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We have measured the conductivity of high-mobility �001� Si metal-oxide-semiconductor field effect tran-
sistors over wide ranges of electron densities n= �1.8–15��1011 cm−2, temperatures T=30 mK−4.2 K, and
in-plane magnetic fields B� =0–5 T. The experimental data have been analyzed using the theory of interaction
effects in the conductivity � of disordered two-dimensional �2D� systems. The parameters essential for com-
parison with the theory, such as the intervalley scattering time and valley splitting, have been measured or
evaluated in independent experiments. The observed behavior of �, including its quasilinear increase with
decreasing T down to �0.4 K and its downturn at lower temperatures, is in agreement with the theory. The
values of the Fermi-liquid parameter obtained from the comparison agree with the corresponding values
extracted from the analysis of Shubnikov–de Haas oscillations based on the theory of magneto-oscillations in
interacting 2D systems.
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I. INTRODUCTION

The beginning of the 1980s witnessed a triumph of the
one-parameter scaling theory of localization1,2 and the theory
of electron-electron interactions in disordered conductors
�for a review, see Ref. 3�. As a result, the peculiar low-
temperature behavior of the conductivity of numerous low-
dimensional systems has been successfully attributed to
quantum interference effects �see, e.g., Ref. 4�. Curiously,
application of these ideas to the two-dimensional �2D� elec-
tron liquid in Si metal-oxide-semiconductor field effect tran-
sistors �MOSFETs�—one of the most ubiquitous 2D
systems—remained a challenge for more than 25 years.
In the early experiments5,6 with low-mobility ��
�0.1 m2 /V s� structures in the regime of relatively high
electron densities �n�1012 cm−2�, a decrease in the conduc-
tivity with cooling has been observed, apparently in qualita-
tive agreement with the ideas of weak localization1,7 and
electron-electron interactions.3 However, the quantitative de-
scription of this behavior remained a problem.8 The disagree-
ment with the theory became qualitative with the advent of
high-mobility ���2 m2 /V s� structures: the low-T conduc-
tivity of high-� Si-MOSFETs increased with decreasing
temperature,9 in striking contrast to the behavior of many
other 2D systems. This “metallic” behavior of the conductiv-
ity is especially pronounced at low electron densities n
��1–2��1011 cm−2, where a fivefold increase in ��T� with
cooling was observed.10–13 Later, the quasilinear increase in
��T� was observed in many high-mobility 2D systems in the
“dilute” regime, including GaAs heterostructures �both p
type14–17 and n type18,19�, Si/SiGe,20 and AlAs21 quantum
wells.

The subsequent development of theory and experiment
led to significant progress in our understanding of the low-
temperature transport in high-mobility systems in the regime
of low electron densities. In the mid-1980s, the quasilinear
metallic dependence observed in the ballistic interaction re-

gime T�	1 �� is the transport mean-free time, here and be-
low we set 
=kB=e=1� was attributed22 to weakening of the
screening of the scattering potential with increasing T. Ob-
servation of a strong negative magnetoconductance induced
by the in-plane magnetic field23 and renormalization of the
effective electron mass and g-factor in these structures24,25

also suggested that the electron-electron interactions play an
important role in this phenomenon. More recently, Zala,
Narozhny, and Aleiner �ZNA� �Ref. 26� developed a theory
that took into account all interaction contributions to the con-
ductivity, including the exchange contributions. This theory
offers a unified approach to both ballistic �T�	1� and diffu-
sive �T��1� interaction regimes by considering the quantum
interference between electron waves scattered off a short-
range random potential “dressed” by Friedel oscillations of
the electron density. The theory was extended for the case of
a long-range scattering potential by Gornyi and Mirlin
�GM�.27 The theories26,27 naturally incorporate the Altshuler-
Aronov-Lee results3 for the interaction corrections to the
conductivity in the diffusive regime.

For the diffusive regime, a more general approach to in-
teracting systems based on the nonlinear � model has been
developed by Finkel’stein.28 Recently, the renormalization-
group �RG� equations of this theory29,30 �obtained in the first
order in 1

�� and in all orders in interaction� have been com-
pared with the conductivity of Si-MOSFETs at low electron
densities.29,31–33

The RG equations28–30,34,35 describe the length scale �tem-
perature� evolution of the resistivity and interaction param-
eters for a 2D electron system in the diffusive regime.28

However, at high electron densities, the temperature range
corresponding to the diffusive regime shrinks. In contrast,
the theory of interaction corrections26,27 is applicable over a
wider T range �that includes both ballistic and diffusive re-
gimes� provided �	1 and 
� /��1; these assumptions are
well justified at high densities.
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The theories26,27 predict that the magnitude and sign of
the interaction correction 
��T ,B� is determined by the
value of the Fermi-liquid parameter F0

� �which can be found
by measuring the Shubnikov–de Haas �SdH� oscillations in
weak magnetic fields perpendicular to the plane of a 2D
structure24,25 or the magnetoresistance in strong in-plane
magnetic fields36�. In particular, it is expected that the ��T�
dependence becomes metallic when F0

� is negative and its
absolute value exceeds a certain threshold �see Sec. II�.

