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Multifractal analysis of the metal-insulator transition in the three-dimensional Anderson model.
I. Symmetry relation under typical averaging
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The multifractality of the critical eigenstate at the metal to insulator transition (MIT) in the three-
dimensional Anderson model of localization is characterized by its associated singularity spectrum f(a).
Recent works in one-dimensional and two-dimensional critical systems have suggested an exact-symmetry
relation in f(«). Here we show the validity of the symmetry at the Anderson MIT with high numerical accuracy
and for very large system sizes. We discuss the necessary statistical analysis that supports this conclusion. We
have obtained the f(«) from the box-size and system-size scalings of the typical average of the generalized
inverse participation ratios. We show that the best symmetry in f(«) for typical averaging is achieved by
system-size scaling, following a strategy that emphasizes using larger system sizes even if this necessitates

fewer disorder realizations.
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I. INTRODUCTION

The Anderson model of localization has been a subject of
intense analytical' and numerical*~® studies for decades.
Anderson' in his seminal paper had demonstrated that at ab-
solute zero temperature and in the absence of external fields
and electron-electron interactions, a sufficiently strong disor-
der can drive a transition from a metallic to an insulating
state (MIT). The scaling theory of localization® has shown
that such a transition arises generically for systems with di-
mension d>2.

A characteristic feature of this critical transition is the
strong multifractality of its wave-function amplitudes.” !
The critical eigenstate being neither extended nor localized
reveals large fluctuations of wave-function amplitudes at all
length scales. The characterization of multifractality is most
often given in terms of the singularity spectrum f(«). It can
be computed from the gth moments of the inverse participa-
tion ratio P, which defines the scaling behavior of P,
a\4@=D*A¢ with length N.'> The anomalous exponents A,
determine the scale dependence of the wave-function
correlations'? and separate the critical point from the metallic
phase (for which A =0). By carrying out such a multifractal
analysis (MFA) (Refs. 12, 14, and 15) various critical prop-
erties can be obtained such as the critical disorder W,,'® the
position of the mobility edges, and the disorder-energy phase
diagram,!” as well as the critical exponents of the localiza-
tion length.'8-20

From an analytical viewpoint not much is known about
the singularity spectrum. An approximate expression can be
obtained in the regime of weak multifractality, i.e., when the
critical point is close to a metallic behavior. This applies to
the Anderson transition in d=2+ € dimensions with €<1. In
this case a parabolic dependence of the spectrum is found as
fla)=d-[a—(d+€)]*/4€?" which in turn implies A,
=—¢€q(q—1). Although the parabolic approximation has
turned out to be exact for some models,? its validity, in
particular for the integer quantum Hall transition, is currently
under an intense debate®® due to the implications that this
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result has upon the critical theories describing the transition.

It is only in the thermodynamic limit where a true critical
point exists, and hence the true critical f(@) can be obtained.
Since the numerical characterization of the multifractal prop-
erties of |¢/{? at the MIT can only be obtained from finite-size
states, one therefore has to consider averages over different
realizations of the disorder. Due to the nature of the distribu-
tion of P,,*** one would normally take the typical average
which is exactly the geometric average of the moments of P,
over all contributions. The use of typical averaging for the
MFA has been successfully implemented in various
studies 8141517

Remarkably, it was recently argued that an exact-
symmetry relation should hold for the anomalous scaling
exponents,?6

A=A, (1)
which for the singularity spectrum is translated into,
fQd-a)=fla)+d- a. (2)

This relation implies that the singularity strength o must be
contained in the interval [0,2d] and that the values of f(a)
for «<<d can be mapped to the values for a>d and vice
versa. We note that the parabolic f(«) (Ref. 21) is in perfect
agreement with this form of the singularity spectrum pro-
vided that f(«) is indeed terminated at zero and 2d. Numeri-
cal calculations have since then supported this symmetry in
f(@) in the one-dimensional (1D) power-law random-
banded-matrix model®® and the two-dimensional Anderson
transition in the spin-orbit symmetry class.!®?” In the present
work we numerically verify that this symmetry in the singu-
larity spectrum also holds in the three-dimensional (3D)
Anderson model. In order to address this hypothesis with
sufficient accuracy, we have considered the box-size (BS)
and system-size (SS) scalings of the typical average of P, in
computing the f(a). We discuss which numerical strategy
will produce the best possible agreement with the symmetry,
and we highlight the statistical analysis that must be used to
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observe the reported symmetries with sufficient confidence.
In a related publication, we also address this problem using
the ensemble-averaged approach?® and the reader may wish
to compare both articles for a more complete picture of the
MFA at the Anderson transition.

