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We systematically study topological phases of insulators and superconductors �or superfluids� in three spatial
dimensions. We find that there exist three-dimensional �3D� topologically nontrivial insulators or supercon-
ductors in five out of ten symmetry classes introduced in seminal work by Altland and Zirnbauer within the
context of random matrix theory, more than a decade ago. One of these is the recently introduced Z2 topologi-
cal insulator in the symplectic �or spin-orbit� symmetry class. We show that there exist precisely four more
topological insulators. For these systems, all of which are time-reversal invariant in three dimensions, the space
of insulating ground states satisfying certain discrete symmetry properties is partitioned into topological sectors
that are separated by quantum phase transitions. Three of the above five topologically nontrivial phases can be
realized as time-reversal invariant superconductors. In these the different topological sectors are characterized
by an integer winding number defined in momentum space. When such 3D topological insulators are termi-
nated by a two-dimensional surface, they support a number �which may be an arbitrary nonvanishing even
number for singlet pairing� of Dirac fermion �Majorana fermion when spin-rotation symmetry is completely
broken� surface modes which remain gapless under arbitrary perturbations of the Hamiltonian that preserve the
characteristic discrete symmetries, including disorder. In particular, these surface modes completely evade
Anderson localization from random impurities. These topological phases can be thought of as three-
dimensional analogs of well-known paired topological phases in two spatial dimensions such as the spinless
chiral �px� ipy�-wave superconductor �or Moore-Read Pfaffian state�. In the corresponding topologically non-
trivial �analogous to “weak pairing”� and topologically trivial �analogous to “strong pairing”� 3D phases, the
wave functions exhibit markedly distinct behavior. When an electromagnetic U�1� gauge field and fluctuations
of the gap functions are included in the dynamics, the superconducting phases with nonvanishing winding
number possess nontrivial topological ground-state degeneracies.
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I. INTRODUCTION

Quantum states of matter are characterized not only by
the structure of the energy spectrum but also by the nature of
wave functions.1–3 Of particular importance are topological
properties of wave functions, i.e., properties that are invari-
ant under small adiabatic deformations of the Hamiltonian. A
classic example of such topological characteristics is the
quantized Hall conductivity �xy in the integer quantum Hall
effect �IQHE�, which occurs at low temperature and high
magnetic field in two-dimensional �2D� electronic systems
with broken time-reversal symmetry �TRS�. The transverse
�Hall� conductivity �xy, arising from topologically protected
edge currents, can be interpreted as an integer Chern number
�TKNN integer�,4–6 a quantized topological invariant which
characterizes the different topological ground states.

In the past few years, it has been realized that topological
phases supporting topologically protected states appearing at
the sample boundaries can also exist in two- and three-
dimensional time-reversal invariant systems in the absence
of an external magnetic field.7–16 These topological states
occur in certain materials with a bulk band gap generated by
strong spin-orbit interactions and are known as Z2 topologi-
cal insulators. Unlike the integer quantum Hall states, the
two-dimensional version of the Z2 topological insulator,
which has been dubbed “quantum spin Hall” �QSH� state,
does not carry any net charge current along the edges. In-

stead, when a U�1� part of the SU�2� spin-rotation symmetry
is conserved, electrons with opposite spins propagate in op-
posite directions, which gives rise to a quantized spin Hall
conductance.7,14 Remarkably, the topological order of the
QSH state survives even under a �small� breaking of the full
spin-rotation symmetry. Consequently, the QSH insulator
cannot be characterized by a quantized spin Hall conductiv-
ity. Rather, as shown by Kane and Mele in Ref. 7, there is a
Z2 topological invariant that classifies the topological prop-
erties of the QSH states in a similar way as the Chern num-
ber does in the IQHE. A simple interpretation of the Z2 in-
variant is in terms of doublets of edge modes: in the QSH
phase the edge states consist of an odd number of Kramers
doublets, whereas the conventional band insulator is charac-
terized by an even number �including zero� of pairs of edge
states. The odd number of Kramers doublets is robust against
disorder17–23 and interactions.17,18 In particular, when subject
to time-reversal invariant random impurity potentials, there
is always one perfectly conducting channel as long as the
bulk topological properties are not altered by disorder.

There is a natural generalization of the Z2 topological in-
sulator to three dimensions.9–12 Similar to the 2D version,
there are now four independent Z2 topological invariants
which describe the number of Kramers degenerate band
crossings �Dirac points� in the spectrum on the surface of the
three-dimensional �3D� bulk, thereby distinguishing the con-
ventional insulator, the topologically trivial phase, from the
topologically nontrivial phase. Although the effects of disor-
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der and interactions on the Z2 topological insulator have been
less well studied in the 3D case than in the 2D case, there are
known to exist gapless surface modes in the topologically
nontrivial 3D phase which are robust against arbitrary strong
disorder as long as the latter does not alter the bulk topologi-
cal properties, in analogy to the quantum spin Hall effect
�QSHE� in two dimensions.12,21,24–27 These delocalized sur-
face states, whose Fermi surface encloses an odd number of
Dirac points, form a two-dimensional “Z2 topological
metal.”12,27,28

Recently, a series of experiments have been performed on
certain candidate materials for Z2 topological insulators. For
example, the QSH effect has been observed in HgTe/
�Hg,Cd�Te semiconductor quantum wells.29–33 Moreover, a
3D Z2 topological phase has been predicted for strained
HgTe and for bismuth-antimony alloys.12,33,34 Indeed, photo-
emission experiments on the latter system have revealed an
odd number of Dirac points inside the Fermi surface on the
�111� surface, thereby providing �indirect� evidence for the
existence of a nontrivial topological phase in three spatial
dimensions.12,35

In this paper we provide an exhaustive classification of
topological insulators and superconductors. Our classifica-
tion is for noninteracting systems of fermions. However,
since there is a gap, our results also apply to interacting
systems as long as the strength of the interactions is suffi-
ciently small as compared to the gap. As the majority of
previous works studied two-dimensional topological phases,

we shall be mostly concerned with the classification of 3D
systems, and only briefly comment on one- and two-
dimensional topological insulators in Sec. VIII. In the same
spirit as in the treatments of Z2 topological insulators, we
impose several discrete symmetries on a family of quantum
ground states. We then ask if different quantum states can be
transmuted into each other, without crossing a quantum
phase transition, by a continuous deformation respecting the
discrete symmetries.

If we are to include spatially inhomogeneous deforma-
tions of quantum states, such as those arising, e.g., from the
presence of random impurity potentials, the natural discrete
symmetries we should think of would be those considered in
the context of disordered systems.36 It is at this stage that we
realize that the existence of the classification of random
Hamiltonians, familiar from the theory of random matrices,
will become very useful for this purpose.

Specifically, following Zirnbauer37 and Altland and
Zirnbauer38 �AZ�, all possible symmetry classes of random
matrices, which can be interpreted as Hamiltonians of some
noninteracting fermionic system, can be systematically enu-
merated: there are ten symmetry classes in total. �For a sum-
mary, see Table I.� The basic idea as to why there are pre-
cisely ten is easy to understand. Roughly, the only generic
symmetries relevant for any system are TRS and charge con-
jugation or particle-hole symmetry �PHS�. Both can be rep-
resented by antiunitary operators on the Hilbert space on
which the single-particle Hamiltonian �a matrix� acts, and

TABLE I. Ten symmetry classes of single-particle Hamiltonians classified in terms of the presence or
absence of time-reversal symmetry �TRS� and particle-hole symmetry �PHS�, as well as “sublattice” �or
“chiral”� symmetry �SLS� �Refs. 37 and 38�. In the table, the absence of symmetries is denoted by “0.” The
presence of these symmetries is denoted by either “+1” or “−1,” depending on whether the �antiunitary�
operator implementing the symmetry at the level of the single-particle Hamiltonian squares to “+1” or “−1”
�see text�. �The index �1 equals �c in Eq. �1b�; here �c= +1 and −1 for TRS and PHS, respectively.� For the
first six entries of the table �which can be realized in nonsuperconducting systems�, TRS= +1 when the SU�2�
spin is an integer �called TRS �even� in the text� and TRS=−1 when it is a half-integer �called TRS �odd� in
the text�. For the last four entries, the superconductor “Bogoliubov–de Gennes” �BdG� symmetry classes D,
C, DIII, and CI, the Hamiltonian preserves SU�2� spin-1/2 rotation symmetry when PHS=−1 �called PHS
�singlet� in the text�, while it does not preserve SU�2� when PHS= +1 �called PHS �triplet� in the text�. The
last three columns list all topologically non-trivial quantum ground states as a function of symmetry class and
spatial dimension. The symbols Z and Z2 indicate whether the space of quantum ground states is partitioned
into topological sectors labeled by an integer or a Z2 quantity, respectively.

TRS PHS SLS d=1 d=2 d=3

Standard A �unitary� 0 0 0 - Z -

�Wigner-Dyson� AI �orthogonal� +1 0 0 - - -

AII �symplectic� −1 0 0 - Z2 Z2

Chiral AIII �chiral unitary� 0 0 1 Z - Z
�sublattice� BDI �chiral orthogonal� +1 +1 1 Z - -

CII �chiral symplectic� −1 −1 1 Z - Z2

BdG D 0 +1 0 Z2 Z -

C 0 −1 0 - Z -

DIII −1 +1 1 Z2 Z2 Z
CI +1 −1 1 - - Z
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can be written39 on this space in the form K̂Û, with K̂

=complex conjugation, and Û=unitary. Any of these two
symmetries can either be absent, which we denote by 0, or be
present and square to the identity operator or to minus the
identity operator, which we denote by +1 or −1, respectively.
This gives nine possible choices for the pair of symmetries
TRS and PHS �Table I�. However, since we consider TRS
and PHS, we may also consider, in addition, their product
SLSªTRS�PHS, often referred to as sublattice �or chiral�
symmetry. Now, for eight of the nine assignments of a pair of
0,�1 to the pair of symmetries TRS and PHS, the presence
or absence of the product SLS of these symmetries is
uniquely determined �Table I�. But the assignment
�TRS,PHS�= �0,0� allows for SLS to be either present
�SLS=1� or absent �SLS=0�. Therefore one obtains ten sym-
metry classes �Table I�, an exhaustive list.

The so-obtained ten �AZ� symmetry classes of random
matrices are conventionally named after the mathematical
classification of symmetric spaces, and are called A, AI, AII,
AIII, BDI, CII, D, C, DIII, and CI �Table I�. This AZ classi-
fication includes the three previously known,40 so-called
“Wigner-Dyson symmetry classes” �or “standard symmetry
classes”� relevant for the physics of Anderson localization of
electrons in disordered solids �corresponding to orthogonal
�AI�, unitary �A�, and symplectic �AII� random matrix en-
sembles�. Three so-called chiral classes can be obtained,
from the Wigner-Dyson classes, by imposing an additional
SLS. These are conventionally called “chiral orthogonal”
�BDI�, “chiral unitary” �AIII�, and “chiral symplectic” �CII�
symmetry classes. A well-known prototypical example of a
system in a chiral symmetry class is a disordered tight-
binding model on a bipartite lattice, such as the random hop-
ping model and the random flux model.41 Finally, there are
four additional symmetry classes �D, C, DIII, and CI� de-
scribing the �Anderson-type� localization physics of the non-
interacting Bogoliubov-de Gennes �BdG� quasiparticles ex-
isting deep inside the superconducting state of disordered
superconductors, as described within a mean-field treatment
of pairing. �Four symmetry classes arise since SU�2� spin-
rotational invariance or TRS may be present or absent.�

In terms of this terminology, the above-mentioned Z2 to-
pological insulator is a topologically nontrivial insulator
within the symplectic �or “spin-orbit”� symmetry class �class
AII�. In this paper, we pursue this direction further and pro-
vide a classification of all possible topological insulators in
three dimensions. Specifically, we take the classification by
AZ and ask if different Hamiltonians can be continuously
deformed into each other within a given symmetry class.

A. Summary of results

One of the key results of the present paper is our finding
that for five out of the above-mentioned ten �AZ� symmetry
classes for random matrices, there exist topologically non-
trivial insulators42 in three spatial dimensions. These classes
are:

�a� symplectic symmetry class �class AII�,
�b� chiral unitary symmetry class �class AIII�,
�c� chiral symplectic symmetry class �class CII�,

�d� BdG symmetry class of superconductors with TRS but
no SU�2� spin-rotation symmetry �class DIII�, and

�e� BdG symmetry class of superconductors with both
TRS and SU�2� spin-rotation symmetry �class CI�.