The experimental studies of the conductivity in various
low-carrier-density 2D systems in the ballistic �high-
temperature� regime are in agreement with the ZNA and GM
theories. The “metallicity” in all these systems is enhanced at
low n due to an increase in the absolute value of F0

� �see,
e.g., Refs. 37–39�. In Si-MOSFETs, the interaction effects
are especially strong due to the presence of two nearly de-
generate valleys in the electron spectrum.29 This enhance-
ment, however, diminishes if the temperature T becomes
smaller than the valley splitting 
V and intervalley scattering
rate �v

−1. As a result, with lowering T, the metallic depen-
dence of ��T� is expected to become weaker or even to be
replaced with an “insulating” one. To the best of our knowl-
edge, this behavior has not been observed for Si-MOSFETs
prior to our work.

This paper aims to study in detail the conductivity of the
2D electron liquid in high-mobility �001� Si-MOSFETs over
a wide temperature range �T=0.03–4.2 K� that includes
both the diffusive and ballistic regimes. In particular, we ob-
served that the metallic increase in � with cooling is fol-
lowed by the downturn of ��T� at lower temperatures. For
the purpose of comparison with the ZNA theory,26 we stud-
ied the range of not-too-low densities, n= �1.8–15�
�1011 cm2, where the temperature and magnetic-field de-
pendences 
��T ,B� can still be treated as small corrections
to the Drude conductivity �D. In principle, no fitting param-
eters are required for comparison with the theory because we
have measured F0

�, 
V, and �v in independent experiments.
However, below we take a slightly different approach: we
obtain the F0

��n� values from fitting the 
��T ,B�� depen-
dences with the ZNA theory26 and show that these values are
consistent with the corresponding values extracted from the
analysis of SdH oscillations.25 We have also revealed short-
comings of earlier analysis of 
��T�, reanalyzed the avail-
able data, and compared the extracted values of F0

��n� with
corresponding values from other measurements. We con-
clude that the experimental data are well described by the
theory of interaction corrections26 at intermediate tempera-
tures T�0.3–4.2 K. For a quantitative analysis at ultralow
temperatures �T�0.3 K�, the interaction correction theory
should be modified by taking into account finite intervalley
scattering rates.

The paper is organized as follows. In Sec. II we briefly
summarize the theoretical results26 for the interaction
corrections to the conductivity of a two-valley system. The
experimental data are presented in Sec. III, along with the
data analysis and discussion. The summary is given in Sec.
IV.

II. INTERACTION CORRECTIONS TO THE
CONDUCTIVITY

A. Temperature dependence of the conductivity in zero
magnetic field

In the ZNA theory,26 the corrections 
�ee to the Drude
conductivity �D=n� /mb �mb�0.205me is the electron band
mass in �001� Si-MOSFETs; for more detail, see discussion
in Sec. III A 3 and references therein� were calculated in
both ballistic and diffusive regimes for all orders of the in-
teraction strength and the leading order in 1 / �EF�� and T /EF.
In particular, the theory reproduces the Altshuler-Aronov-
Lee correction3 to the conductivity in the diffusive regime.
To adapt the theoretical results26 to the case of �001� Si-
MOSFETs, one should take into account that the electron
spectrum in this system has two almost degenerate valleys.40

In zero magnetic field, 
�ee�T� for a system with two degen-
erate valleys in the absence of intervalley scattering can be
written as follows:38


�ee�T� = ��C�T� + 15��T�T� . �1�

Here ��C is the “charge” contribution which combines Fock
correction and the singlet part of Hartree correction and ��T
is the “triplet” contribution due to the triplet part of Hartree
term. The valley index can be considered as a pseudospin in
multivalley systems,29 and the valley degeneracy determines
the number of triplet terms due to the spin-exchange pro-
cesses between electrons in different valleys. For a system
with two degenerate valleys, the total number of interaction
channels is 4�4=16, among them 1 singlet and 15 triplet
terms �for comparison, there are one singlet and three triplet
terms for a single-valley system�.

Below we assume that the scattering potential is short
ranged which is relevant to Si-MOSFETs. According to Ref.
26, the charge term does not depend on the details of inter-
actions,

��C =
1

�
��T��	1 −

3

8
f�T��
 −

1

2�
ln

EF

T
� , �2�

whereas the magnitude and sign of the triplet term is con-
trolled by the Fermi-liquid parameter26 F0

�,

��T =
1

�
��T��

F0
�

1 + F0
�	1 −

3

8
t�T�;F0

��

− 	1 −

ln�1 + F0
��

F0
� 
 1

2�
ln

EF

T
� . �3�

The functions f and t in Eqs. �2� and �3� describe the cross-
over between the diffusive �
�ee� ln T� and ballistic �
�ee
�T� regimes; outside the crossover region, they change the
value of 
�ee by only a few percent. The explicit expressions
for these functions can be found in Ref. 26. The diffusive-
ballistic crossover is expected over some temperature range
near
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T� =
1 + F0

�

2��
. �4�

Equations �2� and �3� describe the quantum corrections in a
system with the conductance �	1 /2� at temperatures well
below the Fermi energy �T� �1+F0

��2EF�.
The sign and magnitude of 
�ee is controlled by the

Fermi-liquid parameter F0
�. For a rough estimate, deep in the

ballistic regime the ln T terms and the crossover functions t
and f in Eqs. �2� and �3� can be omitted. For example, at
T�=10, the functions f and t contribute �4% and �11%,
respectively, to the linear-in-T� ballistic terms of Eqs. �2� and
�3�. By neglecting these terms, we find that for a single-
valley system the linear dependence 
�ee�T� in the ballistic
regime becomes metallic �d� /dT�0� at 3F0

� / �1+F0
���−1

or F0
��−0.25, whereas for a system with two degenerate

valleys, the metallic 
�ee�T� dependences are expected for
15F0

� / �1+F0
���−1 or F0

��−0.06. Thus, the valley degen-
eracy extends the range of F0

��n� and, hence, the range of
carrier densities n where the conduction exhibits the metallic
behavior.