II. MODEL AND ITS NUMERICAL DIAGONALIZATION

We use the tight-binding Anderson Hamiltonian in lattice
site basis as given by

H= E eili)i| + 2 1,00

i#j

, (3)

where site i=(x,y,z) is the position of an electron in a cubic
lattice of volume V=L3, ¢, ; are nearest-neighbor hopping am-
plitudes, and ¢; is the random site potential energy. We con-
sider &; to have a box probability distribution in the interval
[-W./2,W./2], where W, is taken to be the strength of the
critical value of the disorder. We assume W,.=16.5, above
which all eigenstates are localized.?®-3? Furthermore the hop-
ping amplitude is taken to be r=1 and periodic boundary
conditions are used to minimize boundary effects.

The L*X L? Hamiltonian is diagonalized using the JAD-
AMILU package®® which is a Jacobi-Davidson implementa-
tion with an integrated solver based on the
incomplete-LU-factorization package (ILUPACK).>*3% We
have considered eigenstates =2;¢;|i) only in the vicinity of
the band center E=0, taking about five eigenstates in a small
energy window at E=0 for any given realization of disorder.
A list of the number of states and the size of ¢; used for each
L is given in Table I. For computing the singularity spectrum
using the so-called box-size scaling approach (see Sec. IV),
the largest system size we used is L=240 with 95 eigen-
states. This translates into 1.3 X 10° values of wave-function
amplitudes ;. For the system-size scaling, we used all sys-
tem sizes in Table 1. A critical eigenstate for L=240 is shown
in Fig. 1.

III. MULTIFRACTAL ANALYSIS
A. Basic definitions

Let |14* be the value at the ith site of a normalized elec-
tronic wave function in a discretized d-dimensional system
with volume LY. If we cover the system with N, boxes of
linear size [, the probability to find the electron in the kth box
is simply given by

ld

wll) = 2 |4
i=1

2

5 k=1,...,Nl. (4)

The w;(l) constitutes a normalized measure for which we can
define the gth moment as

N
P(1) =2 pl(l). (5)
k=1

The moments P, can be considered as the generalized
inverse-participation ratios (gIPR) for the integrated measure
(D), reducing to the wave function itself in the case /=1 (in
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TABLE 1. The linear system size L, corresponding volume V,
the number of samples taken, and correspondingly the total number
of wave-function amplitudes ¢; evaluated. All eigenstates are at the
critical MIT for which W,.=16.5 and correspond to the five eigen-
values closest to the band center. The diagonalization of the matrix
was computed on an SGI ALTIX 3700BX2 where for L=240 it took
approximately 24 h and requires ~24 GB of memory to obtain five
eigenstates for one disorder realization.

L v=L3 Samples W

20 8 X 103 24 995 2% 108
30 9% 103 25025 6.8 X 108
40 6.4%10* 25025 1.6x10°
50 1.3%x10° 25 030 3.1x10°
60 22%10° 25 030 54x%10°
70 3.4X%10° 24 950 8.6 10°
80 5.1%x10° 25 003 1.3%x 1010
90 7.3%10° 25 005 1.8x 1010
100 1% 10° 25 030 2.5% 1010
140 27X 100 105 2.9x%108
160 4.1%10° 125 5.1x108
180 5.8%10° 100 5.8 108
200 8 X 10° 100 8 X 108
210 9.3%10° 105 9.7x 108
240 1.4%x 107 95 1.3x10°

units of the lattice spacing) and to the usual IPR P, for ¢
=2. The general assumption underlying multifractality is that
within a certain range of values for the ratio N=1[/L, the
moments P, show a power-law behavior indicating the ab-

q
sence of length scales in the system,'?

P,(\) N9, (6)
The mass exponent 7(q) is defined as
d(g-1)  for metals
(q) =10 for insulators (7)
D,(q—-1) at the MIT.

The g dependence of the so-called generalized fractal dimen-
sions D, and therefore a nonlinear behavior of 7(g), is an
indication of multifractality. D, is a monotonically decreas-
ing positive function of ¢ and D, is equal to the dimension of
the support of the measure. At criticality, 7(g) can also be
parametrized as 7(q)=d(g—1)+4,, where A, are the anoma-
lous scaling exponents characterizing the critical point.'3 The
singularity spectrum f(«) is obtained from the 7(q) expo-
nents via a Legendre transformation,

d(q) ,
a,= d—q" =f'(a), (8a)
fe=May) =a,q-1q). (8b)