All these symmetry classes possess a TRS of some
form.43–45 Our result is summarized in the last column of
Table I, where the symbols Z and Z2 indicate whether the
space of quantum ground states is partitioned into topologi-
cal sectors labeled by an integer or a Z2 quantity, respec-
tively.

We are going to derive these findings by using two
complementary strategies. First, we introduce a suitable to-
pological invariant which takes on integer values and can be
used to label topologically distinct quantum ground states
�see Sec. III�. Second, we study two-dimensional boundaries
terminating 3D topological insulators and use the appearance
of gapless surface modes as a diagnostic for the topological
nature of the 3D bulk properties �see Sec. IV�. The latter is
accomplished by considering Dirac Hamiltonian representa-
tives of 3D topological insulators. Before we turn to a more
detailed and technical discussion, we outline below these
strategies in general terms.

1. Bulk topological invariant

To characterize the topological properties of bulk wave
functions in classes AIII, DIII, and CI, which are classes that
can be realized as time-reversal �TR� invariant superconduct-
ors, we introduce an integer-valued topological invariant
�winding number�, to be denoted by �. This winding number
can be defined for those symmetry classes in which the
Hamiltonian can be brought into block off-diagonal form, a
well-known property of random matrices in all the so-called
chiral symmetry classes AIII, BDI, and CII. This turns out to
be also a property of symmetry classes DIII and CI �and
arises from the presence of a �sublattice or chiral� symmetry
which is a combination of PHS and TRS�. One of the sim-
plest examples of such a quantum state with a nontrivial
winding number is in fact the well-known Balian-Werthamer
�BW� state46,47 of the B phase of liquid 3He. In the above
language, the BdG fermionic quasiparticles in 3He B are in a
3D topological insulating phase in class DIII, with winding
number �=1.

However, when additional discrete symmetries are present
in a given symmetry class, these can �and will� restrict the
possible values of the winding number � to a subset of the
integers. Indeed, while an arbitrary integral winding number
can be realized in classes DIII and AIII, only an even wind-
ing number turns out to be allowed for class CI. For classes
BDI and CII, on the other hand, we do not find any example
with a nontrivial winding number.

2. Surface Dirac/Majorana fermion modes

As anticipated from the examples of topological insula-
tors in two dimensions such as the IQHE and the Z2 topo-
logical insulators, the nontrivial topological properties of the
quantum state in the 3D bulk manifest themselves through
the appearance of gapless modes at a 2D surface terminating
the 3D bulk. These turn out to be gapless Dirac �or Majo-
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rana� fermion modes.48–54 The converse is also true: the
physics at the boundary faithfully reflects �indeed “holo-
graphically”� the nontrivial topological features of the bulk
quantum state, in a way that is reminiscent of the situation
familiar from the quantum Hall states48,55–57 �and also from
recent work on the gravitational Chern-Simons theory in �2
+1� dimensions58�. We are thus led to consider the nature
and the properties of Dirac fermions appearing at two-
dimensional surfaces terminating the 3D bulk as a tool to
characterize and to learn about the topological properties of
the wave functions of the three-dimensional bulk of interest.

Indeed, a complete classification scheme for properties of
Dirac fermions in two spatial dimensions recently appeared
in the work of Bernard and LeClair59 �BL�, and we will use
their results extensively.60 Interestingly, and of key impor-
tance to our goal is the fact that the BL-classification scheme
consists of 13 symmetry classes, not just the 10 �AZ� classes
mentioned above. This is due to the “Dirac structure” of the
Hamiltonian: in addition to the ordinary ten symmetry
classes, each one of the three classes AIII, DIII, and CI �i.e.,
classes which can be realized in TR invariant superconduct-
ors� subdivides in fact into two symmetry classes �not just
one, as in the AZ scheme which applies to random Hamil-
tonian not of “Dirac form”�. The gapless nature of 2D Dirac
fermions in the extra three symmetry classes turns out to be
entirely robust against any perturbation �respecting the sym-
metries of a given symmetry class�, including those breaking
translational invariance �i.e., disorder potentials�. Remark-
ably, it is precisely these extra three classes which are real-
ized at a surface of bulk topological insulators in classes
AIII, DIII, and CI in three spatial dimensions. More specifi-
cally, for symmetry classes AIII and DIII there exist 3D to-
pological insulators possessing any number of gapless 2D
surface Dirac and Majorana fermion modes, respectively,
which are stable to arbitrary perturbations �respecting the
symmetries�. For class CI, on the other hand, only an even
number of such gapless 2D Dirac fermion modes which are
robust to perturbations can be realized at a surface. This
should be contrasted with the even-odd effect9–12 governing
the robustness of the gaplessness of the spectrum of the
Dirac fermion modes at a surface of a three-dimensional Z2
topological insulator, a feature which is protected by the Z2
invariant.

For class CII the situation is similar to the case of Z2
topological insulators in class AII �the symplectic symmetry
class�. A three-dimensional insulator in class CII can support
surface Dirac fermions that are stable against any symmetry-
preserving perturbations. We will explicitly demonstrate this
below for the case where the number of surface Dirac fermi-
ons is two. On the other hand, when the number of such
flavors is twice an even integer, the surface Dirac fermions
are not protected from acquiring a mass. This stability of the
gapless surface Dirac fermions has nothing to do with the
winding number mentioned above.

3. Examples and many-body wave functions

The discussion so far has been solely in terms of single-
particle physics. This is not to say, however, that these results
are completely irrelevant to interacting many-body systems:

in particular, when viewed as mean-field ground states, the
families of states considered above can naturally arise as a
consequence of strong correlations. For example, the most
interesting topological features of the Moore-Read Pfaffian
state of the fractional quantum Hall �FQH� effect for the
half-filled Landau level can be understood in terms of the
ground state of a certain �px+ ipy� BCS superconductor,
within a mean-field treatment of pairing.61 Moreover, once
the dynamical fluctuations of the pairing potential and of the
electromagnetic U�1� gauge field are included, the supercon-
ducting ground state is topologically ordered.62–65 In a simi-
lar fashion, the 3D topological phases realized in supercon-
ducting classes DIII, AIII, and CI are, when viewed as many-
body wave functions, 3D analogs of paired FQH states such
as the Moore-Read Pfaffian,56 the Halperin 331,66 and the
Haldane-Rezayi states.67 In particular, the BW state of the B
phase of liquid 3He can be thought of as a 3D analog of the
Moore-Read Pfaffian state. Below, we will discuss in more
detail the properties of real-space wave functions of topo-
logically nontrivial and of topologically trivial phases of
these 3D topological insulators, which are analogs of the
familiar “weak-pairing” and “strong-pairing” states, respec-
tively, of the Moore-Read Pfaffian state in two spatial dimen-
sions. We will also discuss topological degeneracies arising
in such 3D phases.

B. Outline

This paper is structured as follows. Since the symmetry
classification38 of Hamiltonians which emerged in the con-
text of random matrix theory is crucial for our discussion, we
give a rather pedagogical description of it in Sec. II. The
topological winding number � is introduced in Sec. III to
characterize the bulk ground-state wave functions. We have a
close look at the surface Dirac fermions in Sec. IV, following
Bernard and LeClair.59 Explicit examples of 3D Dirac insu-
lators with a minimal number of surface Dirac fermions are
constructed in Sec. V. To clarify the connection between the
topological properties of the quantum state in the 3D bulk
and the appearance of gapless Dirac fermions at 2D surfaces,
we consider a topological field theory description in terms of
a �doubled� Chern-Simons theory in Sec. VI. Finally, we
discuss the 3D topological insulators as many-body systems
in Sec. VII and study their many-body wave functions and
topological degeneracies. We conclude in Sec. VIII with a
brief discussion of the close connection between the non-
trivial topological characteristics of the 3D bulk and the
Anderson �de�localization physics at the 2D boundary.

For those readers who are interested in details and prefer
a systematic presentation, we recommend to read all sections
sequentially. On the other hand, those readers who prefer to
understand the concepts rather through explicit examples
may skip Secs. II and IV and should proceed to read only
Secs. III and V–VIII.

II. SYMMETRY CLASSIFICATION OF
NONINTERACTING HAMILTONIANS

We start by recalling the basic ideas underlying the clas-
sification by AZ �Refs. 38 and 59� of noninteracting fermi-

SCHNYDER et al. PHYSICAL REVIEW B 78, 195125 �2008�

195125-4



onic Hamiltonians �“random matrices”� in terms of ten sym-
metry classes. These are classified in terms of the presence or
absence of certain discrete symmetries �see Table I for a
summary�. The corresponding symmetry operations are clas-
sified into two types,

P: H = − PHP−1, PP† = 1, P2 = 1, �1a�

C: H = �cCHTC−1, CC† = 1, CT = �cC , �1b�

where H is a matrix or an operator representing a single-
particle Hamiltonian, �c= �1 and �c= �1.

The symmetry operation corresponding to C �C-type sym-
metry� represents a TRS operation when �c=1 and a PHS
operation when �c=−1. Furthermore, we distinguish two
cases, �c= �1: ��c ,�c�= �1,1� represents a TRS for spinless
�or integer spin� particles, whereas ��c ,�c�= �1,−1� repre-
sents a TRS for spinful, half-integer-spin particles. Similarly,
��c ,�c�= �−1,1� represents a PHS for a triplet pairing BdG
Hamiltonian, whereas ��c ,�c�= �−1,−1� represents a PHS for
a singlet pairing BdG Hamiltonian. Note that although the
form of a C-type symmetry operation can be changed by a
unitary transformation, the value of ��c ,�c� remains un-
changed. The presence of TRS for half-integer spin implies
Kramers degeneracy, whereas the presence of PHS implies
that the energy spectrum is symmetric about zero energy.

Similar to PHS �C-type symmetry with �c=−1�, a P-type
symmetry implies a symmetry of the energy spectrum. In
condensed-matter systems, it is often realized as a sublattice
symmetry on a bipartite lattice �i.e., the symmetry operation
that changes the sign of wave functions on all sites of one of
the two sublattices of the bipartite lattice� and is sometimes
called chiral symmetry. When we have two P-type symme-
tries, say, P and P�, we can construct a conserved quantity
by combining them, i.e., �H , PP��=0, where PP��PP��†=1.
Note that this property implies that we can block diagonalize
H and apply our classification scheme to each of the blocks.
Consequently, it is enough to consider ensembles of Hamil-
tonians possessing only a single or no P-type symmetry.

Note that whenever a Hamiltonian possesses both P- and
C-type symmetries, it automatically has another, different
C-type symmetry C� defined by

H = �c�C�HTC�−1, C� = PC, �c� = − �c. �2�

Thus, symmetry classes of Hamiltonians possessing both P-
and C-type symmetries automatically possess in fact all
three: chiral, particle-hole, and time-reversal symmetries.

The complete classification in terms of the presence or
absence of chiral, particle-hole, and time-reversal symme-
tries is summarized in Table I. The ten symmetry classes of
AZ can be grouped into three categories: the three standard
�or Wigner-Dyson� classes �A, AI, AII�, the three chiral
classes �AIII, BDI, CII�, and the four BdG �superconductor�
classes �D, C, DIII, CI�. We wish to point out, however, that
classes CI and DIII can be thought of as close cousins of the
chiral classes since in each of these two classes one can find
a unitary matrix, by combining the TRS and PHS, which
anticommutes with all members of the class. Conversely,

class AIII can also be thought of as a BdG �superconductor�
class.44 �This will be discussed further below.�

Below, we will give a more detailed and physical descrip-
tion for each class. In this section, we use four sets of stan-
dard Pauli matrices, s	, c	, t	, and r	 �where 	=0,x ,y ,z and
s0, c0, t0, and r0 are 2�2 unit matrices�. Unless otherwise
specified, the Pauli matrices s	 act on spin indices �↑ /↓�,
whereas c	 act on the two �A- and B-� sublattice indices of a
bipartite lattice. The Pauli matrices t	 are used to represent
the particle-hole space appearing in the BdG Hamiltonian for
quasiparticles in a superconductor, whereas r	 are used for
superconductors for which the z component Sz of spin is
conserved. We also use two additional sets of Pauli matrices,
�	 and 
	 �where 	=0,x ,y ,z and �0 and 
0 are 2�2 unit
matrices�.