B. Magnetoconductivity in the in-plane magnetic field

The in-plane magnetic field, being coupled mostly to elec-
tron spins, provides a useful tool for exploring the interaction
effects in the low-temperature conductivity of
Si-MOSFETs.23 When the Zeeman energy EZ=gb�BB �gb
=2 is the bare g-factor and �B is the Bohr magneton� be-
comes much greater than T, the number of triplet terms that
contribute to 
�ee�T� is reduced from 15 to 7. Similar reduc-
tion in triplet terms is expected for a valley splitting 
V�T.
These two effects have been accounted for by the theory of
interaction corrections;26,38 in the presence of the magnetic
field and/or valley splitting the interaction correction to the
conductivity can be expressed as follows:38


�ee�T,�,F0
�,B�,
V� = 
�ee�T� + 2
�Z�EZ,T� + 2
�Z�
V,T�

+ 
�Z�EZ + 
V,T� + 
�Z�EZ − 
V,T� ,

�5�

where 
�ee�T� is given by Eq. �1�. All the terms 
�Z�Z ,T�
have a form


�Z�Z,T� � ��Z,T� − ��0,T�

= ��b�Z� + ��d�Z�

=
1

�
�
 2F0

�

1 + F0
� �T��Kb	 Z

2T
,F0

�
�
+ 
Kd	 Z

2�T
,F0

�
� + m�Z�,T�;F0
��� �6�

if the relevant energies Z�EF �Z stands for EZ, 
V, and
combinations EZ�
V�. The explicit expressions for the
functions Kb and Kd are given in Ref. 26. In particular, Eq.
�6� describes the interaction-driven magnetoconductivity
�MC� at magnetic fields sufficiently small that the system is
not fully spin polarized. Below we will neglect the function
m�0,T� ;F0

�� which describes the crossover between the bal-

listic and diffusive regimes: this function is numerically
small and does not modify the value of 
��Z ,T� outside the
ballistic-diffusive crossover region by more than 1%.

It is worth mentioning that in the framework of the RG
theory, the magnetoconductance can also be described by the
Castellani–Di Castro–Lee formula35,41 which is equivalent to
Eq. �5� in the diffusive limit at 
V=0. However, for the
analysis of our magnetoconductivity data measured over a
wide T range that includes both diffusive and ballistic re-
gimes, the interaction correction theory26 is more appropriate
than the RG theory.35

The interaction correction theory26 �as well as the RG
theory29,30� does not take into account intervalley scattering.
This approximation is valid when the intervalley scattering
rate �v

−1 is much smaller than T. In the low-temperature limit
T��v

−1, the electron states in different valleys are completely
intermixed at the time scale �T−1 and the correction 
�ee�T�
for a two-valley system is expected to coincide with that for
a single-valley system.

Since the interaction corrections to the conductivity

�ee�T ,B� depend on several parameters such as �, F0

�, 
V,
and �v, for testing the theoretical results, it is crucial to de-
termine these parameters in independent measurements. The
results of measurements of relevant parameters are given in
Sec. III.

III. SAMPLE CHARACTERIZATION AND DATA
ANALYSIS

A. Sample characterization

We have studied the temperature and magnetic-field de-
pendences of the conductivity for high-mobility �001� Si-
MOSFETs, which demonstrate the metallic quasilinear ��T�
dependences at intermediate temperatures over a wide range
of electron densities n. In this paper we present the data for
two �001� Si-MOSFETs, Si6–14 and Si1–46, with the gate
oxide thickness of 190�20 nm and peak mobility of
��0.1 K��2 m2 /V s. The ��T ,B� dependences were mea-
sured over the temperature range T=0.03–4.2 K using a
standard low-frequency four-terminal technique. The mea-
suring current was chosen to be sufficiently small �I
�1–3 nA� to avoid overheating of electrons within this
temperature range.42 Our experimental setup allowed us to
independently control the magnetic field normal to the plane
of 2D layer �B��−1.5¯ +1.5 T� and the in-plane magnetic
field �B� �−8¯ +8 T�; this cross-magnetic-field technique
has been described in Ref. 43. Unless otherwise stated, an
in-plane magnetic field of B� =0.02 T was applied to quench
the superconductivity in the current and voltage contact pads,
and the gate electrode which are made of thin aluminum
films.