Here, f(a) denotes the fractal dimension of the set of points
where the wave-function intensity is |¢]>~ L™, which is in
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FIG. 1. Multifractal eigenstate for the 3D Anderson model at
E=0 and W.=16.5 for linear system size L=240 with periodic
boundary conditions. The 410 075 sites with probability |¢|* twice
larger than the average 1/L3 are shown as boxes with volume
|oL>. The 26 097 boxes with |4,2L*>211000 are plotted with
black edges. The color/grayscale distinguishes between different
slices of the system along the axis into the page.

our discrete system the number of such points N, scales as
1@ 35

The singularity spectrum f(«) is a convex function of «,
and it has its maximum at a,=d, where f(ay)=d. For a; we
have f(a;)=a; and f'(a;)=1. In the limit of vanishing dis-
order the singularity spectrum becomes narrower and even-
tually converges to one point f(d)=d. On the other hand, as
the value of disorder increases the singularity spectrum
broadens, and in the limit of strong localization the singular-
ity spectrum tends to converge to the points f(0)=0 and
f(©)=d. Only at the MIT we can have a true multifractal
behavior, and as a consequence the singularity spectrum
must be independent of all length scales, such as the system
size.

The symmetry law (1) can also be written as

a,+a_,=2d. 9)

Since, due to the wave-function normalization condition,3”

the singularity strength « is always positive, it readily fol-
lows that the symmetry requires a=2d.>® Moreover the 0
=a=d and d= a=2d regions of the singularity spectrum
must be related by f(2d—a)=f(a)+d -, as can be checked
by combining Egs. (8) and (9).

B. Numerical determination of f(a) at the MIT using
typical average

The numerical analysis is essentially based on an aver-
aged form of the scaling law [Eq. (6)] in the limit A=1[/L
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— 0. This can be achieved either by making the box size [
— 0 for a fixed system size L or by considering L— < for a
fixed box size. The question of how to compute a proper
average of the moments P, is determined by the form of their
distribution function.?** The scaling law for the typical av-
erage of the moments P, is defined as

e P o \7P(@) (10)

where (--+) denotes the arithmetic average over all realiza-
tions of disorder, i.e., over all different wave functions at
criticality. The scaling exponents are then defined by

(In P (\))

™P(g) = lim——L—, (11)
x—0 ln )\

and can be obtained from the slope of the linear fit of (In P,)
versus In . Applying Eq. (8) we obtain similar definitions
for a and f(«),

N,
1 A

a® =lim—{ > 8(g.M)n 8(1,\) ),  (12a)
a x—oln A k=1
1 /5

9 =lim——( X 8(q.MIn 8(q.N) ). (12b)

x—0 ln )\ k=1

where 9(q,N)= u{(N)/P,(\) is the normalized gth power of
the integrated probability distribution u,(\). The singularity
spectrum could also be obtained from 7(g) by means of the
numerical Legendre transformation [Eq. (8)], but this latter
method is numerically less stable.

The typical average is dominated by the behavior of a
single (representative) wave function. It is because of this
that the f®P(«) will usually only have positive values since
the average number of points in a single wave function with
a singularity @ such that f(a)<0 is L/@/<1. It is also
worth mentioning that due to relation (8a), the typical singu-
larity spectrum is expected to approach the abscissa axis with
an infinite slope. However, it has been proven numerically
that the region of « values near the ends, where the slope
tends to diverge, gets narrower and eventually disappears as
the thermodynamic limit is approached.*

IV. SCALING WITH BOX SIZE

In the scaling law of Eq. (6), the limit A—0 can be
reached by taking the box size [—0; i.e., we are evaluating
the scaling of P, with box size [ at constant L. Numerically,
we consider a system with large L and we partition it into
smaller boxes such that condition /,,</<<L is fulfilled with
1,, the lattice spacing. This ensures that the multifractal fluc-
tuations of |¢{> will be properly measured. We usually take
values of the box size in the range [ [10,L/2]. We have
found that the most adequate box-partitioning scheme is
when the system is divided into integer number of cubic
boxes, each box with linear size /.*! The system is partitioned
in such a way that it can be divided equally into boxes and
the origin of the first box coincides with the origin (x,y,z)
=(0,0,0) of the system. We have used this method to pro-
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FIG. 2. (Color online) Singularity spectrum (thick solid black
line) obtained using box-size scaling of the typical average of P, for
system size L=240 with 95 states. The error bars which are equal to
one standard deviation mark the locations corresponding to integer
q values. The corresponding symmetry-transformed spectrum (2) is
shown as thin black dashed line. The analytical parabolic form (Ref.
21) is represented by the thick gray solid line. The thin horizontal
and vertical lines denote the f=0 and 3 and @=4 and 6 values,
respectively. The values for the linear correlation coefficient 7> and
quality-of-fit parameter Q for both a? and f “P(«) are shown in the
bottom shaded panel.

duce all the results in this section. We have also tried other
box-partitioning strategies; however, their results were less
accurate and will be discussed elsewhere.*!