A. Standard (Wigner-Dyson) classes

Let us first review the familiar, standard Wigner-Dyson
symmetry classes.40 An ensemble of Hamiltonians without
any constraint other than being Hermitian is called the uni-
tary symmetry class �class A�. Imposing TRS for half-integer
spin on the unitary symmetry class,

isyHT�− isy� = H , �3�

one obtains the symplectic symmetry class �class AII�; note
that isy is antisymmetric, �isy�T=−isy. Imposing, in addition,
SU�2� spin-rotation symmetry on the symplectic symmetry
class, one obtains the orthogonal symmetry class �class AI�,

HT = H . �4�

The symmetry operation in Eq. �4� is the TRS operation for
integer-spin or spinless particles. We distinguish the two
C-type symmetries in Eqs. �3� and �4� by referring to them as
“TRS �odd�” and “TRS �even�,” respectively.

B. Chiral classes

Symmetry classes of Hamiltonians possessing a P-type
symmetry implemented by a unitary transformation

czHcz = − H �5�

�letting czªP in Eq. �1a�� are conventionally called chiral
classes. As already mentioned above, the corresponding uni-
tary transformation is typically implemented as a sublattice
symmetry on a bipartite lattice. Equations �1a� and �5� imply
that all the energy eigenvalues appear in pairs �with a pos-
sible exception at zero energy�. From an eigenstate � with
energy E, one can obtain another state with the opposite
energy −E by a unitary transformation cz�.

In complete analogy with the standard �Wigner-Dyson�
classes discussed above, the ensemble of chiral Hamilto-
nians without any further conditions is called the chiral uni-
tary class �class AIII�. Imposing TRS for half-integer spin
�Eq. �3��, we obtain the chiral symplectic class �class CII�.
Imposing both the TRS and SU�2� symmetries �i.e., impos-
ing TRS �4��, we obtain the chiral orthogonal symmetry class
�class BDI�.
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A well-known physical realization of the chiral unitary
symmetry class �class AIII� is a disordered tight-binding
model on a bipartite lattice with broken TRS, such as the
random flux problem.41 However, a class AIII Hamiltonian
can44 also be interpreted as an ensemble of BdG Hamilto-
nians that have a TRS and are invariant under a U�1� sub-
group of SU�2� spin-rotation symmetry �say, rotation around
the z component of spin�, as will be discussed further below.

C. BdG classes

Following Altland and Zirnbauer,38 we now consider the
following general form of a Bogoliubov–de Gennes Hamil-
tonian �Table II� for the dynamics of quasiparticles deep in-
side the superconducting state of a superconductor:

H =
1

2
�c†,c�H4� c

c† �, H4 = � � 


− 
� − �T � , �6�

where H4 is a 4N�4N matrix for a system with N orbitals
�lattice sites�, and c= �c↑ ,c↓�. �c and c† can be either column
or row vectors depending on the context.� Because of �
=�† �Hermiticity� and 
=−
T �Fermi statistics�, BdG
Hamiltonian �6� satisfies

�a�: H4 = − txH4
Ttx �PHS �triplet�� . �7�

This is a C-type symmetry with ��c ,�c�= �−1, +1�, and will
be called the PHS �triplet�.

In terms of the presence or absence of TRS �odd� repre-
sented by

�b�: H4 = isyH4
T�− isy� �TRS �odd�� �8�

and the presence or absence of SU�2� spin-rotation symmetry
represented by

�c�: �H4,Ja� = 0, Ja ª �sa 0

0 − sa
T � ,

a = x,y,z �SU�2� symmetry� , �9�

BdG Hamiltonians in Eq. �6� are classified into the four sub-
classes listed in Table I: classes C and CI are primarily rel-
evant to singlet superconductor �SC�, whereas classes D and

DIII are primarily relevant to triplet SC, although one can
also consider admixture of singlet and triplet order param-
eters in the absence of the parity symmetry, as known in,
e.g., CePt3Si.68

1. BdG classes without spin-rotation symmetry
a. Class D. First, we consider the symmetry class with

neither TRS nor SU�2� invariance. In this case, a set of BdG
Hamiltonians satisfying �a� is nothing but the Lie algebra
so�4m�. Any element H4�so�4m� can be diagonalized by
an SO�4m� matrix g as gH4g−1=diag�� ,−��, with �
=diag��1 ,�2 , . . .�; i.e., the spectrum is particle-hole
symmetric.

An example of class D BdG Hamiltonian in two dimen-
sions is a 2D spinless chiral p-wave �p� ip-wave� supercon-
ductor, which can be written in momentum space as

H =
1

2	
k

�ck
†,c−k�h�k�� ck

c−k
† � ,

h�k� = 
̄�kxtx + kyty� + �ktz, �10�

where k= �kx ,ky� is the 2D momentum, 
̄�R is the ampli-
tude of the order parameter, and �k denotes the energy dis-
persion of a single particle. The Hamiltonian has PHS �trip-
let� �Eq. �7��, h�k�=−txh

T�−k�tx.
b. Class DIII. Consider class DIII, which satisfies condi-

tions �a� and �b�. A set of matrices which simultaneously
satisfy �a� and �b� does not form a subalgebra of so�4m� but
consists of all those elements of the Lie algebra so�4m�
which are not elements of the sub-Lie algebra u�2m�.38

Combining �a� and �b�, one can see that a member of class
DIII anticommutes with the unitary matrix tx � sy,

H4 = − tx � syH4tx � sy . �11�

In this sense, class DIII Hamiltonians have a chiral structure.
It is sometimes convenient to take a basis in which the chiral
transformation, which is tx � sy in the present basis, is diag-
onal. In one of such bases, a class DIII Hamiltonian takes on
the form

TABLE II. Symmetry classification of Bogoliubov–de Gennes systems, in terms of the presence �“�”� or
absence �“�”� of SU�2� spin-rotation symmetry and TRS. In classes A and AIII, Hamiltonians are invariant
under rotations about the z �or any fixed� axis in spin space but not under full SU�2� rotations, as denoted by
“�” in the table. The sets of standard Pauli matrices sx,y,z, tx,y,z, and rx,y,z act on the spin, the particle-hole,
and the grading defined in Eq. �16�, respectively.

AZ class SU�2� TRS Constraints on Hamiltonians Examples in two dimensions

D � � txHTtx=−H Spinless chiral �p� ip� wave

DIII � � txHTtx=−H, isyHT�−isy�=H Superposition of �p+ ip� and �p− ip� waves

A � � No constraint Spinful chiral �p� ip� wave

AIII � � ryHry =−H Spinful px or py wave

C � � ryHTry =−H �d� id� wave

CI � � ryHTry =−H, H�=H dx2−y2 or dxy wave
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H4 = � 0 D

D† 0
�, D = − DT. �12�

An example of a 2D BdG Hamiltonian in symmetry class
DIII is a px-wave �or py-wave� superconductor with the d
vector not pointing in the z direction. An equal superposition
of two chiral p-wave SCs with opposite chiralities �px+ ipy

and px− ipy waves�69–72 also falls into this class. The latter
can be explicitly written in momentum space as

H =
1

2	
k

�ck
†,c−k���k 
k


k
† − �−k

T �� ck

c−k
† � , �13a�

with the row vector �ck
† ,c−k�= �ck↑

† ,ck↓
† ,c−k↑ ,c−k↓� and the ma-

trix elements

�k = �ks0,


k = 
̄�kx + iky 0

0 − kx + iky
� . �13b�

In terms of the d vector, dk= 
̄�−kx ,ky ,0�, the superconduct-
ing order parameter reads


k = �dk · s��isy� . �13c�

It is interesting to note that Hamiltonian �13a� is a direct
product of Hamiltonian �10�, h�kx ,ky�, and h�−kx ,ky�. This
follows from a simple reordering of the basis elements in
Eqs. �13a�–�13c�, such that �ck

† ,c−k�→ �ck↑
† ,c−k↑ ,ck↓

† ,c−k↓�.
The superconductor described by order parameter �13b� can
be thought of as a two-dimensional analog of the BW state
realized in the B phase of 3He. The BW state, which is also
a member of class DIII and described by the d vector dk

= 
̄�kx ,ky ,kz�, will be discussed in Sec. V as an example of
3D topological insulators.

2. BdG classes with Sz conservation

Let us consider BdG Hamiltonians which are invariant
under rotations about the z �or any fixed� axis in spin space,
yielding to the condition �H4 ,Jz�=0, which implies that the
Hamiltonian can be brought into the form

H4 =

a 0 0 b

0 a� − bT 0

0 − b� − aT 0

b† 0 0 − a�T
�, a† = a, a�† = a�.

�14�

Due to the sparse structure of H4, we can rearrange the ele-
ments of this 4N�4N matrix into the form of a 2N�2N
matrix,

H = �c↑
†,c↓�� a b

b† − a�T ��c↑

c↓
† � +

1

2
tr�a� − a� . �15�

Note that the Hamiltonian H is traceless.
To summarize, a BdG Hamiltonian which is invariant un-

der rotations about the z component in spin space can be

brought �up to a term which is proportional to the identity
matrix� into the form

H = �c↑
†,c↓�H2�c↑

c↓
† �, H2 = ��↑ �

�† − �↓
T � , �16�

where ��
† =��. Without further constraints, this Hamiltonian

is a member of class A �unitary symmetry class�. A physical
realization of this class is a 2D spinful chiral p-wave
�p� ip-wave� superconductor �cf. Eqs. �13a�–�13c�� with the
d vector parallel to the z direction,

dk = ẑ
̄�kx + iky� = 
̄�0,0,kx + iky� . �17�

More compactly, the spinful chiral �p� ip�-wave supercon-
ductor can be expressed as

H = 	
k

�ck↑
† ,c−k↓���↑k �k

�k
† − �↓−k

�� ck↑

c−k↓
† � , �18�

where

�k = 
̄�kx + iky� , �19�

and �↑/↓,k
T =�↑/↓,−k and �k

T=�−k �by definition�. �Incidentally,
the single-particle Hamiltonian defined by Eqs. �18� and �19�
happens to belong to class D if �↑k=�↓k.� The Anderson-
Brinkman-Morel �ABM� state, which is a 3D superfluid
given by the same order parameter as the 2D spinful chiral
p-wave superconductor �Eq. �17��, is also a member of class
A.

a. Class C [full SU(2) symmetry]. If we further impose
the full SU�2� rotation symmetry, �� and � are constrained by

�↓ = �↑ ¬ �, � = �T. �20�

These two conditions can be summarized as

ryH2
Try = − H2 �PHS �singlet�� . �21�

This is a C-type symmetry with ��c ,�c�= �−1,−1�, and will
be called the PHS �singlet�.

An example of a BdG Hamiltonian in class C in two
dimensions is the �d+ id�-wave superconductor.73 Its Hamil-
tonian is given by Eq. �18� together with the matrix elements
�↑k=�↓k=�k and

�k = 
x2−y2�kx
2 − ky

2� + i
xykxky , �22�

where 
x2−y2 and 
xy are real amplitudes for the dx2−y2 and
idxy superconducting order parameters, respectively.

b. Class CI [full SU(2) symmetry � TRS]. Imposing both
full SU�2� rotation and TR symmetries, leads, in addition to
constraint �20�, to

�� = �, �� = � . �23�

These conditions can be summarized by

ryH2
Try = − H2, H2

� = H2. �24�

Combining these two conditions we can obtain a P-type
�i.e., chiral� symmetry, ryH2ry =−H2. It is also convenient to
rewrite the Hamiltonian by rotating the r	 matrices by
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�rx ,ry ,rz�⇒ �rx ,−rz ,ry�. In this basis, the class CI Hamil-
tonian takes on block off-diagonal form,74

H2 = � 0 D

D† 0
�, D = � − i� = DT. �25�

An example of a BdG Hamiltonian in class CI in two
dimensions is a 2D d-wave �dx2−y2-wave� superconductor,
which is described by order parameter �22�, with 
xy =0 but
with 
x2−y2�0.

c. Class AIII (Sz conservation � TRS). If, in addition to
conservation of the z component of spin we further impose
TRS �b�, we obtain the conditions

�↑
T = �↓, � = �†, �26�

which can be summarized as

ryH2ry = − H2. �27�

By interpreting the r grading as c grading, this is nothing but
the SLS. Thus, a BdG Hamiltonian possessing TRS �b� and
conserving one component of SU�2� spin can be thought of
as a member of the chiral class without TRS �AIII�.44 An
example of a BdG Hamiltonian of a two-dimensional super-
conductor in class AIII is a p-wave �px,y-wave� supercon-
ductor with the d vector parallel to the z direction, i.e.,

Hamiltonian �13a� with dk= 
̄ẑkx,y in Eq. �13c� or, alterna-

tively, Hamiltonian �18� with �k= 
̄kx,y. Before closing this
section, we emphasize that the symmetry classification we
have described also applies to interacting fermion systems,
as discrete symmetries can be imposed on the second-
quantized fermion creation and annihilation operators.