1. Effective mass m� and g-factor: Interaction corrections
to the magneto-oscillations

The electron density n, the electron temperature T, the
effective electron mass m�, and g-factor g� have been found
from measurements of SdH oscillations �see also Ref. 25�.
For fitting the oscillations, as the first step of the analysis, we
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have used Lifshitz-Kosevich �LK� formula44 which is valid
for noninteracting 2D electrons if the amplitude of oscilla-
tions is small,45

��xx��c,T�
�D

= �
s

As
LK��c,T�cos
�s	2EF

�c
− 1
�

�cos
�s
g�m�

2me
�cos
�s


V

�c
� ,

As
LK��c,T� = − 4 exp	−

2�2sTD

�c

 2�2sT/�c

sinh�2�2sT/�c�
. �7�

Here �c=B� /m� is the cyclotron frequency, TD=1 /2��D is
the Dingle temperature, and �D is the �elastic� quantum scat-
tering time. Figure 1 shows that the temperature dependence
of the amplitude of the first harmonic, A1�T�, is in agreement
with Eq. �7� down to the lowest temperatures; this indicates
that the electrons are not overheated �with respect to the

thermal bath� by the bias current and/or noise.
The F0

��rs� values can be found from the measurements
of the renormalized g-factor: F0

�= �gb /g��−1. Here rs

�1 / āB
���n is the dimensionless ratio of the Wigner-Seitz

radius to the effective Bohr radius, āB
� = �̄ /me2, �̄=7.7 is the

average dielectric constant of Si and SiO2, and m=0.19me is
the electron band mass in bulk Si.40,46 In our experiments,25

g��n� was obtained from the analysis of SdH oscillations as
the ratio of two quantities: the measured renormalized
electron-spin susceptibility �� /�b=g�m� /gbmb and the effec-
tive mass m� ��b is the bare value of spin susceptibility�.
Observation of the beatings of SdH oscillations in crossed
magnetic fields offers a straightforward �model-independent�
method of finding g�m�.25,43 On the other hand, an estimate
of m� is based on a model-dependent analysis of the damping
factor for the first harmonic of SdH oscillations, A1�T ,B�

=const�. According to the LK theory, the damping factor can
be expressed as

− ln�A1
LK�T,B���

B�

2�2m�
� �T + TD� . �8�

Our experiments show that ln A1�T ,B�� varies linearly with
T within the experimental range T=0.4–0.8 K �see Fig. 3 of
Ref. 25�; this however does not prove the applicability of the
LK theory, which disregards the interaction effects. It was
recently shown45,47 that due to the interference between
electron-electron and electron-impurity interactions, the
damping factor acquires an additional term in both the diffu-
sive and ballistic regimes,

− ln�A1�T,B���
B�

2�2m�
= �T + TD� − ��T� , �9�

where

��T� = − T
�m�

m� − TD	�m�

m�
−

��D
�

�D
� 
 �10�

and

�m��T�
m�

= − A � ln	EF

T

 ,

��D
� �T�
�D

� = A � 
2�T� − ln	EF

T

� ,

A = 	1 +
15F0

�

1 + F0
�
 1

4�2�D
�11�

for a system with two degenerate valleys.
The equation for �m��T� /m� resembles the one-loop

renormalization of the effective mass �or Z� in the RG
theory.28,29,35 Our numerical simulations show that within the
relevant interval T=0.03–0.8 K and rs�6, the ln T terms in
Eq. �11� can be replaced with a T-independent constant. By
combining the LK result with the interaction-induced correc-
tions and replacing all terms �ln T by a constant within our
limited T range, we obtain the following linearized equation
in the ballistic regime for the short-range scattering ��D
���:

FIG. 1. �Color online� Shubnikov–de Haas oscillations normal-
ized by the amplitude of the first harmonic A1: �a� sample Si6–14,
n=6.1�1011 cm−2, T=36 mK; �b� sample Si1–46, n=1
�1012 cm−2, T=200 mK. Dots represent the experimental data;
solid curves—the theoretical dependences �Eq. �7�� modified for a
finite 
V and calculated for 
V=0.4 and 0.7 K for samples Si6–14
and Si1–46, respectively. Panels �c� and �d� show the temperature
dependences of the amplitude of SdH oscillations for Si6–14 �n
=5.5�1011 cm−2� and Si1–46 �n=1�1012 cm−2�. Solid curves—
the noninteracting LK model �Eqs. �8��; dashed curves—the fit
based on the interaction theory �Eqs. �9�–�11��. The linearized equa-
tion �Eq. �12�� is indistinguishable from Eqs. �9�–�11� within the
studied T range and not shown therefore.
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− ln�A1�T,B���
B�

2�2m�
= T + TD�1 – 2�AT��

= T + TD	1 −
1

2

���T�
�D


 . �12�

In this case, the T-dependent correction to the Dingle tem-
perature,

�TD�T�
TD

, is one-half of the interaction correction to
the conductivity48 ���T�

�D
. This factor 1

2 originates from the
difference between the interaction corrections to the momen-
tum relaxation and quantum scattering times.49 We note that
the empirical procedure used for finding m� in our earlier
paper �Ref. 25� was based on the assumption that TD

�

=TD�1−���T� /�D�, which differs from Eq. �12� by a factor
of 1

2 .
At relatively high densities �which correspond to rs�4�,

the corrections to the LK result are insignificant within the
studied T range. As rs increases, the temperature depen-
dences of the oscillation magnitude predicted by the LK
theory �Eq. �8�� and the interaction theory47 start deviating
from each other. The values of �F0

�� extracted from SdH data
using Eq. �12� are larger than those obtained with the LK
theory but smaller than �F0

�� obtained with the empirical pro-
cedure of Ref. 25 �e.g., at rs=6.2, the values of F0

� obtained
according to Eq. �12� and the empirical procedure of Ref. 25
are −0.40 and −0.45, respectively�. We have reanalyzed the
data of Ref. 25 using Eq. �12� and compared the correspond-
ing values with F0

��n� extracted from the ��T ,B�� depen-
dences using the ZNA theory �see below�.