For each wave function, we compute for the gth moment
of the box probability in each box, and P, as in Eq. (5), as its
sum from all the boxes. The scaling behavior of the averaged
gIPR with box size (10) is then obtained by varying [. Fi-
nally, the corresponding values of the singularity strength «
and spectrum f(a) are derived from the linear fits of Eq. (12)
in terms of the box size. With only one system size to be
considered, the box-size scaling is numerically relatively in-
expensive and has been much used previously in performing
a MFA 31517 In Figs. 2 and 3 we show examples of f(a) and
associated linear fits. We note that here and in the following,
all data have been generated using g € [-10,10] in steps of
0.1.

A. General features of f“P(a)

The singularity spectrum for system size L=240 with 95
states that is obtained using Eq. (12) with /— 0 is shown in
Fig. 2. The f"“P is compared with the corresponding spec-
trum that is derived from symmetry relation (2) and with the
parabolic spectrum.?' Here, the maximum f %P(a;,)=3 which
is equal to the dimension of the support can be found very
near to ay=4 where the maximum of the parabolic spectrum
is located as shown in Ref. 21. In the region within the vi-
cinity of a=3, the typical singularity spectrum closely re-
sembles the parabolic f(«). However, for large |g| values
particularly at the tails, the f YP(a) starts to deviate from the
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FIG. 3. Mass exponents (a) and generalized fractal dimensions
(b) obtained using box-size scaling of the typical average of P, for
L=240 considering 95 states. The filled black circles correspond to
g=0 while the empty circles denote integer ¢g. The thin horizontal
and vertical lines indicate the 7(0)=-3, Dy=3, and ¢=0 values,
respectively. In panel (c), we show the linear fits of Eq. (11) for the
7%P(g) in panel (a). Only fits for integer values of ¢ ranging from
g=-10 (top) to g=10 (bottom) are shown. The values of 7YP(g) are
given by the slopes of the fits. Data points for ¢# 0 have been
properly shifted vertically to ensure optimal visualization. Data for
=0 is highlighted with filled symbols. Standard deviations of all
data are contained within symbol size in all cases.

parabolic spectrum. We note that symmetry relation (2) re-
quires that the spectrum should be contained below the upper
bound of a=2d.

In order to obtain « and f(«) via the linear fit of Eq. (12),
a general > minimization is considered taking into account
the statistical uncertainty of the averaged right-hand side
terms. In this way we can carry out a complete analysis of
the goodness of the fits via the quality-of-fit parameter Q, as
well as the usual linear correlation coefficient 72. The behav-
ior of these quantities for the different parts of the spectrum
(corresponding to different values of the moments g) is
shown in the bottom panel of Fig. 2. The r* value is almost
equal to one for all @ which shows the near perfect linear
behavior of the data. Furthermore, acceptable values of the O
parameter are also obtained. However, a decline in the 2 and
Q values is seen at the tails. These regions correspond to the
large |g| values where the numerical uncertainties in comput-
ing for the P, over a number of different disorder realiza-
tions are large enough to affect the reliability of the data.
Figure 3 presents the corresponding sets of mass exponents
7YP(q), generalized fractal dimensions D:]yp, and linear fits
for 7YP(q) for the singularity spectrum in Fig. 2. The ¢ de-
pendence of the decreasing function D,=7(¢q)/(g—1) is an
indication of multifractality. Here, we see that Dy=d as ex-
pected. The corresponding 7%P(g) is shown in Fig. 3(a). It
displays the characteristic nonlinearity of a multifractal
where 7(0)=—d. The regions corresponding to large |¢| val-
ues show a linear behavior with a constant slope. Since the
singularity strength is defined as a,,=7'(g) then a linearity in
79%(g) found in the limit of |¢| — o results in a;® values that
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FIG. 4. (Color online) Singularity spectrum obtained using box-
size scaling of the typical average of P,. In panel (a): system size
L=90 for 250 (thick gray line) and 2.5X 10* (thick black lines)
states. The corresponding symmetry-transformed spectra (2) are
shown as thin dashed lines. The error bars mark the location of
integer ¢ values. In panel (b): system size L=60 (thick gray line),
L=100 (thin gray line), L=200 (thin black line), and L=240 (thick
black line) each having 103, 10%, 102, and 95 states, respectively.
The dashed vertical line indicates a=6. In all cases, the error bars
denote one standard deviation.

approach upper a, and lower a_ bounds. Hence, the fYP(«)
meets the oP axis at these termination points with an infinite
slope. Furthermore, we will show that the location of «_ and
a, is greatly affected by system size. For a detailed discus-
sion on the relationship between the shapes of 7(¢g) and f(«a),
we refer to Refs, 13 and 40.