III. CHARACTERIZATION IN THE BULK

A useful quantity for discussing the bulk characteristics of
topological insulators is the spectral projection operator. We
will first discuss the spectral projector for a general Bloch
Hamiltonian with a bulk band gap, and then specialize to
those symmetry classes that satisfy a certain discrete unitary
symmetry �called P-type in Sec. II�, in which case the pro-
jection operator can be brought into block off-diagonal form.
This block off-diagonal representation of the projector al-
lows for the definition of a winding number that distin-
guishes between different topological phases.

A. Projection operator

In the presence of translation invariance, ground states of
noninteracting fermion systems can be constructed as a filled
Fermi sea in the d-dimensional Brillouin zone �BZ�, in Fou-
rier space. The band structure can then be viewed as a map
from the BZ to the space of Bloch Hamiltonians. Similarly,
the spectral projection operator75 can be thought of as a map
from the reciprocal unit cell to a certain Lie group or coset
manifold, which we will call space of projectors or target
space. In order to define the spectral projector, let us consider
an eigenvalue problem at momentum k,

H�k��uâ�k�
 = Eâ�k��uâ�k�
 , �28�

where H�k� is a Hamiltonian at k in the BZ and �uâ�k�
 is the
Bloch state in the âth band with energy Eâ�k�. We assume the
existence of a bulk band gap centered around some energy
E0 and define the quantum ground state by filling all states
with Eâ�k��E0. Without loss of generality, we can set E0
=0, as a suitable constant chemical potential in the definition
of single-particle energy levels can always be included. The
projector onto the filled Bloch states at fixed k is then defined
as

P�k� = 	
â

filled

�uâ�k�
�uâ�k�� . �29�

It is convenient to introduce

Q�k� = 2P�k� − 1. �30�

It is readily checked that the so-defined “Q matrix” is char-
acterized by the conditions

Q† = Q, Q2 = 1, tr Q = m − n , �31�

where we consider the situation where, at each k, we have m
filled and n empty Bloch states. Depending on the symmetry
class, additional conditions may be imposed on Q, which we
will consider later. Without any such further conditions, the
projector takes values in the so-called Grassmannian
Gm,m+n�C�: the set of eigenvectors can be thought of as a
unitary matrix, a member of U�m+n�. Once we consider a
projection onto the occupied states, we have a gauge sym-
metry U�m� for the occupied states and a similar gauge sym-
metry U�n� for the empty states. Thus, each projector is de-
scribed by an element of the coset U�m+n� /U�m��U�n�
�Gm,m+n�C��Gn,m+n�C�. On the other hand, an element of
Gm,m+n�C� can be written as

Q = U�U†, � = diag�Im,− In�, U � U�m + n� �32�

�where m eigenvalues of the diagonal matrix � equal +1, and
the remaining n eigenvalues equal −1�. Imposing TRS or
PHS, which are realized by an antiunitary operation �called
C-type in Sec. II�, prohibits certain types of maps from the
BZ to the space of projectors �see Table III�. On the other
hand, if the discrete symmetry is realized by a unitary opera-
tion �called P-type in Sec. II� the space of projectors is al-
tered from Gn,m+n�C� to U�m� �see Sec. III B�.

We now ask if any element of the set of projectors within
a given symmetry class can be continuously deformed into
any other, without closing the energy gap. Mathematically,
this is related to the homotopy group of the �topological�
space of projectors. For two spatial dimensions the relevant
homotopy group is �2�Gm,m+n�C��=Z, implying that the pro-
jectors are classified by an integer �Chern number�;5–7 pro-
jectors with different Chern numbers cannot be deformed
into each other adiabatically. This is the mathematical reason
why there exists a series of distinct 2D quantum Hall insu-
lators labeled by an integer, which is the Hall conductivity
�xy �measured in natural units of e2 /h�. On the other hand, in
three spatial dimensions and in the absence of additional
discrete symmetries, the relevant homotopy group is78,79
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�3�Gm,m+n�C�� � �e� , �33�

where �e� represents a group with only one element �iden-
tity�. Thus, there is no notion of winding in three dimensions
in this case.80 �When m=1, there is an accidental winding,
�3�G1,2�C��=Z, because of the Hopf map.79,81�

This is not to say that there is no topological distinction
when additional discrete symmetries are imposed on the pro-
jector. For example, in class AII �the symplectic class�, the
projector must also satisfy the condition �i�y�Q�k�T�−i�y�
=Q�−k�, which arises from the presence of TRS. Due to this
additional constraint, two different Q-field configurations
might not be continuously deformable into one another.
Properties of the projector for each class are summarized in
Table III.

B. Block off-diagonal projection operators

A symmetry realized by an antiunitary operation �i.e.,
TRS or PHS� relates the projector at wave vector k and the
one at wave vector −k. Thus, the role of PHS or TRS is to
prohibit certain Q-field configurations in momentum space,
or to change the topology of the BZ by orbifolding k�−k.

In contrast, imposition of a discrete symmetry which is
realized by a unitary operation �i.e., SLS or a product of PHS
and TRS� imposes a condition on the projector at each k.
Thus, the role of this type of symmetry is to change the
target manifold of the projector. The main focus below is on
the projector in those symmetry classes which possess �in
some basis� a block off-diagonal representation of the Hamil-
tonian and of the projector, due to the presence of a chiral
symmetry. This is the case for all three chiral classes, AIII,
BDI, and CII, and for two of the four BdG classes, classes CI
and DIII. For these symmetry classes, the Q matrix can be
brought �upon basis change� into block off-diagonal form

Q = � 0 q

q† 0
� . �34�

Since Q2=1, one has qq†=q†q=1, and thus q is a member of
U�m�. As before, one should bear in mind that the q matrix

can further be subjected to several additional constraints
coming from additional discrete symmetries imposed on
Hamiltonians. Properties of the projector for each class are
summarized in Table III.

The relevant homotopy group for projectors that take the
form of Eq. �34� is78,79

�d�U�m�� � ��e� for d even

Z for d odd,
� �35�

for m� �d+1� /2, instead of �d�Gm,m+n�C��.
If a symmetry class of interest does allow topologically

nontrivial configuration of the projector, a useful tool for
investigating if a given quantum ground state belongs to a
nontrivial topological sector �in the space of projectors� is a
quantized invariant. In the IQHE, it is the quantized Hall
conductivity �xy, which is essentially a winding number
characteristic of �2�Gm,m+n�C��=Z. In the Z2 topological in-
sulators, it is the Z2 invariant,7–9,11,12,82 which can be con-
structed from the SU�2� Wilson loops that are quantized be-
cause of the TRS. Below, we will introduce a topological
invariant that is applicable for symmetry classes with block
off-diagonal projector.

C. Winding number in three dimensions

Since �3�U�m���Z �for m�2�, there are, in three spatial
dimensions, topologically nontrivial configurations in the
space of projectors for those symmetry classes for which the
Q matrix can be brought into block off-diagonal form. To
characterize these distinct classes, we can define the winding
number as

��q� =� d3k

24�2�	�� tr��q−1�	q��q−1��q��q−1��q�� , �36�

where q�k��U�m�, 	 ,� ,�=kx ,ky ,kz, and the integral ex-
tends over the entire Brillouin zone for lattice systems,
which is the three-torus T3, whereas for continuum models
the domain of integration in Eq. �36� is topologically equiva-
lent to three-sphere S3.

TABLE III. The space of projectors in momentum space for each AZ class. The BL classes represent the classification of 2D Dirac
Hamiltonians obtained by Bernard and LeClair �Ref. 59�, and Nf

min is the smallest possible number of flavors of 2D two-component Dirac
fermions. The fermionic replica NL�M target spaces, with possible 2D critical behavior �in terms of whether it is possible for a given NL�M
to have a topological term, either of Pruisken �IQHE� type or Z2 type, or a WZW term� are also listed according to Refs. 76 and 77.

AZ class
Space of projectors
in momentum space BL class Nf

min
Fermionic replica

NL�M target space
Topological or

WZW term

A �Q�k��Gm,m+n�C�� 0 1 U�2N� /U�N��U�N� Pruisken

AI �Q�k��Gm,m+n�C� �Q�k��=Q�−k�� 4+ 2 Sp�2N� /Sp�N��Sp�N� N/A

AII �Q�k��G2m,2�m+n��C� � �i�y�Q�k���−i�y�=Q�−k�� 3+ 1 O�2N� /O�N��O�N� Z2

AIII �q�k��U�m�� 1 or 2 1 or 2 U�N��U�N� /U�N� WZW

BDI �q�k��U�m� �q�k��=q�−k�� 9+ 2 U�2N� /Sp�N� N/A

CII �q�k��U�2m� � �i�y�q�k���−i�y�=q�−k�� 9− 2 U�2N� /O�2N� Z2

D �Q�k��Gm,2m�C� �
xQ�k��
x=−Q�−k�� 3− 1 O�2N� /U�N� Pruisken

C �Q�k��Gm,2m�C� �
yQ�k��
y =−Q�−k�� 4− 2 Sp�N� /U�N� Pruisken

DIII �q�k��U�2m� �q�k�T=−q�−k�� 5 or 7 1 or 2 O�2N��O�2N� /O�2N� WZW

CI �q�k��U�m� �q�k�T=q�−k�� 6 or 8 2 or 4 Sp�N��Sp�N� /Sp�N� WZW
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In class AIII, the winding number ��q� can be any integer.
Due to additional constraints on the q field in classes DIII,
CI, BDI, and CII, all integers might not be realized. One way
to determine which integer values can be realized as winding
numbers in each symmetry class is to count the number of
flavors of massless Dirac fermions allowed by the symme-
tries at the surface. This counting will be done in Sec. IV,
yielding the following results.

An arbitrary number of flavors can be realized in symme-
try classes AIII and DIII. The gapless nature of the surface
Dirac �Majorana� fermions is, irrespective of the number of
flavors, stable against any perturbations respecting the sym-
metries of a given class, including disorder potentials.83

On the other hand, only an even number of flavors is
allowed in classes CI, BDI, and CII. This suggests that the
winding number for classes CI, BDI, and CII can take on
only even integer values. Indeed, in Sec. V, we will construct
an explicit example of a topological insulator in class CI in
three spatial dimensions, with winding number �=2 and with
two flavors of surface Dirac fermions.

While an even number of flavors of surface Dirac fermi-
ons might appear, at first sight, to be possible in class BDI, a
detailed study of the form of generic perturbations reveals
that the gapless nature of Dirac fermions at the surface is not
protected in this symmetry class. This suggests that the space
of all Hamiltonians in class BDI has no nontrivial topology.
�See also the discussion around Eq. �42�.�

The stability against perturbations of the gapless 2D sur-
face Dirac fermions in class CII depends on whether the
number of flavors is an even or an odd multiple of two: if it
is an even �odd� multiple, the gapless spectrum is unstable
�stable�. We thus expect that the space of all Hamiltonians in
class CII has a Z2 classification, as in class AII �the symplec-
tic symmetry class�. Furthermore, this Z2 classification has
nothing to do with the winding number, as we will demon-
strate in Sec. V, where we construct a 3D class CII insulator
with two flavors of surface Dirac fermions but with vanish-
ing winding number.