2. Valley splitting and intervalley scattering

The analysis of SdH oscillations using Eq. �7� also al-
lowed us to estimate the energy splitting 
V between the
valleys. A nonzero valley splitting results in the beating of
SdH oscillations.50 Figures 1�a� and 1�b� show the SdH os-
cillations for samples Si6–14 and Si1–46 �the electron den-
sities are 6.1�1011 and 1�1012 cm−2, respectively�. The
amplitude of SdH oscillations normalized by the first har-
monic A1 is expected to be field independent if 
V=0. A
noticeable reduction in the SdH amplitude observed for both
samples at small fields can be attributed to a finite valley
splitting. Although the node of SdH oscillations �expected at
B�0.15 T� cannot be resolved for samples with mobilities
��2 m2 /V s, 
V can be estimated from fitting of the B
dependence of the SdH amplitude with Eq. �7� modified for
the case of a finite 
V: 
V�0.4 K for sample Si6–14 and
0.7 K for Si1–46. This estimate provides the upper limit for

V at B=0: in nonzero B� fields, 
V may be enhanced by the
interlevel interaction effects.40,51

The intervalley scattering rate for sample Si6–14 was
measured earlier in Ref. 52 by analyzing the weak-
localization �WL� magnetoresistance. It was found that �v is
temperature-independent and the ratio �v /� decreases mono-
tonically with increasing electron density. For Si6–14 at n
= �3–6��1011 cm−2, �v�20 ps ��v

−1�0.36 K� is approxi-
mately ten times greater than the transport time ��2 ps.

3. Relaxation time � and the band mass mb

The momentum relaxation time � was determined from
the Drude conductivity �D=n� /mb, which was found by ex-
trapolating the quasilinear ��T� dependence observed in the
ballistic regime to T=0. Note that in order to extract � from
the Drude conductivity, one should use the bare mass mb:
according to the Kohn theorem, the response of a translation-
ally invariant system to the electromagnetic field is described
by mb in the presence of electron-electron interactions; this
result also holds for weak disorder �EF�	1�. It is worth
mentioning that several prior publications,36–38 including our
paper,37 incorrectly used m� instead of mb to estimate � from
�D; this affects the value of the fitting parameters extracted
from comparison with the theory26 as shown below.

The textbook value40 for the light electron mass in bulk Si
is mb

�3D��0.19me. For inversion layers on �001� Si surface,
Kunze and Lautz53 obtained mb

�2D� /me= �0.19–0.22��0.02
from tunneling measurements. Our recent m��n� data ob-
tained from the analysis of SdH oscillations25 over a wide
range of densities rs=1.4–8.5 can be fitted with a polyno-
mial m��rs�=0.205me�1+0.035rs+0.000 25rs

4�. These m� /me
data agree well with earlier values of m� extracted from SdH
oscillations54–57 in narrower ranges of densities. By extrapo-
lating the polynomial m��rs� to rs=0 we obtain mb

�2D� /me
=0.205�0.005, the value which we adopted throughout the
paper;58 available measurements of the cyclotron resonance59

do not contradict and do not refine this value.
In principle, the aforementioned complete characteriza-

tion of samples allows us to compare the 
��T ,B� depen-
dences with the theory26 without any fitting parameters �with
a caveat that the theory does not take into account the inter-
valley scattering, see the discussion below�. However,
throughout this paper we adopt an equivalent but more con-
venient procedure: for each electron density, F0

��n� will be
considered as a single parameter for fitting 
��T ,B�, and
these values of F0

� will be compared with the corresponding
values obtained from the SdH oscillations.25

B. Temperature dependences of the conductivity at B¸=0

The temperature dependences of the conductivity ��T� for
sample Si6–14 are shown in Fig. 2. In these measurements,
we applied a fixed B�=0.1 T sufficient to suppress the tem-
perature dependence of the WL correction in the studied tem-
perature range. The ��T� dependences are nonmonotonic for
all studied densities �n= �1.8–15��1011 cm−2 for Si6–14
and n= �10–15��1011 cm−2 for Si1–46�: a quasilinear in-
crease in � with cooling, observed down to �0.5 K, is re-
placed at lower T with a decrease in �. Note that in our
previous experiments,37 we observed a trend of ��T� satura-
tion at T�0.4 K rather than the decrease in the conductivity.
One of the reasons for this might have been “heating” of
electrons by high-frequency noise: only after thorough filter-
ing of all leads connected to the sample were we able to
decrease the electron temperature down to �30 mK. Similar
downturn of ��T�, although at much lower temperatures, has
been recently observed in high-� GaAs FETs at low electron
densities.60 We note also that earlier, a downturn of ��T� was
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observed in Si-MOSFETs �Ref. 61� but at much higher elec-
tron densities �n�30�1011 cm−2, rs�1.4� and at much
higher temperatures T�10 K �T��1�. For such high densi-
ties the interaction corrections to � become negative and the
downturn of ��T� was related to the crossover between a
metallic high-temperature ��T� dependence �that is due to
electron–phonon and intersubband scattering effects� and re-
sulting “insulating” low-temperature ��T� dependence �that
is due to weak localization and negative interaction correc-
tions to ��T��.