B. Effects of the number of states and L

In panel (a) of Fig. 4, we show the small-a region of
FYP(a) for the case of L=90 with 2.5X 10? and 2.5X 10*
states. When more states are considered for a fixed system
size, the termination point «_ moves further toward smaller
values (i.e., toward the thermodynamic limit) and the sym-
metry relation is more closely satisfied. However, when a
large number of states has already been considered (such as
2.5 X 10* for L=90) the shape of the fYP(@) will not signifi-
cantly change anymore with more states as illustrated by the
already small uncertainties. This takes us to consider bigger
system sizes in order to be able to improve the symmetry
relation. In panel (b) of Fig. 4, we show a portion of the
large-a part of fYP(a) for varying system sizes L=60 with
10° states, L=100 and 200 with 10? states each, and L
=240 with 95 states. We see that for the same number of
states the degree of fluctuations as represented by the size of
the error bars is larger for smaller system size. Moreover, the
F (@) for L=60 with 103 states is, within the standard de-
viations, the same as that for L=240 with 95 states. This can
be explained by the total number of wave-function values ;
involved in the average, which are nearly the same for both
cases and hence causes the same shape of f%“P(«). This
means that when using box-size scaling for the typical aver-
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FIG. 5. (Color online) Singularity spectrum obtained using box-
size scaling of the typical average of P,, for system sizes L=60
(thick gray line) and L=240 (thick black line) with 2.5 X 10* and 95
states, respectively. The corresponding symmetry-transformed spec-
tra (2) are shown as thin dashed lines. The insets show details for
(a) small and (b) large « values. In all cases, the error bars are equal
to one standard deviation. In inset (a), the error bars mark the loca-
tion corresponding to integer ¢ values.

age of P, the number of disorder realizations needed to ob-
tain the singularity spectrum up to a given degree of reliabil-
ity decreases with the size of the system. Remarkably, we
also see in Fig. 4(b) a general tendency that with larger L the
singularity spectrum approaches the upper bound of @=6 in
keeping with what the symmetry relation requires.

In Fig. 5, we show the spectra corresponding to L=60
with 2.5 X 10* and L=240 with 95 states to clearly show the
effect of the system size. We observe that the value of «
(i.e., location of the maximum) and the shape of the singu-
larity spectrum near the maximum do not change anymore
with L. This L-invariant behavior of the singularity spectrum
is an attribute of a critical point. In inset (a), with increasing
system size the position of the termination point «_ moves
toward smaller values. Furthermore, a closer look of f“P(«)
in insets (a) and (b) shows that when a bigger system size is
used, even with less eigenstates, there is a well-defined im-
provement to satisfying the symmetry.

C. Symmetry relation

In order to quantify how the symmetry is being satisfied
with regards to either taking more states or considering big-
ger system size, we present Fig. 6. The top panel is an exact
calculation of the symmetry relation of Eq. (9), whereas the
bottom panel shows the difference between the singularity
spectrum and its symmetry-transformed counterpart, defined
as

8f(a) =|f(a) - f(2d — a) +d - . (13)

The latter plot is an effective tool to tell us the range of the «
values where the symmetry is satisfied up to a given toler-
ance. However, directly comparing the degree of symmetry

195106-5



VASQUEZ, RODRIGUEZ, AND ROMER

T
--- Size: 60, 25000 states
Size: 100, 25000 states
— Size: 240, 95 states

2 3 4
P

FIG. 6. (Color online) Measures for the degree of symmetry of
the multifractal spectrum obtained from the typical average with
box-size scaling. The upper panel shows the numerical evaluation
of the symmetry law as a function of g for system sizes L=60 with
2.5X 10* states (dashed black), L=100 with 2.5 X 10* (dark gray),
and L=240 (black) with 95 states. For each curve only one error bar
in every three is shown for clarity. The bottom panel shows Jf(«)
versus «. Note that there is no correspondence between the abscissa
axes of the upper and lower plots. For clarity, two values of ¢g for
the black line are explicitly written.