Before closing this section, several comments are in or-
der: �i� Similar discussions are possible in all odd spatial
dimensions, where a winding number can always be defined
for classes AIII, BDI, CII, CI, and DIII. In particular, since
�1�U�m���Z, topologically nontrivial insulators character-
ized by an integer invariant can exist in one spatial dimen-
sion when there is a SLS.84 On the other hand, in the pres-
ence of PHS �Refs. 16, 85, and 86� or TRS �odd�,13 the
nontrivial topological features in the bulk of one-dimensional
�1D� topological insulators can be characterized by U�1� or
SU�2� Wilson loops of the Berry connection, respectively.
Although the quantized values of the Wilson loops are not
affected by the choice of Bloch wave functions, as different
Bloch wave functions are related by a gauge transformation,
the quantized values of the Wilson loops do depend on the
choice of the unit cell.13,87 When there is translation invari-
ance, the choice of unit cell is arbitrary, whereas if we intro-
duce a boundary, the choice of unit cell should be consistent
with the location of the boundary. It is in this sense, that the
�quantized� values of Wilson loops in one dimension reflect
the boundary physics and are not solely determined from the
bulk properties. �ii� The relevant homotopy group governing

the existence of topological insulators in two spatial dimen-
sions is �2�U�m��= �e�. This immediately tells us that there
are no topological insulators in class AIII in two dimensions.
However, due to constraints arising from the presence of
additional discrete symmetries, there is still the possibility of
having 2D topological phases in other “chiral” classes. In-
deed, in class DIII, for example, one can construct a topo-
logical insulator from the mixture of p+ ip and p− ip pairing
states.69–72 This state is a direct analog of the Kane-Mele
model7 on the honeycomb lattice, which is the mixture of the
two Haldane models of the IQHE.88 �iii� Finally, the winding
number defined above in momentum space �which requires
translational invariance� can also be defined for disordered
systems, in a similar fashion in which the Chern number can
be defined for disordered systems.89

IV. CHARACTERIZATION AT THE BOUNDARY

A physical consequence of the nontrivial topological
properties of the quantum state in the bulk is the appearance
of the gapless boundary modes. �Some explicit examples will
be constructed in Sec. V.� Conversely, most of the possible
bulk phases in �3+1� dimensions can be inferred by studying
their possible �2+1�-dimensional boundary physics. In this
section we consider, following Bernard and LeClair,59 the
symmetry classification of 2D Dirac Hamiltonians of the
form

H = � V+ + V− − i�̄ + A+

− i � + A− V+ − V−
� , �37�

where V�=V�
† and A+

† =A− and �=�x− i�y and �̄=�x+ i�y.
Possible dimensionalities of the matrices V� and A� depend
on the symmetry class as we will see below.

As before, we impose two types of discrete symmetries, P
and C. The form of the matrices P and C, acting by conju-
gation, is constrained by the requirement that they do not
change the kinetic term in Eq. �37�, resulting in the following
block diagonal form:

P = �� 0

0 − �
�, C = � 0 �

− �c� 0
� , �38�

where � and � are a matrix satisfying

��† = 1, �2 = 1, ��† = 1, �T = − �c�c� . �39�

All possible forms of � and � are listed in Ref. 59. Due to
the Dirac kinetic term, the Bernard-LeClair �BL� classifica-
tion is finer than the 10 symmetry classes of AZ: there are 13
symmetry classes denoted by 0, 1, 2, 3�, 4�, 5, 6, 7, 8, and
9�. While all AZ symmetry classes except AIII, DIII, and CI
are in one-to-one correspondence with the BL classes, two
BL classes correspond to each of the AZ symmetry classes
AIII, DIII, and CI: BL classes 1 and 2 correspond to AIII, BL
classes 5 and 7 to DIII, whereas BL classes 6 and 8 corre-
spond to CI. �For a summary, see Table III.�

Of direct relevance to our discussion of 3D topological
insulators is the minimal number Nf

min of flavors in the BL
classification. For BL class 3+ �class AII in the AZ classifi-
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cation�, Nf
min is 1. Since a single flavor of 2D gapless Dirac

fermion cannot be realized on a 2D lattice without breaking
TRS, the case with Nf

min=1 �or Nf
min=odd� in class 3+ should

correspond to a state appearing at the two-dimensional sur-
face of a three-dimensional Z2 topological insulator in class
AII. This situation is indeed realized in the model of Fu et
al.11,12 For BL classes 1, 5, and 6, the minimal number Nf

min

of Dirac fermion flavors is half the minimal number of fla-
vors required for the BL classes 2, 7, and 8, respectively.
�Compare, e.g., Table III.� We thus expect that 2D Dirac
fermion modes in the BL classes 1, 5, and 6 are realized as
boundary states of a nontrivial 3D topological insulator in
classes AIII, DIII, and CI, respectively, whereas those in BL
classes 2, 7, and 8 can be realized either directly on a 2D
lattice or at a surface of topologically trivial 3D insulators.
Finally we will show in Sec. V by constructing an explicit
example that for the BL symmetry class 9− �CII�, the case
with minimal flavors Nf

min=2 can be realized as a surface
state of a 3D topological insulator. We will now argue that
the gapless nature of 2D Dirac Hamiltonians that can be
realized at a boundary of a topologically nontrivial 3D insu-
lator is stable against perturbations V� and A�.

We first look at the BL classes 1, 5, and 6, which corre-
spond to AIII, DIII, and CI, respectively. These classes are
special in that the potentials V� are not allowed59 by the
symmetries in these classes, so that

H = � 0 − i�̄ + A+

− i � + A− 0
� . �40�

Since the only allowed perturbations are of gauge type, one
would expect that these perturbations do not spoil the gap-
lessness of the free Dirac spectrum. To see this, let us now
try to find zero-energy modes. We thus look for the solution

� 0 k+ + A+

k− + A− 0
���A

�B
� = 0, �41�

where k�=kx� iky. We assume that A� have been brought
into diagonal form by gauge transformations g�, so that
g�A�g�

−1=��, where �+=�−
�, g+

† =g−
−1, and �� are diagonal

matrices with complex entries. Thus, the Schrödinger equa-
tion for the zero modes reduces to �k++�+��̃B= �k−+�+

���̃A
=0, where �̃B=g+

−1�B and �̃A=g−
−1�A. This wave equation has

a nontrivial solution ��̃A�0 or �̃B�0� only when one of the
complex eigenvalues of �+ is equal to −k+. The solution �A
and �B can then be obtained from �̃A and �̃B. It should be
normalized as �A

†�A+�B
†�B= �̃A

†g−
†g−�̃B+ �̃B

†g+
†g+�̃B=1. �Note

that g+
† �g+

−1.� Thus we conclude that the gaplessness of the
spectrum of the 2D Dirac modes appearing at the surface of
3D topological insulators in AZ symmetry classes AIII, DIII,
and CI are robust against arbitrary static perturbations. The
location of the Dirac cones, however, might be shifted by the
gauge-type perturbations. �As we will discuss, the gapless-
ness of the same Dirac surface modes is also robust against
Anderson localization arising from random perturbations
�which break translational invariance� because of the pres-
ence of WZW terms.�

We note that, on the other hand, it is also easy to see that
for all other classes except AII and CII, the 2D surface

modes have in general a massive spectrum. To see this, take
V+=A+=A−=0 and consider the Hamiltonian

H = kx�x + ky�y + V−�z. �42�

The potential V− can be diagonalized by a unitary matrix
U, V−→U†V−U¬�=diag��n�, and H→kx�x+ky�y +��z;

hence the eigenvalues are En�kx ,ky�= ��kx
2+ky

2+�n
2.

In contrast, for classes AII and CII, the potential V− sat-
isfies

V− = − V−
T . �43�

This guarantees that the corresponding Dirac Hamiltonian
has at least one zero eigenvalue when the dimensionality of
V− is odd. We thus cannot completely gap out the spectrum
by V−.

V. 3D DIRAC HAMILTONIANS

The purpose of this section is to construct examples of 3D
topological insulators in the continuum, one for each of the
five classes AII, DIII, AIII, CI, and CII. The examples we
give are continuum 3D Dirac Hamiltonians perturbed by a
mass term of some sort. For these examples we will compute
the winding number � introduced in Eq. �36� and explicitly
derive the surface Dirac modes, thereby illustrating the
above-mentioned connection between the topological prop-
erties of the bulk and the existence of stable, massless sur-
face states. The Dirac Hamiltonians with the minimal num-
ber of components have four components for classes AII,
DIII, and AIII, whereas the minimal number of components
is eight for classes CI and CII.

A. 3D four-component Dirac Hamiltonian

1. Hamiltonian and its symmetries

Let us consider the following four-component �3+1�D
massive Dirac Hamiltonian:

H = − i�	�	 + m�, 	 = x,y,z , �44�

where m�R and we use the standard �or Dirac� representa-
tion of the �3+1�D gamma matrices,

�	 = 
x � �	 = � 0 �	

�	 0
�, � = 
z = �1 0

0 − 1
� ,

�5 = 
x = �0 1

1 0
�, 	 = x,y,z . �45�

In momentum space,

H�k� = �	k	 + m� = � m k · �

k · � − m
� , �46�

and the energy spectrum is given by E�k�
= ��k2+m2

¬ ���k� �twofold degenerate for each k�.
At this stage, we have not yet identified the symmetry

class to which Dirac Hamiltonian �44� belongs. The interpre-
tation of the two gradings represented by a pair of standard
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Pauli matrices, �	 and 
	, needs to be specified. As we will
see, the four-component Dirac Hamiltonian �Eq. �44�� real-
izes topological insulators in classes AII, AIII, and DIII.

a. Class AII (symplectic). As discussed by Bernevig and
Chen,90 the 3D Dirac Hamiltonian �Eq. �46�� is a topological
insulator in class AII since it satisfies i�yH��k��−i�y�
=H�−k�, which we can interpret as a TRS for half-integer
spin.

b. Class DIII. In addition to TRS, the Dirac Hamiltonian
also satisfies PHS, 
y � �yH��k�
y � �y =−H�−k�. Since �
y

� �y�T=
y � �y, the 3D Dirac insulator �Eq. �44�� can be
thought of as a member of class DIII. It is possible to
unitary transform Hamiltonian �46� by H→diag��0 ,
−i�y�H diag��0 , + i�y�, yielding

H�k� = � m k · ��i�y�
�− i�y�k · � − m

� , �47�

such that the PHS takes on the canonical form displayed in
Eq. �7�. One can easily check that i�yH��k��−i�y�=H�−k�
and 
xH�k�
x=−H��−k�. This topological insulator �Eq. �47��
describes the fermionic BdG quasiparticles in the BW state
realized in the B phase of liquid 3He, for which the d vector
is parallel to the momentum, dk�k. The k dependence of the
single-particle dispersion �k of 3He �see Eqs. �13a�–�13c�� is
weaker around k=0 as compared to that of the d vector and
hence neglected. That is, the Dirac mass m here is given by
the minus of the chemical potential �F, m=�k=0=−�F.47

c. Class AIII. The 3D Dirac Hamiltonian �Eq. �44�� can
be viewed as an insulator in class AIII due to the �chiral�
symmetry37 
yH
y =−H. We can bring the 3D Dirac Hamil-
tonian �Eq. �44�� into block off-diagonal form by a rotation

y→
z, which transforms the Dirac mass term in Eq. �44�
into the chiral mass term,

H = − i�	�	 − i��5m, 	 = x,y,z . �48�

In momentum space,

H�k� = � 0 k · � − im

k · � + im 0
� . �49�

The chiral symmetry is imposed by �H�k��=−H�k�.

