z1 and z=z2, both perpendicular to the tube axis
and corresponding to a zigzag atomic-chain configuration in the
tube. These planes are equivalent in the circular �X=0� tube
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was also confirmed that the band gap closure of collapsed
zigzag SWNTs is induced by the concentration of the lowest
conduction state in the edge region. Very recently, Barboza et
al.31 actually probed via electric force microscopy the
deformation-induced semiconductor-metal transition in
rather large chiral �18,4� SWNT deformed under the tip of an
atomic force microscope �AFM�. They have also reinforced
these observations by the ab initio DFT electronic-structure
calculations for this tube and zigzag �20,0� SWNT of similar
size by assuming a racetracklike cross-sectional shape.17,18

Their results for the band gap behavior in the �20,0� SWNT
are consistent with our results, although the band gap closure
is predicted to occur at Rmin�2.75 Å, somewhat larger than
the universal value, if the edge part of an assumed cross
section is really spherical.

In the present work we considered only the extended ra-
dial deformation along the tube axis, but a localized defor-
mation may be a more realistic situation encountered in de-
vice applications.20 If the deformation is not localized in a
very small region, the present results may be valid as sug-
gested by the recent experiments,31 in which the estimated
radius of an AFM tip used to deform a SWNT is much larger
than the tube radius, implying that the radial deformation is
substantially extended in the axial direction. The present
method could be extended to such a localized deformation
with some complications in the structural optimization and

substantial increase in computational cost. We also note that
the radial deformation, either extended or localized, of small
SWNTs is elastic, implying that the tubes flattened by an
external stress are not stabilized but inflated on removing a
stress. This brings about a hindrance to some device appli-
cations without practical measure to freeze a deformation.
We have no such difficulty for large SWNTs, typically larger
than �25 Å in diameter,16 as we have noted earlier, and
such a large tube may be a promising candidate in
deformation-related applications. We finally notice a recent
work by Chen et al.,32 who investigated the electronic struc-
ture of SWNT bundles under uniaxial stress. The present
results for individual SWNTs may be useful in understanding
their results, which reflect superimposed effects due to the
deformation of an individual tube and tube-tube interaction.
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