via Jf(a) is just an approximation since (i) linear interpola-
tion has to be used to measure the vertical distance properly
at several values of @ and (ii) for a given ¢ the corresponding
value of « as well as its uncertainty depend upon sizes and
realizations of disorder, and this makes the comparison of the
different curves in terms of « not as reliable as Eq. (9). In
fact, the resulting error bars are much larger than in the top
panel of Fig. 6 and even larger than the variation between the
three shown Jf(a) curves. Nevertheless, the results in Fig. 6
illustrate that there is a tendency to find a better agreement
with the symmetry relation whenever more states or bigger
system sizes are considered. The best situation corresponds
to the biggest system size available (L=240) even though the
number of eigenstates is lower than for smaller systems. The
relatively weak effect of the number of states on the shape of
the singularity spectrum is a result of taking the typical av-
erage where by nature the average does not dramatically
change with the number of samples taken. Furthermore, a
rough estimation from our results suggest that in order to
obtain numerically a good f(a) symmetry relation [Jf(a)
=0.01] for @ €[1.5,4.5] using box-size scaling one would
have to consider very big system sizes L>1000.

V. SCALING WITH SYSTEM SIZE

The scaling law of the gIPR [Eq. (6)] can also be studied
in terms of the system size L. Obviously the numerical cal-
culation of eigenstates for very large 3D systems is a de-
manding task.>**>~** Hence previous MFA studies at the
MIT have been mostly based on the box-partitioning scaling
described in Sec. IV. One naturally would expect the scaling
with the system size to perform better in revealing the prop-
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erties of the system in the thermodynamic limit. The fact that
for each system size one has several independent realizations
of the disorder helps reduce finite-size effects, which will be
unavoidably more pronounced when doing scaling with the
box size. Obviously the larger the system sizes and the more
realizations of the disorder, the better.

A. Coarse graining for negative ¢

In the present case the scaling variable is L, and the for-
mulas (11) and (12) for the singularity spectrum are only
affected by the substitution, lim,_,,=—lim; ... The box size
| which determines the integrated probability distribution
(1) is now a parameter in expressions (11) and (12) for
79%(q), &, and f,*P. Changing the value of [ is effectively
equivalent to renormalize the system size to a smaller value
L'=L/l. Therefore it is clear that the most favorable situa-
tion to approach the thermodynamic limit is setting /=1, thus
defining the generalized IPR in terms of the wave function

itself, Pq=2f1_31|1//,~|2‘1. However, when considering negative
moments, all the possible numerical inaccuracies that may
exist in the small values of |¢;|> will be greatly enhanced,
which in turn causes a loss of precision in the right branch
(a> ay) of the singularity spectrum. The best way to fix this
problem is to use a box size /> 1 for ¢<0. In this way the
relative uncertainties in the smallest values of the coarse-
grained integrated distribution w,;(I) are reduced with respect
to the values of the wave function. This coarse-graining pro-
cedure evaluating the negative moments of the wave func-
tion when doing system-size scaling was first described in
Ref. 26, and as we have seen its validity is readily proven
when one assumes the scaling relation (6) as the starting
point of the MFA.

The numerical singularity spectrum is thus obtained from
the slopes of the linear fits in the plots of the averaged terms
in Eq. (12) versus In L for different values of the system size
L. Where for positive g we have u;(1)=|¢|*> and for nega-
tive g the integrated measure u,(I>1) is kept, with /=5 in
most of the calculations. The value of [ for the coarse-
graining procedure should not be very large, otherwise finite-
size effects will be enhanced again due to the reduction in
the effective system size. For the benefit of the reader let us
rewrite formula (12) in a particular case where [=1,

E | In[ )
P~ ———— (14a)
q b
>y
J
E AU
—f¥InL~ ~In2 |y ). (14b)
1

2 |y
J

for large enough system sizes L. As before the angular brack-
ets denote the average overall eigenstates.
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20000440,
i

6

FIG. 7. (Color online) Singularity spectrum obtained from typi-
cal averaging. System sizes from L=20 to 100 have been consid-
ered with ~2.5 X 10* different wave functions for each system size,
as shown in Table I. The dashed line is the symmetry-transformed
spectrum according to f(6—a)=f(a)+3—a. The values of ¢ range
from g=-10 to g=10 with a step of 0.1 (/=1 for g=0 and /=5 for
¢<0). Error bars which are equal to one standard deviation high-
light the values corresponding to integer ¢g. The lower panel shows
the linear correlation coefficient (%) and the quality-of-fit parameter
(Q) of the linear fits to obtain the values for @ and f(«).