2. Wave functions, projector, and winding number

It is well known that the 2D two-component massive
Dirac Hamiltonian, HDirac

2D �kx ,ky�=kx�x+ky�y +m�z, is the
simplest example of a topological insulator in two
dimensions.88,91,92 It is an IQH insulator characterized by the
nontrivial Chern integer ��xy�, �xy =sgn�m� /2�e2 /h�. If
�kx ,ky ,m� is viewed as a set of parameters that can be
changed adiabatically, the 2D massive Dirac Hamiltonian is
nothing but the 2�2 Hamiltonian considered by Berry93

himself to illustrate the Abelian geometric �Berry� phase. As
described below, the 4�4 Dirac Hamiltonian �Eq. �46�� can
be thought of as a natural generalization of the 2�2 example
HDirac

2D �kx ,ky�, and exhibits a nontrivial non-Abelian Berry
phase.94–98

In particular, the two eigenfunctions of the Hamiltonian in
Eq. �46� at wave vector k with negative energy E�k�=−��k�
are given by

�u1�k�
 =
1

�2��� + m�

− k−

kz

0

� + m
� ,

�u2�k�
 =
1

�2��� + m�

− kz

− k+

� + m

0
� , �50�

whereas the eigenfunctions with positive energy E�k�
= +��k� are

�u3�k�
 =
1

�2��� − m�

k−

− kz

0

� − m
� ,

�u4�k�
 =
1

�2��� − m�

kz

k+

� − m

0
� , �51�

where k�=kx� iky. Note that if m�0, �u3,4�k�
 are not well
defined at ��k�=m �i.e., at k=0�.

Correspondingly, the projector �Q matrix� onto the lowest
two negative energy states is given by

Q�k� = 2P�k� − 1 =
− 1

�
�k	�	 + m�� . �52�

By using the chiral grading �see Eq. �48��, we can define the
q matrix for class AIII Dirac Hamiltonian �Eq. �49�� as

q�k� =
− 1

�
�k	�	 − im� . �53�

�Similarly, for the class DIII massive Dirac Hamiltonian in
Eq. �47�, the projector is given by q�k�= i�y�k	�	− im� /�,
which satisfies qT�−k�=q�k�, in the basis that makes the
Hamiltonian block off-diagonal as discussed in Eq. �12�.�
The winding number � �Eq. �36�� for the map represented by
q�k� from S3 to U�2� can be computed as

��q� =
1

2

m

�m�
. �54�

The appearance of a half-integer value for � is common to
the continuum descriptions and must be supplemented by
information about the structure of wave functions at high
energy �located away from the Dirac point in the BZ�. See,
e.g., the discussion of this issue by Haldane88 in the context
of the IQHE.

For the lower two occupied bands, we can introduce a
U�2� gauge field as99
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A	
âb̂�k�dk	 = �uâ�k��dub̂�k�
, â, b̂ = 1,2, �55�

which can be decomposed into U�1� �a0� and SU�2� �aj=x,y,z�
parts as

A	�k� = a	
0 �k�

�0

2i
+ a	

j �k�
� j

2i
. �56�

While the U�1� part is trivial, the SU�2� part is given by

aj
i�k� = − �ijl

kl

��� + m�
, �57�

where i=x ,y ,z and j , l=x ,y ,z. We have flipped the sign of
kx, kx→−kx, for notational convenience.

3. Boundary Dirac fermions

We have mentioned above that, quite generally, the non-
trivial topological properties of the bulk wave function mani-
fest themselves as a gapless surface state when we terminate
the 3D bulk sample by a 2D boundary. To see this explicitly,
let us take the mass term to be z dependent �m�0�,

m�z� → �+ m , z → + �

− m , z → − � ,
� �58�

and look for 2D Dirac fermion solutions localized at the
boundary z=0.49–54 For convenience, we take the following
representation of the massive 3D Dirac Hamiltonian in class
AIII: H=−i�	�	− i��5m�z�. The solution to the 3D Dirac
equation with energy E�k�� is

 �z� =

0

a�k��
b�k��

0
�exp�− �z

dz�m�z��� , �59�

where k�= �kx ,ky� and x�= �x ,y� represent the momentum
and coordinates along the surface, respectively, and a�k��
and b�k�� are obtained from the solution to the 2D Dirac
equation,

�a�k��
b�k��

� =
eik�·x�

�2
�ei arg k+

�1
� , �60�

with E�k��= ��kx
2+ky

2, respectively. Below, we will study
the stability of this gapless boundary 2D Dirac state against
the opening of a gap, by perturbing the Hamiltonian by static
and homogeneous potentials which respect the discrete sym-
metries defining the respective symmetry classes.

a. Classes AII and DIII. The gapless nature of the single
surface Dirac fermion is protected by TRS since the opening
of a gap would violate the Kramers theorem. Indeed, for
class AII, the only spatially homogeneous perturbation com-
patible with the TRS is a constant scalar potential V,

H = − i�	�	 + V, 	 = x,y , �61�

which is known not to open a gap. For class DIII, on the
other hand, even the scalar potential �chemical potential� V is
prohibited because of PHS.

The stability of the gapless nature of the single surface
Dirac fermion is guaranteed by the bulk Z2 invariant in the
symplectic symmetry class �class AII�.9–12 Although this pro-
tection of the gapless spectrum by the Z2 invariant also ex-
tends to a surface Dirac fermion �which is actually Majorana
because of PHS in the BdG equation� in class DIII when the
number of surface Dirac �Majorana� fermions is odd, it is
only the nontrivial winding number � in class DIII that guar-
antees the stability of an arbitrary number of gapless surface
Dirac �Majorana� fermions against perturbations �uniform
and random�.

b. Class AIII. A single flavor of 2D Dirac fermions in
class AIII can be perturbed by a static and homogeneous
vector potential:

H = − i�	�	 + A	�	, 	 = x,y . �62�

The vector potential perturbation shifts the location of the
node but does not open a gap.

Although there is a “hidden” TRS in class AIII, the sta-
bility of this single Dirac fermion �Eq. �62�� is not protected
by the Z2 invariant. This is so since in order to reveal the
TRS, we need to consider the full BdG Hamiltonian H4 in
Eq. �6�, rather than H2 defined in Eqs. �16� and �26�. In H4,
the number of flavors of the surface Dirac fermions is
counted as two and is not protected by the Z2 invariant.
Again, it is the winding number � that guarantees the stabil-
ity of an arbitrary number of flavors of gapless surface Dirac
fermions against perturbations.

B. 3D eight-component Dirac Hamiltonian

It turns out that in general we cannot have a �3+1�D
four-component Dirac Hamiltonian which is a member of
class CI/CII and which also possesses a gapless Dirac fer-
mion surface mode. We are thus led to consider a �3+1�D
eight-component Dirac Hamiltonian. �It is possible to con-
struct gapless four-component Dirac Hamiltonian in classes
CI and CII, but we cannot give a mass to them�.

1. Class CI

The massive 3D eight-component Dirac Hamiltonian

H = � 0 D

D† 0
�, D = i�y��k	�	 − im�5� , �63�

is a member of class CI since DT�k�=D�−k�. �See Eq. �25�.�
The energy spectrum at wave vector k is given by E�k�
= ��k2+m2= ���k�, where each eigenvalue is fourfold de-
generate.

The projector takes on block off-diagonal form and is
given by

Q�k� = 2P�k� − 1 = −
1

�
H�k� ,

q�k� = −
1

�
i�y��k	�	 − im�5� . �64�

The winding number can be computed as
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��q� =
1

2

m

�m�
� 2, �65�

which is twice as large as the winding number for the four-
component case. As before, this winding number should be
interpreted either m / �m��2 or 0, depending on the behavior
of the wave function at higher energy.

When we terminate the 3D Dirac insulator �Eq. �63��, by
a 2D boundary or by making the mass term z dependent as in
Eq. �58�, we find two flavors of surface Dirac fermions,

H = � 0 D

D† 0
� ,

D = i�y�k+ + Ax�x + Ay�y + Az�z� , �66�

where we have included perturbations Ax,y,z�C allowed
by class CI symmetries. One can easily check that DT�k�
=D�−k�. The gapless nature of this four-component Dirac
fermion is stable against arbitrary values of three complex
�six real� parameters Ax,y,z. Indeed, just like a vector potential
perturbation in class AIII, Ax,y,z shifts the location of the
Dirac node from �0,0� to �kx

0 ,ky
0�, where �kx

0 ,ky
0� is a solution

to

�kx
0�2 − �ky

0�2 − Re A2 + Im A2 = 0,

kx
0ky

0 + �Re A · Im A� = 0. �67�

2. Class CII

The eight-component 3D Dirac Hamiltonian

H = � 0 D

D† 0
�, D = k	�	 + m� = D†, �68�

is a member of class CII since i�yD
��k��−i�y�=D�−k�, and

has a gapped spectrum, E�k�= ��k2+m2. The projector Q
and q matrix are given by

Q�k� = 2P�k� − 1 = −
1

�
H�k� ,

q�k� = −
1

�
�k	�	 + m�� . �69�

Observe that, compared with the 3D Dirac insulator in
class CI �Eq. �63��, the mass term for the 3D Dirac insulator
in class CII �Eq. �68�� is given by the Dirac mass term �m��,
not by the chiral mass term �im�5�. Due to this difference,
the winding number vanished for the 3D Dirac Hamiltonian
in class CII �Eq. �68��:

��q� = 0. �70�

In spite of the vanishing of the winding number, we do
find two flavors of two-component Dirac fermions at the sur-
face of a 3D Dirac insulator in class CII �Eq. �68��, when
making the mass term z dependent as in Eq. �58�. In particu-
lar, consider the general form of the Dirac Hamiltonian on
the 2D surface,59,100

H = � 0 D

D† 0
� ,

D = � v+ k− + a

k+ − ā v+
� �

= �kx + iax��x + �ky + iay��y + Re v+�0 + i Im v+�z,

�71�

where the perturbations ax,y and v+ are the only ones allowed
by class CII symmetries. �We used the notation a=Re a
+ i Im a=ay + iax.� It turns out that the gapless nature of these
surface Dirac fermions is preserved by these perturbations.
To see this, consider the determinant of the Hamiltonian,

det�DD†� = ��v+�2 − �k+�2 + �a�2�2 − �āk− − ak+�2, �72�

which vanishes when

�k+�2 = �v+�2 + �a�2 and �kx,ky� � �ax,ay� . �73�

This shows that it is always possible to find a wave vector
�kx ,ky� for which the determinant and thus the energy eigen-
value vanish, proving the absence of a gap.

Therefore we conclude that the 3D Dirac insulator �Eq.
�68�� is a nontrivial topological insulator in class CII: it is
impossible to deform insulator �68� into a topologically
trivial insulator �an insulator without a stable surface state�
without closing the energy gap in the 3D bulk because the
existence of the gapless Dirac fermion surface modes plays
the role of a topological invariant. On the other hand, when
the number of flavors is twice an even integer, one can easily
find a perturbation that gives a mass gap to all surface Dirac
fermions.

VI. TOPOLOGICAL FIELD THEORY DESCRIPTION

In order to understand more intuitively the reason why
symmetry classes with a sublattice �chiral� symmetry
�classes AIII, DIII, and CI� possess stable gapless surface
Dirac fermion modes, we derive in this section a doubled
Chern-Simons field theory describing the 3D bulk insulator.
To this end we identify, following the spirit of Read and
Green,61 conserved charges of the action and introduce ex-
ternal gauge fields that couple minimally to these charges.
The gapped fermionic degrees of freedom in the 3D bulk are
then integrated out to derive the effective action of the gauge
fields. A similar procedure has also been discussed for
domain-wall fermions52 in lattice gauge theory, where a
�nondoubled� Chern-Simons theory can be derived for ��2n
−1�+1�D boundary fermions of the �2n+1�D bulk.101

As an example, let us take the class AIII Dirac insulator
�Eq. �48�� in three spatial dimensions. The generating func-
tion for the single-particle Green’s function can be written as
a fermionic functional integral,

Z =� D��†,��e−S,
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S = i� d3x�†�H − i��� . �74�

Here, note that we are using a three-dimensional �Euclidean�
action, instead of a �3+1�-dimensional one �compare, e.g.,
with Ref. 16� since we are focusing on single-particle
Green’s functions in the absence of interactions. A finite
level-broadening term ��0 is necessary to regularize delta
functions appearing in the single-particle Green’s function.

The action enjoys a �electromagnetic� U�1� symmetry,

�† → �†e+i!, � → e−i!� , �75�

where !�R. Due to the sublattice �or chiral� symmetry,
�H�=−H, the functional integral possesses the additional
symmetry

�† → �†e+i�!, � → e+i�!� �76�

when �=0. A finite level-broadening term � spoils this sym-
metry. Instead of adding a level-broadening term, however,
regularization of the functional integral can also be achieved,
alternatively, by attaching ideal leads �or perfect absorbers�
respecting the chiral symmetry to the sample.