Below we use the following strategy for analyzing the

��T� dependences. First, we find F0

� by fitting the quasilin-
ear ��T� dependences observed in the ballistic regime �T
�0.5 K� with Eqs. �1�–�3�. The effect of valley splitting and
intervalley scattering on 
�ee�T� can be neglected at T
	
V, �v

−1 and the analysis is significantly simplified. The
corresponding values of F0

��n� are shown in Fig. 5. The T
range available for fitting in this regime “shrinks” rapidly at
low n: the growth of �F0

�� and decrease in EF with decreasing
n lead to violation of the condition T� �1+F0

��2EF �e.g., at
n=1.8�1011 cm−2 this occurs at temperatures above 2 K�.
This might be one of the reasons for the observed deviation
of the high temperature ��T� from the linear-in-�T /EF�
theory.26 Also, the higher-order corrections might become
significant at low n when 
��T� /�D�1 �see Fig. 2�.

After finding the F0
� values �which are temperature inde-

pendent in the studied temperature range�, we proceed with
the analysis of the low-T part of the ��T� dependences,
where the crossover from d� /dT�0 to d� /dT�0 was ob-

served. We note that the crossover occurs when the tempera-
ture becomes smaller than two characteristic temperature
scales—
V and �v

−1—which are of the same order of magni-
tude for the studied structures. We emphasize that according
to the ZNA theory,26 the ballistic-diffusive crossover should
not change the sign of d� /dT. In contrast, the valley splitting
and the intervalley scattering may result in a sign change for
d� /dT because these processes reduce the number of triplet
components at T�
V and T��v

−1.
The theory26 takes into account a finite 
V but not �v

−1.
The solid red curves in Fig. 2 are calculated for 
V=0.4 K
�the estimated value of 
V for sample Si6–14� and �v

−1=0. It
is clear that the change in the number of triplet components
from 15 �T	
V� to 7 �T�
V� �Refs. 38 and 62� �see also
Eq. �5�� is not sufficient to explain the shape of the ��T�
downturn. The effect of strong intervalley scattering is illus-
trated in Fig. 2 by dashed green curves calculated with three
triplet components �to model roughly the case of T��v

−1

when the valleys are completely intermixed�. In the absence
of a detailed theory that would account for intervalley mix-
ing, we attempted to fit the experimental data with an em-
pirical crossover function for the number of triplet compo-
nents Ntriplet�x�=9+6�exp�−0.3 /x�−exp�−30x��, where x
=T�v. This crossover function provides correct asymptotic
limits for Ntriplet: 3 at T��v

−1 and 15 at T	�v
−1. Figure 2

shows that using this function, we can reasonably well de-
scribe the shape of experimental ��T� dependences for all
studied electron densities.

FIG. 2. �Color online� Temperature dependences of the conductivity ��T ,B� =0� for sample Si6–14 at various electron densities n
=15.1,10.0,5.5,4.0,2.9,1.8, in units of 1011 cm−2, from top to bottom. Circles show experimental data; red curves—the theoretical
dependences Eq. �5� calculated with 
V=0.4 K. On the left panel, the dashed blue curve corresponds to T=0.5�1+F0

��2EF, the applicability
of the ZNA theory is violated at a higher T. The right panel shows the same data set within a narrower temperature interval, the thin arrows
correspond to T=�v

−1, and the thick arrows to the temperature of the crossover between ballistic and diffusive regimes, T�= �1+F0
�� /2��. The

dashed-dotted green curves on the right panel were calculated with three triplet components in Eq. �1� �the valleys are completely inter-
mixed�; the blue dashed curves ��T ,B�=�D+��C+Ntriplet�T�v����T�T� with Ntriplet continuously varying between 3 �for T��v

−1, 
V� and
15 �for T	�v

−1, 
V�.
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C. Temperature dependences of the conductivity at nonzero B¸

Better understanding of different contributions to 
��T�
can be achieved by measuring the conductivity in strong in-
plane magnetic fields B� 	T /gb�B. The evolution of experi-
mental dependences ��T� with B� is shown in Fig. 3 for two
samples at different electron densities. The theoretical curves
in Fig. 3 were calculated using the F0

��n� values extracted
from the analysis of ��ee�T ,B� =0� �see Fig. 2�. The transport
time � was calculated for each B� value from the Drude con-
ductivity �D�B�� which in turn was estimated by extrapolat-
ing the quasilinear part of the ��T ,B�� dependence to T=0.
The observed behavior is in line with our analysis of the
��T� dependences in Sec. III B. Indeed, the magnitude of the
triplet contribution is expected to be reduced when the Zee-
man energy becomes greater than T. This effect is more pro-
nounced within the range 
V, �v

−1�T�gb�BB, where a
strong magnetic field reduces the number of triplet compo-
nents from 15 to 7. For example, at n=1�1012 cm−2 �see
Fig. 3�d�� the metallic behavior disappears at T�1 K and
B� =3 T, which is in agreement with the theory. At lower T,
the number of triplet components is smaller than 15 even at
B� =0 due to valley splitting and intervalley scattering, and
the effect of B� on 
��T� is less prominent.