B. General features of f"P(a) and the effects of the number of
states and L

In Fig. 7 we show the singularity spectrum obtained from
Eq. (12) (¢<0) and Eq. (14) (¢=0). We have considered
system sizes ranging from L=20 to 100 and ~2.5X 10*
states for each system size, as shown in Table I. In spite of
the good linear behavior observed in the fits to obtain aqtyp
and f‘qyp, shown in Fig. 8, the values for Q in the bottom
panel of Fig. 7 suggest a loss of reliability near the termina-
tion regions of the spectrum. On the other hand the standard
deviations of the {aP,f"P(a)} values are really small even
near the ends. These uncertainties are directly related to the
number of states we average over: the more realizations, the
smaller these uncertainties are. It must be clear that these
standard deviations only give an idea about the reliability of
data as a function of the number of disorder realizations for
the particular range of system sizes that one is using. To
illustrate the influence of the number of disorder realizations
upon the typical average a comparison can be found in Fig. 9
between the fYP(«) spectrum obtained after averaging over
10° states for each system size and the one for ~2.5X 10*
states. As can be seen, after this increase in the number of
states the overall change in the spectrum is not very signifi-
cant although some variation can be noticed in the regions
shown. In particular, the right branch of the spectrum moves
inwards and the end of the left tail shifts to smaller values of
a. In both regions the expected variation in the spectrum is
well described by the standard deviations. In the case of Fig.
7 according to the standard deviations the conclusion is that
a further increase in the number of states will not mean a
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FIG. 8. Linear fits of Eq. (12) for " values (left) and f,*?
values (right) of the singularity spectrum in Fig. 7. Only fits for
integers values of ¢ ranging from ¢=10 (top) to g=—10 (bottom)
are shown. The values of a;y Pand f, q‘y P are given by the slopes of the
fits. Data points for ¢ #0 have been properly shifted vertically to
ensure optimal visualization. Data for g=0 highlighted with filled
symbols. Standard deviations are contained within symbol size in
all cases.

significant change in the shape of the spectrum. Nevertheless
it must also be very clear that if we consider a different range
of larger system sizes, noticeable changes could happen in
the singularity spectrum. The standard deviations never ac-
count for the effects stemming from the range of system
sizes used.

To evaluate the effects due to the system size, we compare
in Fig. 10 the multifractal spectrum obtained considering dif-
ferent ranges of system sizes with a similar number of dis-
ordered realizations. In the main plot it can be seen how the
shape of the spectrum changes in its right (large «) branch,
which moves inwards, when we consider system sizes in the

T i /j/ ] T T T
(@) " ® ]

0.4

£ (@)

02

0.

P O Y R
5 52 54 56 58 6

FIG. 9. (Color online) (a) Left and (b) right branches of the
singularity spectrum obtained from typical average scaling with
system sizes from L=20 to 100 for ~2.5X 10* states (black) and
103 (gray) for each system size. Dashed lines correspond to spectra
transformed according to the symmetry law. The values of ¢ range
from ¢g=-10 to ¢=10 with a step of 0.1 (/=1 for ¢=0 and /=5 for
q<0). Error bars are standard deviations.
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FIG. 10. (Color online) Singularity spectrum obtained from
typical average using different ranges of system sizes. Gray line:
seven system sizes from L=40 to 100 and 107 states for each. Black
line: six system sizes from L=140 to 240 and ~ 107 states for each.
Insets (c) and (d): Gray line: five system sizes from L=20 to 60 and
~2.5X 10* states for each. Black line: five system sizes from L
=60 to 100 and ~2.5X 10* states for each. In all cases dashed lines
correspond to spectra transformed via the symmetry law. The values
of g range from g=—10 to g=10 with a step of 0.1 (/=1 for g=0
and /=5 for ¢<0). Error bars are standard deviations.

interval [140,240] compared to the situation for sizes in the
interval [40,100]. The left end of the spectrum also shifts to
smaller values of & when larger system sizes are considered.
In this case the standard deviations are noticeable since we
have only considered 10 states for each system size. In the
insets (c) and (d) within Fig. 10 a similar comparison can be
found for ranges of smaller sizes, [60,100] versus [20,60],
but with a much higher number of states, ~2.5X 10* for
each size. In this situation the change is less dramatic, but the
tendency remains the same. In particular it should be noticed
in Fig. 10(c) how the change in the left end of the spectrum
is not contained in the uncertainty regions given by the error
bars, confirming the fact that these standard deviations do
not fully describe system-size effects.