We now proceed to derive the Chern-Simons theory. Cor-
responding to the two continuous symmetries discussed
above, we couple two U�1� gauge fields a	 and b	 to the
fermions,

S =� d3x�̄��” − ia” − i�0b” + m�5�� , �77�

where we have introduced the abbreviations �̄=�†�, �0=�,
�k=��k, and a”ª�	a	. While the external U�1� gauge field
a	, associated with the global U�1� symmetry of Eq. �75�
couples to the electromagnetic current, the external “axial”
gauge field b	 detects the sublattice-resolved current, as it is
associated with the global U�1� symmetry transformation de-
fined in Eq. �76�, where equal and opposite U�1� transforma-
tions are performed on the two sublattices A and B of the
underlying bipartite lattice.

To be more general, we discuss the case of N replicas of
the above 3D Dirac fermions, and couple them minimally
with two U�N� gauge fields, a	=a	

a Ta and b	=b	
a Ta, with the

generators Ta. The use of replicas is a convenient method for
computing disorder averaged physical quantities in the pres-
ence of random impurities. Since we only intend to give a
schematic derivation of the doubled Chern-Simons theory,
we do not add any explicit disorder potential.

We now integrate out the fermions and derive the effec-
tive action for the gauge fields a	 and b	,

� D��̄,��e−S = e−Seff�a	,b	�, �78�

by a derivative expansion

Seff = − Tr ln�G0
−1 − V� = − Tr ln G0

−1 + 	
n=1

�
1

n
Tr�G0V�n,

�79�

where G0 denotes the propagator of free 3D Dirac fermions,
which is given in momentum space by

G0�k� = −
ik” + m�5

k2 + m2 , �80�

while

V�q� = − ia”	�q� − i�0b”	�q� . �81�

Introducing the linear combinations

A	
� = a	 � b	, �82�

the resultant effective action, to leading order in the deriva-
tive expansion, takes the form of a �Euclidean� doubled
Chern-Simons theory,

Seff =
1

2

m

�m�
�I�A+� − I�A−�� + div,

I�A� =
− i

4�
� d3x�	�� tr�A	��A� +

2i

3
A	A�A�� , �83�

where “div” represents an ultraviolet �UV� linearly divergent
piece. This divergence is closely related to the appearance of
the half-integer coefficient of the Chern-Simons term,
sgn�m��1 /2: the action �sgn�m�I�A� /2 is not gauge invari-
ant by itself. �See also the discussion below Eq. �54�.�

Introducing a gauge-invariant regulator, such as the Pauli-
Villars �PV� regularization, cures both the UV divergence
and the half-integer coefficient.102,103 Here, note that since
there is no chiral anomaly in three dimensions, the functional
integral can be regularized without breaking the two U�N�
gauge symmetries, although the parity symmetry can be de-
stroyed by the regularization. In the Pauli-Villars regulariza-
tion, we define the physical, divergence-free effective action
Seff

PV as

Seff
PV = Seff�0� − lim

M2→�

Seff�M� , �84�

where Seff�M� represents the effective action in the presence
of two massive Dirac particles: the original particle with the
mass m and another one with mass M, which we take to
infinity �M2→��. Here, the second particle �which is
bosonic� might be interpreted as supplementing the missing
information far away from the Dirac point discussed around
Eq. �54�. The coefficient of the Chern-Simons terms I�A+�
and I�A−� in Seff

PV, which is �1 /2��m / �m�−M / �M�� instead of
�1 /2�m / �m�, depends on the sign of the regulator mass M:
when sgn�M�=−sgn�m�, this coefficient equals sgn�m�,
whereas it vanishes when sgn�M�= +sgn�m�. These two
cases represent the topological nontrivial and trivial phases,
respectively.

Once we have established the appearance of the doubled
Chern-Simons term for the resulting 3D bulk theory, we con-
clude that the surface degrees of freedom, which appear
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when the 3D bulk is terminated by a 2D surface, are de-
scribed by the two-dimensional U�N� Wess-Zumino-Witten
�WZW� theory at level k=1. The WZW theory is well known
to be gapless and to possess both holomorphic and antiholo-
morphic sectors.104 Thus, the U�N��U�N� symmetry of the
gapped 3D bulk theory, which represents two independent
transformations for each sublattice, turns into the two inde-
pendent holomorphic and antiholomorphic U�N� gauge sym-
metries of the WZW theory describing the resulting degrees
of freedom at the surface. An entirely analogous discussion
can be carried through for the 3D topological insulators in
symmetry classes DIII and CI, for which the relevant gauge
groups appearing in the gapless WZW theory at the 2D sur-
face are O�2N� and Sp�N�, respectively.

VII. MANY-BODY ASPECTS OF 3D TOPOLOGICAL
SUPERCONDUCTORS

Up to now, we have treated the three-dimensional super-
conductors at the mean-field level of pairing �where the gap
function 
 is “frozen” to be a constant, i.e., frequency inde-
pendent�: we have focused solely on the dynamics of the
fermionic BdG quasiparticles, existing deep within the super-
conducting state. In the full description of superconductivity,
however, the gap function 
, together with the electromag-
netic U�1� gauge field, have to be regarded as dynamical
entities. Once we employ this full description, the supercon-
ductors of interest in this paper should be regarded as topo-
logical phases with nontrivial ground-state degeneracy �and
charge fractionalization�.63,65 �Specifically, while the BdG
quasiparticle sector of the B phase 3He is a topological Dirac
insulator in class DIII �as discussed in Eq. �47��, the B phase
of liquid 3He is in reality not a 3D topological phase, as it
supports gapless Nambu-Goldstone bosons.�

A. Many-body wave function in real space

Let us first take a closer look at the many-body ground-
state wave function of the three-dimensional class DIII Dirac
insulator �see, e.g., Eq. �47��. In a triplet superconductor, the
BCS ground state �BCS
 projected onto a space of fixed elec-
tron number N, �x1 ,�1 ;x2 ,�2 ; . . . ;xN ,�N
 �where �i repre-
sents spin coordinate�, is given by the wave function

 �x1,�1;x2,�2; . . . ;xN,�N� ª �x1,�1;x2,�2; . . . ;xN,�N�BCS


= Pf�g�xi,�i;xj,� j�� , �85�

where Pf denotes the Pfaffian of the matrix gi,j
ªg�xi ,�i ;xj ,� j�.61 The Fourier transform of g�x ,� ,y ,
�
=g�
�x−y� as obtained from Eqs. �50� and �51� reads

g�k� = �− � + m�
�k · ��i�y

2k2 . �86�

Noting that ��k�=�k2+m2→ �m�+ �k�2 / �2�m��+¯ in the
long-wavelength limit, k→0, the expression in Eq. �86�
takes in that limit the form

g�k� � �−
�k · ��i�y

4�m�
, m � 0

− �m�
�k · ��i�y

k2 , m � 0.� �87�

Correspondingly, the real-space wave function g�r�
= �2��−3�d3keik·rg�k� takes at long scales the following form:

g�r� � �
�	i�y

4�m�
i�	��3��r� , m � 0

− �m�
�i� · r��i�y�

4�r3 , m � 0.� �88�

This behavior is similar to the strong- and weak-pairing
phases of the �2+1�-dimensional chiral p-wave
superconductor.61 In one phase, the strong-pairing phase �m
�0�, the wave function g�r� of a pair is short ranged,
whereas in the other, the weak-pairing phase �m�0�, g�r�
exhibits a power-law behavior and is given by the correlation
function of the two-component massless 3D Dirac fermion.
Thus, in the weak-pairing phase, the many-body ground-state
wave function behaves at large scales as

 �x1,�1;x2,�2; . . . ;xN,�N� � Pf� �� · �xi − xj�i�y��i�j

�xi − xj�3
� .

�89�

Observe that this is nothing but the multipoint correlation
function of a �simple� 3D conformal field theory, namely, the
3D free Majorana fermion quantum field theory defined by
the partition function

Z =� D��̄,��exp�−� d3xL�, L = �̄�	�	� , �90�

where � is a two-component Grassmann variable with the

Majorana condition �̄=�Ti�y, and 	=x ,y ,z. This is analo-
gous to the Moore-Read Pfaffian wave function, which is
given by the multipoint correlation function of the 2D Ising
conformal field theory �free Majorana fermion field theory�.

B. Ground-state degeneracy

With both the pairing potential 
 and the U�1� gauge field
being frozen, there is a unique ground state in both the
strong- and weak-pairing phases. We now include quantum
fluctuations of 
 and the U�1� gauge field. One consequence
of the inclusion of these as dynamical degrees of freedom is
the appearance of a nontrivial ground-state degeneracy. The
counting of ground states in each phase is completely paral-
lel to the case of the Moore-Read Pfaffian state as we will
see below.

To count the ground-state degeneracy on the three-torus
T3, we consider periodic or antiperiodic boundary conditions
�BCs� along the three cycles in the x, y, and z directions. We
denote sectors with different BCs by �"x , "y , "z�, where "	

=� represents periodic/antiperiodic BC. Following the argu-
ment by Read and Green,61 we notice that the state with k
=0 is allowed only for the �+, + ,+� sector, and it is occupied
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in the weak-pairing phase, whereas it is unoccupied in the
strong-pairing phase.

In the strong-pairing phase, different boundary conditions
lead to 23 degenerate ground states, and all of them have an
even number of fermions. On the other hand, in the weak-
pairing phase, the ground state for the boundary-condition
sector �+, + ,+� has an odd number of particles because of an
additional occupied state at k=0. Thus, the ground-state de-
generacy for an even number of fermions is 23−1=7,
whereas there is a unique ground state for an odd number of
fermions. This should be contrasted with the ground-state
degeneracy of 23 present in the 3D Abelian Higgs model
which can be described by a �3+1�D BF topological field
theory.63 It is unclear what kind of bulk topological field
theory can describe the weak-pairing phase, as it has fermi-
onic excitations at boundaries, unlike the bosonic boundary
excitations in the strong-pairing phase described by the BF
topological field theory.

The smaller topological degeneracy in the weak-pairing
phase can also be understood in terms of the “blocking
mechanism” introduced in Ref. 65. The smaller topological
degeneracy in the Moore-Read Pfaffian state happens be-
cause a vortex-antivortex excitation carries a Majorana fer-
mion at the core. In a topological phase, a different ground
state, starting from a given ground state, can be generated by
first creating a particle-antiparticle pair out of the ground
state, then moving around the quasiparticle along a homo-
topically nontrivial cycle, and finally pair annihilating the
pairs. If the quasiparticle accommodates a Majorana fermion,
however, the last step of the above procedure, which is pair
annihilation, might not be possible �it might be “blocked”�.
In the 3D Pfaffian state, we have vortex lines, instead of
vortices, which do support Majorana fermion
modes.47,49,105,106 Thus, we expect that a similar blocking
mechanism should apply.

We now briefly discuss the effects of interparticle interac-
tions. Since short-range interactions are irrelevant by power
counting for free Dirac fermions in �2+1� dimensions, we
would expect the gapless fermionic surface modes in the
weak-pairing phase to be stable against the formation of a
gap, up to, possibly, some critical interaction strength �cer-
tainly when random disorder potentials are not simulta-
neously present�. This should be contrasted with the surface
states in the strong-pairing phase, which are generically
gapped as we can see, for example, from the BF topological
field theory.62–64 This should also be compared with the sur-
face states of three-dimensional Z2 topological insulators in
the symplectic class �AII�, which are unstable against the
BCS pairing instability because there is a finite Fermi surface
�circle�, i.e., finite density of states, within the surface Bril-
louin zone, for a general value of the chemical potential.