D. Magnetoconductivity

To test the theoretical predictions on the magnetoconduc-
tivity induced by in-plane magnetic fields, we also measured
the ��B�� dependences at fixed T. Similar measurements
have been performed in the past �see, e.g., Refs. 37, 38, and

63�, but no detailed comparison with the theory was carried
out at that time. The MC for sample Si6–14 over the field
range −4.5�B� �4.5 T is shown for different densities and
temperatures in Fig. 4. In these measurements, special care
was taken to reduce the magnetic-field component perpen-
dicular to the plane of the structure: even a 1° misalignment
between the sample’s plane and the magnet axis �which re-
sults in B��50 G at B� =3 T� may be sufficiently strong for
suppressing the WL corrections at low T. To eliminate B�,
we used the cross-magnetic-field setup.43 For each value of
B�, we measured the dependence ��B�� by sweeping B� and
recorded the minimum value of ��B�� which corresponded
to the zero WL magnetoconductance and, thus, B�=0. This
method allowed us to compensate B� with an accuracy better
than 10 G.

The theoretical 
��B�� dependences �see Eqs. �5� and
�6��, plotted in Fig. 4 as solid curves, describe the observed
MC very well in not-too-strong magnetic fields gb�BB�

�0.2EF. Again, as in the case of fitting the 
��T� depen-
dences, the only adjustable parameter was the F0

��n� value
extracted for each density from fitting the MC at high tem-
peratures ��0.7 K� where the effects of valley splitting or
intervalley scattering on 
�ee�T ,B� can be neglected. Note
that all the theoretical curves plotted in Fig. 4 for the same n
were calculated for a fixed F0

��n�, i.e., neglecting possible
dependence F0

��B��. The detailed analysis of the spin suscep-
tibility ���g�m� in strong magnetic field, presented in Ref.
64, shows that the product g�m� decreases with an increase
in B� by as much as �20%. Our estimate shows that by
ignoring the g��B� dependence, we might reduce the value of
�F0

�� by �10% �see below�, which is close to the accuracy of

FIG. 3. �Color online� Temperature dependences of the conductivity for samples ��a� and �b�� Si1–46 and ��c�–�h�� Si6–14 in different
in-plane magnetic fields �from top to bottom, B� =0,0.6,1 ,1.5,2 ,3 T in panels �a� and �b�, and B� =0,0.6,1 ,2 ,3 T in panels �c�–�h��.
Experimental data are shown as circles; the solid curves show the theoretical dependences calculated for sample Si6–14 with 
V=0.4 K and
for sample Si1–46 with 
V=0.7 K. The F0

� value is the only fitting parameter in comparison with the theory �Ref. 26�, the corresponding
values of F0

� are shown in Fig. 5. The values of n are shown in units of 1011 cm−2.
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extraction of F0
� from the data in strong magnetic fields. As

B� grows and/or n decreases, the data start deviating from the
theoretical curves �see Fig. 4�d��; this deviation can be attrib-
uted to the violation of the condition gb�BB�EF required
for applicability of Eqs. �5� and �6�.

E. F0
�(n) dependence

The F0
� values obtained from fitting the 
��T� and 
��B��

dependences with the theory26 are shown in Fig. 5. For com-
parison, we have also plotted the F0

� values obtained from the
analysis of SdH oscillations measured for sample Si6–14 us-
ing the theories44,47 �see Sec. III A�. The F0

� values obtained
from fitting 
��T� are in good agreement with the corre-

sponding values extracted from the analysis of SdH data.
At the same time, the �F0

�� values obtained from fitting the

��B�� dependences at rs�4 are systematically smaller than
the corresponding values obtained from fitting 
��T� and
SdH oscillations. This trend was earlier reported in Refs. 37
and 38. There are at least two factors that can reduce this
discrepancy. One of them, a potential decrease in g� in strong
B�, was mentioned in Sec. III D. The other factor is more
subtle. In our analysis, we neglected the dependence of the
WL correction ��WL on B�. However, our measurements
show that ��WL decreases with an increase in the in-plane
magnetic field, which leads to a positive magnetoconduc-
tance. There are at least two potential reasons for this depen-
dence: �a� the Si-SiO2 interface roughness transforms a uni-
form in-plane field into a random perpendicular field �see,
e.g., Refs. 65–67 and references therein� and �b� a finite ex-
tent of electron wave functions in the direction perpendicular
to the plane of a quantum well causes subband mixing by the
magnetic field and disorder �see, e.g., Ref. 68 and references
therein�.

Phenomenologically, both effects can be described in
terms of a decrease in the dephasing length L� with B�. For
example, from the analysis of the WL magnetoresistance
measured for different values of B� for sample Si6–14 at n

FIG. 4. �Color online� Magnetoconductance for sample Si6–14
at different electron densities and temperatures. Experimental data
are shown by dots; the theoretical dependences calculated according
to Eqs. �5� and �6� by solid curves. The F0

� value is the only fitting
parameter in comparison with the theory �Ref. 26�, the correspond-
ing values of F0

� are shown in Fig. 5. Arrows indicate the fields
corresponding to the condition g�BB� /2EF=0.1. The values of n are
shown in units of 1011 cm−2.