C. Symmetry relation

The symmetry relation [Eq. (2)] is only partially fulfilled
in Fig. 7. Still, a nice overlap between the original spectrum
and the symmetry-transformed one occurs in the region
around the symmetry point @=3. The agreement is lost when
approaching the tails, which are the parts more affected by
numerical inaccuracies and system-size effects. For a given
range of system sizes, the symmetry relation tends to be
better satisfied whenever the number of disordered realiza-
tions is increased, as can be observed in Fig. 9. On the other
hand the improvement of the symmetry is even more dra-
matic when we consider larger system sizes to do the scaling,
as shown in insets (a) and (b) of Fig. 10. In this figure it is
evident how the value of f(«=6) decreases when considering
larger system sizes, hence tending toward the upper bound at
a=2d as predicted by Eq. (2).
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FIG. 11. (Color online) Measure of degree of symmetry of the
multifractal spectrum of Fig. 10 obtained from scaling with system
size. The upper panel shows the numerical evaluation of the sym-
metry law as a function of g. The bottom panel contains 5f(a)
versus a. Dashed black: seven system sizes from L=40 to 100 and
10? states for each. Gray: nine system sizes from L=20 to 100 and
~2.5X 10* states for each. Solid black: six system size from L
=140 to 240 and ~ 10 states for each. There is no correspondence
between the abscissa axes of the upper and lower plots. For clarity,
two values of ¢ for the black line are explicitly written.

A quantitative analysis of the symmetry relation is shown
in the upper panel of Fig. 11. The best data correspond to the
scaling with system sizes in [140,240] after averaging over
~100 states for each size (cp. Table I). Even with such a low
number of disorder realizations, the observed symmetry is
better on average than the one obtained for sizes in [20, 100]
with 2.5 X 10* states for each L. Let us emphasize that for
L=100 the total number of wave-function values involved in
the calculation is 2.5 X 10'® while for L=240 it is only 1.3
X 10°. This shows that although the number of disorder re-
alizations is important to improve the reliability of data (re-
ducing the standard deviations), the effect of the range of
system sizes is more significant. Moreover although it can be
argued that the error bars of the black line in the upper panel
of Fig. 11 are still very large, we have already shown that
when increasing the number of states the symmetry simply
gets better and thus the line will move even closer to zero. In
the lower panel of Fig. 11 the deviation from symmetry
Of(a@) defined in Eq. (13) is also shown and corroborates
these findings.

Hence, whenever the reliability of data is improved by
increasing the number of disorder realizations or when finite-
size effects are reduced by considering larger system sizes,
we get a better agreement with the symmetry law [Eq. (2)] of
the multifractal spectrum. Assuming the degree of symmetry
is a qualitative measure of the MFA itself and then from a
numerical viewpoint, the best strategy when doing scaling
with system size and typical averaging would be to go for the
largest system sizes accessible even though it means having
less realizations of disorder.

195106-8



MULTIFRACTAL... . I. SYMMETRY RELATION...

VI. SUMMARY AND CONCLUSIONS

We have obtained the multifractal spectrum from the box-
size and system-size scalings of the typical average of the
gIPR. We find that upon increasing either the number of
disorder realizations or by taking larger system size, the
fYP(a) spectrum becomes closer to obeying the proposed
symmetry relation (2). Using the typical average, the best
symmetry in the singularity spectrum is obtained by taking
large system sizes. Due to the nature of the typical averaging,
taking more states only changes the shape of the fYP(«) up to
a point. By considering larger system sizes, a significant im-
provement of the symmetry relation is achieved, leading to
lower values of @ P and f P on the left side of the spectrum
as well as a better agreement with the upper cutoff of a=6.

In Fig. 12, let us now compare box-size and system-size
scalings. With system-size scaling the symmetry is (nearly)
satisfied for a wider range of « values as compared with the
box-size scaling. Box-size scaling is more strongly influ-
enced by finite-size effects. However, the agreement with the
symmetry relation is lost for both methods at large |g| or
equivalently at |a@—3|>0. Unsurprisingly, these are the re-
gions greatly affected by numerical inaccuracies and finite-
size effects. Hence we conclude that within the accuracy of
the present calculation and within the limits of the typical
averaging procedure, the proposed symmetry relation (2) is
valid at the Anderson transition in 3D.%

Last, let us remark that relation (2) implies negative val-
ues of f for small values of «. As discussed previously, this is
hard to see using the typical averaging procedure. In Ref. 28,
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FIG. 12. (Color online) Comparison of degree of symmetry for
the spectra obtained using typical averaging of P, for the cases of
box-size (BS) scaling (gray) and system-size (SS) scaling (black).
The best spectrum for each case has been considered: (BS) L
=240 with 95 states and (SS) L €[140,240] with 100 states for
each size. The plot shows the numerical evaluation of the symmetry
law as a function of g.

we have also performed MFA using the ensemble-averaged
box-size and system-size scaling approaches. The results
again support the existence of the symmetry [Eq. (1)] for an
even larger range of « values and including a negative f(a)
part for small a.
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