VIII. DISCUSSION

In this paper, we have undertaken the program of classi-
fying possible phases of topological insulators and supercon-
ductors in three spatial dimensions. Our results have their
root in the very general classification scheme for random
matrices obtained by Zirnbauer37 and Altland and Zirn-

bauer38 �AZ� more than a decade ago, resulting in ten such
classes which extend the well-known three Wigner-Dyson
classes. Guided by the lessons learned from the Z2 topologi-
cal insulator discussed by Kane and co-workers7,11,12 and
others,9,10 which belongs to the symplectic �spin-orbit� sym-
metry class �AII� in the AZ-classification scheme,37,38 we
have asked if two quantum ground states in a given symme-
try class can be continuously deformed into each other while
keeping the discrete symmetries defining the symmetry class
intact. Specifically, we have shown that, in addition to the
three-dimensional Z2 topological insulators, there exist 3D
topological insulators possessing the symmetries of four ad-
ditional random matrix classes denoted by AIII, DIII, CI, and
CII in the work of AZ, all of which support stable gapless
Dirac fermion surface modes �Majorana fermion surface
modes for class DIII�. In particular, we find that the topologi-
cal properties of the bulk wave functions in the three sym-
metry classes AIII, DIII, and CI are characterized by an in-
tegral winding number, while the bulk characteristics of
topological insulators in class CII can be described by a Z2
number, akin to the well studied topological insulator in the
symplectic symmetry class AII.

A. Topological bulk characteristics and Anderson
delocalization at the boundary

Another lesson learned from the Z2 topological insulator
is the intimate connection between the topological character-
istics of the clean �no disorder or impurities� system in the
3D bulk and the Anderson localization physics occurring,
due to disorder, at two-dimensional boundaries of such a
system: the surface of a three-dimensional Z2 topological in-
sulator is a perfect metal �Z2 topological metal� in the pres-
ence of disorder which respects the TRS. This can be under-
stood in terms of the field-theoretical framework of
Anderson localization.107,108 The fermionic replica nonlinear
� model �NL�M� describing quantum transport in the corre-
sponding symplectic �Wigner-Dyson� symmetry class pos-
sesses the coset space O�4N� /O�2N��O�2N� as target space
�N is the number of replicas�. Because the homotopy group
�2�O�4N� /O�2N��O�2N��=Z2, a Z2 topological term is al-
lowed in the action of this NL�M, and this term is indeed
realized at a surface of 3D Z2 topological insulators. It is the
Z2 topological term that is responsible for the lack of local-
ization and the metallic behavior at the surface.21,24–27

A key result of the present paper is a generalization of
these properties of the 3D Z2 topological insulator to topo-
logical insulators belonging to the above-mentioned four
symmetry classes AIII, DIII, CI, and CII. For three of these
four classes, namely, for AIII, DIII, and CI, which describe
the dynamics of quasiparticles within certain superconduct-
ors, the corresponding NL�M describing Anderson localiza-
tion at the surface of the 3D bulk is the principal chiral
model �PCM� on the groups U�N�, O�2N�, and Sp�N�, re-
spectively, supplemented by a WZW term. For class CII, the
corresponding NL�M is defined on the coset space
U�2N� /O�2N�, which allows for a Z2 topological term since
the homotopy group of this space is �2�U�2N� /O�2N��=Z2.
Table III summarizes the target spaces of the corresponding
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fermionic replica NL�Ms, as well as possible 2D topological
or WZW terms. �See, e.g., Refs. 76 and 77.� The NL�Ms
living on the surface of the 3D bulk “remember” the non-
trivial topological characteristics of the bulk through the
presence of either a WZW or a Z2 topological term.109 Due to
these WZW or topological terms, the quantum states existing
at the surface of the 3D topological bulk are gapless and their
gaplessness is protected against �Anderson� localization by
random potentials respecting the discrete symmetries. We
thus conclude that surfaces of 3D topological insulators with
a TRS are always �“topologically”� delocalized. �For sublat-
tice and superconducting classes, the corresponding gapless
states at the surface are semimetal-like �with conductivities
of order unity in natural units; see Sec. VIII C�, unlike the
surface states of Z2 topological insulators, which are perfect
metals.�

B. Topological insulators in one and two spatial dimensions

This correspondence between nontrivial topological char-
acteristics of an insulator in the bulk and the lack of Ander-
son localization due to random impurities at the boundary
also applies to 2D topological insulators and their 1D edge
modes at boundaries. In quasi-one dimension, Anderson lo-
calization problems can be well described by the Dorokhov-
Mello-Pereyra-Kumar �DMPK� equations, which is a
Fokker-Planck equation describing the distribution of the ei-
genvalues of transfer matrices of the quasi-1D wire as a
function of the wire length. The ensembles of transfer matri-
ces can be systematically enumerated, and there are 12 pos-
sible DMPK equations.110,111 �See Table IV.� The extra two
cases which appear here, in addition to the ten AZ symmetry
classes, cannot be realized as a quasi-1D tight-binding �lat-
tice� model, but can only be realized at the �one-dimensional�
boundary of 2D topological insulators. One of these two
cases is the symplectic symmetry class �AII�,19,20 which can

be realized, for example, at the edge of the 2D Kane-Mele
model. The other is in class DIII �Ref. 112� and can be real-
ized, for example, at the edge of the equal superposition of
two chiral p-wave superconductors with opposite chiralities
��p+ ip� and �p− ip� waves�, in two spatial dimensions.69–72

In classes A �unitary�, D, and C, the DMPK equation de-
pends on two integers p and q, representing the number of
left- and right-moving channels, respectively. When the
numbers of left- and right-moving channels are not equal
�p�q�, i.e., when the quasi-1D system is chiral, the corre-
sponding Anderson localization problem can only be realized
at an edge of a 2D topological insulator. Specifically, in class
A this topologically nontrivial 2D quantum ground state is
commonly known as the IQHE, in class D it is the thermal
quantum Hall effect in superconductors,61,113 and in class C
the spin quantum Hall effect in superconductors.73,114

Finally, a similar correspondence exists also between one-
dimensional topological insulators and their zero-
dimensional edges, where disorder effects can be discussed
in terms of random matrix theories �RMTs�. Following
Ivanov,115 five out of ten AZ classes, DIII, D, AIII, BDI, and
CII, allow random matrix ensembles with exact zero eigen-
value�s� or “zero modes.” �See Table V.� This in turn sug-
gests the existence of one-dimensional topological insulators
in these classes.116 To summarize, we have listed all topo-
logical insulators as a function of symmetry and spatial di-
mension in Table I. The labels Z and Z2 used in this table
indicate whether the different topological sectors can be la-
beled by an integer or a Z2 quantity, respectively.

C. Experimental implications

The topological insulators discussed in this paper can be
realized in nature: as explained in Sec. VII, the fermionic
sector of the quasiparticles in the B phase of liquid 3He is an
example of the topological insulator in the superconductor

TABLE IV. This table lists the space of ensembles of �the radial coordinates of� transfer matrices for
quasi-one-dimensional disordered quantum wires for each AZ class �Ref. 111�. Five of these ensembles of
transfer matrices describe localization properties of an edge of a two-dimensional topological insulator or
superconductor �SC�. The conventional name of these five two-dimensional topological insulators �2D top.
ins.� is given in the third column. The last column lists some possible physical realizations of these topo-
logical insulators.

AZ class Space of transfer matrices 2D top. ins. Possible physical realization

A U�p ,q� /U�p��U�q� IQHE �p�q� GaAs/AlGaAs

AI Sp�N ,R� /U�N�
AII �even� SO��4N� /U�2N�
AII �odd� SO��4N+2� /U�2N+1� Z2 top. ins. �QSHE� HgTe/�Hg,Cd�Te

AIII GL�N ,C� /U�N�
BDI GL�N ,R� /O�N�
CII GL�N ,H� /Sp�N��U��2N� /Sp�N�
D SO0�p ,q� /SO�p��SO�q� Thermal QHE �p�q� Spinless chiral p-wave SC

C Sp�p ,q� /Sp�p��Sp�q� Spin QHE �p�q� �d� id�-wave SC

DIII �even� SO�2N ,C� /SO�2N�
DIII �odd� SO�2N+1,C� /SO�2N+1� Z2 top. SC �p+ ip�� �p− ip�-wave SC

CI Sp�N ,C� /Sp�N�
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class DIII. Also, an unconventional superconductor in a
heavy-fermion compound, say, could be a possible realiza-
tion of a 3D topological phase, possessing, e.g., a nontrivial
ground-state degeneracy. Another arena where these 3D
quantum states with exotic topological characteristics may be
realized experimentally is that of cold atom systems �tunable
via the p-wave Feshbach resonance�. �The realization of a
2D topological phase �the Moore-Read Pfaffian state or chi-
ral 2D p-wave superconductor� in cold atom systems was
recently discussed in Refs. 117 and 118.� Unlike the B phase
of liquid 3He, such a realization might allow us to go back
and forth between the weak- and strong-pairing phases of the
topological insulators by detuning. Last but not the least,
strong correlations among electrons �or spins� might sponta-
neously give rise to these topological phases,119 by forming a
nontrivial band structure for fermionic excitations �e.g.,
spinons�, which can be explored by, e.g., slave-particle
mean-field theories of a spin liquid.120

One of the direct signatures of the nontrivial topological
characteristics of the quantum state in the three-dimensional
bulk is the appearance of gapless relativistic fermion modes
at surfaces terminating the bulk, which are stable against
interactions and against disorder. It should be possible to
detect these surface states using various experimental probes,
such as tunneling/scanning tunneling microscopy probes, and
especially angle-resolved photoemission spectroscopy as al-
ready done successfully in the bismuth-antimony alloys.35

Of particular interest are transport measurements, as the
3D topological insulators always possess delocalized gapless

modes propagating at their surface, even in the presence of
disorder. For the 3D Z2 topological insulators such surface
modes �in the symplectic symmetry class� are predicted to be
a perfect metal.25,27 Hence electrical transport measurements
can be used to determine if a specific insulating material is a
Z2 topological insulator or not, which is a test independent
of, say, photoemission experiments, in which one counts the
number of surface Dirac fermion flavors.

We suggest that for the superconducting classes DIII,
AIII, and CI, it would be interesting to measure either spin
transport �for spin conserving symmetry classes, AIII and CI�
or thermal transport �for all three classes� properties of the
gapless delocalized surface modes. The spin conductivity
��xx

spin� or the thermal conductivity divided by temperature
�#xx /T� is, in the absence of disorder, of order unity �in natu-
ral units� because of the vanishing density of states at zero
energy: when the Dirac cone is isotropic �i.e., the Fermi ve-
locity is the same in all directions�, the spin conductivity in
classes AIII and CI is given92 by �xx

spin=1 /��s2 /h per Dirac
fermion, where s=1 /2 is the spin “charge” carried by quasi-
particles. The thermal conductivity is then given by #xx /T
=4�2 / �3�xx

spin� valid for all the three classes AIII, DIII, and
CI �where for classes AIII, and CI this represents the
Wiedemann-Franz law�. For each surface Majorana fermion
in class DIII, the thermal conductivity is half the value ob-
tained for a single Dirac fermion, and the contributions from
several flavors are additive.

The values for these transport coefficients are completely
robust against disorder. This can be directly observed for the
case of minimal number of surface Dirac fermions: Eq. �61�
with V=0 for class DIII, Eq. �62� for class AIII, and Eq. �66�
for class CI. For class DIII, there is simply no disorder po-
tential allowed by symmetries. While, as discussed, for the
minimal number of surface fermion modes gauge-type ran-
domness is possible in class AIII �random U�1� gauge field�
and class CI �random SU�2� gauge field�, it is known that
such randomness does not affect the transport coeffi-
cient.92,121–123 Thus, at the surface of the 3D topological in-
sulators in classes DIII, AIII, and CI, the transport coeffi-
cients �spin and thermal conductivities� are temperature in-
dependent and universal.
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TABLE V. This table lists the space of ensembles of random
matrices for zero-dimensional disordered quantum systems for each
AZ class �Ref. 111�. According to Ref. 115, five of these ensembles
of random matrices describe localization properties at a �zero-
dimensional� boundary of a one-dimensional topological insulator
�1D top. ins.�.

AZ class Space of Hamiltonians 1D top. ins.

A U�N��U�N� /U�N� -

AI U�N� /O�N� -

AII U�2N� /Sp�N� -

AIII U�p+q� /U�p��U�q� Z
BDI SO�p+q� /SO�p��SO�q� Z
CII Sp�p+q� /Sp�p��Sp�q� Z

D �even� SO�N��SO�N� /SO�N� -

D �odd� �“B”� SO�2N+1� Z2

C Sp�N��Sp�N� /Sp�N� -

DIII �even� SO�2N� /U�N� -

DIII �odd� SO�4N+2� /U�2N+1� Z2

CI Sp�N� /U�N� -
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