FIG. 5. �Color online� �a� The F0
� values obtained from fitting

the ��T� and ��B�� dependences with the theory �Ref. 26� �blue and
red symbols, respectively�. Open red squares show the shift of sev-
eral F0

� values extracted from ��B�� if one takes into account the
g�B�� dependence and suppression of the WL corrections by B� �see
the text�. The dashed curve corresponds to F0

��rs� extracted from the
SdH data �Ref. 25� using the LK theory; the dashed-dotted curve to
the empirical approach used in Ref. 25. The shaded regions in pan-
els �a� and �b� show the F0

��rs� dependence �with the experimental
uncertainty� obtained from fitting our SdH data �Ref. 25� with the
theory �Ref. 47�. �b� Comparison of F0

� values calculated from
��T ,B=0� using the same fitting procedure �see the text�:
�—present work; � and �—data recalculated from Refs. 36 and
38, respectively.
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=1�1012 cm−2 and T=0.3 K, we have extracted L��B�

=0�=1.3 �m and L��B� =3T�=0.8 �m. Our estimates show
that the positive magnetoconductance associated with the
suppression of ��WL by B� can account for �10% of the
observed B�-induced magnetoconductance. After taking the
dependences g��B�� and ��WL�B�� into account, the �F0

�� val-
ues extracted from the MC should be increased by �20%.
The corresponding downshift of the F0

� values extracted from
the 
��B� data is shown by arrows in Fig. 5�a�; it signifi-
cantly reduces the discrepancy between the values of F0

� ex-
tracted from the B� =0 data and the data measured at B�

=1–5 T.
Finally, in order to compare our data with other available


��T� data for high-mobility Si-MOSFETs, we have used
Eqs. �1�–�6� to estimate the F0

� values from the quasilinear
��T ,B=0� dependences measured by Shashkin et al.36 and
Vitkalov et al.38 In this analysis, we estimated � from ��T
→0� using the band mass rather than m�. As for the valley
splitting, we have used 
V=0.6 and 1 K for the analysis of
data from Refs. 36 and 38, respectively. �The value 
V
�1–2 K used in Ref. 36 seems to be too large, as it would
lead to the appearance of beating of SdH oscillations in the
field range studied in Ref. 69�. We have also taken into ac-
count the WL correction neglected in both Refs. 36 and 38.
Figure 5�b� shows that the F0

��rs� values estimated for differ-
ent Si-MOSFETs using the ZNA theory are in good agree-
ment with each other.

The F0
� values obtained on the basis of the interaction

correction theory and plotted in Fig. 5 may be compared also
with the values of F0

�=−�2 / �1+�2� predicted by the RG
theory and measured experimentally in Refs. 31 and 32. Ex-
trapolation of our F0

��rs� data to lower densities provides the
value F0

��−0.5 at n�1�1011 cm−2 �rs�8�, which is
smaller than the value F0

�=−0.31 ��2=0.45� predicted by the
one-loop RG theory for the temperature Tmax corresponding
to the ��T� maximum29,31,32 �e.g., Tmax�3 K for n=1.2
�1011 cm−2�.

The experimental test31,32 of the RG theory was conducted
at temperatures higher than that in the experiments described
in the present work. Within the framework of the RG
theory,29 the interaction parameter �2 is expected to increase
with decreasing T �Refs. 31 and 32� and, in principle, can
reach a value of �1 for T�1 K, which corresponds to F0

�

=−0.5. �Note that the factor of 2 increase in �2 �from 0.45 to
1� is beyond the range of the applicability of the one-loop
RG theory.� Another problem is that the spin susceptibility
���g�m� obtained from the SdH data is almost T
independent,64 in contrast to the expected increase in �2
�and, hence, �F0

�� and g�� with cooling. This contradiction can

be resolved if the T-dependence of g� is exactly compensated
by the opposite T-dependence of m�, so that ���g�m� re-
mains almost constant. The reason for this compensation is
not clear and requires both experimental and theoretical stud-
ies.

IV. CONCLUSION

Our experiments show that the low-T behavior of the con-
ductivity of high-mobility �001� Si-MOSFETs is well de-
scribed by the theory of interaction effects in systems with
short-range disorder.26 Over a wide range of intermediate
temperatures �
V ,�v

−1 ,gb�BB�T�EF�, the interaction ef-
fects are strongly enhanced in Si-MOSFETs due to the pres-
ence of two valleys in the electron spectrum. This factor, in
combination with the interaction-driven renormalization of
the Fermi-liquid parameter F0

�, leads to an increase in
� with decreasing T. At lower temperatures �T
�
V ,�v

−1 ,gb�BB ,EF�, the triplet contribution to 
�ee�T� is
significantly reduced due to valley splitting and/or interval-
ley scattering. As a result, the metallic behavior of � is re-
placed with a more conventional insulating behavior. The F0

�

values obtained from fitting the experimental data with the
theory26 agree well with the F0

� data obtained from the analy-
sis of SdH oscillations in these samples. However, it remains
unclear how to reconcile the F0

� values obtained at low n
from fitting the ��T� and SdH data by using the interaction
correction theory with the corresponding values obtained
within framework of the RG theory.

We emphasize that for the detailed analysis of the
interaction-induced contributions to the conductivity, it is im-
portant to measure such parameters as the valley splitting
and intervalley scattering rate in independent experiments.
Finally, for a quantitative description of the interaction ef-
fects to the conductivity 
�ee at low temperatures, both the
interaction correction theory and RG theory should be ex-
tended to the case of a finite intervalley scattering rate.
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