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We have studied the structure of 4He droplets doped with magnesium atoms using density functional theory.
We have found that the solvation properties of this system strongly depend on the size of the 4He droplet. For
small drops, Mg resides in a deep surface state, whereas for large-size drops it is fully solvated but radially
delocalized in their interior. We have studied the 3s3p1P1←3s21S0 transition of the dopant, and have compared
our results with experimental data from laser-induced fluorescence �LIF�. Line-broadening effects due to the
coupling of dynamical deformations of the surrounding helium with the dipole excitation of the impurity are
explicitly taken into account. We show that the Mg radial delocalization inside large droplets may help
reconcile the apparently contradictory solvation properties of magnesium as provided by LIF and electron-
impact ionization experiments. The structure of 4He drops doped with two magnesium atoms is also studied
and used to interpret the results of resonant two-photon-ionization �R2PI� and LIF experiments. We have found
that the two solvated Mg atoms do not easily merge into a dimer, but rather form a weakly bound state due to
the presence of an energy barrier caused by the helium environment that keeps them some 9.5 Å apart,
preventing the formation of the Mg2 cluster. From this observation, we suggest that Mg atoms in 4He drops
may form, under suitable conditions, a soft “foamlike” aggregate rather than coalesce into a compact metallic
cluster. Our findings are in qualitative agreement with recent R2PI experimental evidence. We predict that,
contrarily, Mg atoms adsorbed in 3He droplets do not form such metastable aggregates.
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I. INTRODUCTION

The study of magnesium atoms attached to helium drops
has unraveled an interesting and somewhat unexpected sol-
vation behavior as a function of the number �N� of helium
atoms in the drop. Diffusion Monte Carlo �DMC�
calculations1 carried out for small drops containing a number
of helium atoms up to N=50 indicate that a Mg atom is not
fully solvated in drops of sizes below N�30. More recent
quantum Monte Carlo �MC� calculations2,3 suggest a surface
Mg state for 4He clusters with up to �200 atoms. Density
functional theory �DFT� calculations4 for 3HeN and 4HeN
nanodroplets with N�300 doped with alkaline-earth atoms
have shown that Mg atoms are solvated in their interior, in
agreement with the analysis of laser-induced fluorescence
�LIF� �Ref. 5� and resonant two-photon-ionization �R2PI�
experiments.6 LIF experiments on the absorption and emis-
sion spectra of Mg atoms in liquid 3He and 4He have been
reported and successfully analyzed within a vibrating atomic
bubble model, where full solvation of the impurity atom is
assumed.7,8 A more recent experiment,9 in which electron-
impact ionization data from Mg-doped 4He drops with about
104 atoms seem to indicate that magnesium is instead at the
surface of the droplet, is in disagreement with the above-
mentioned LIF and R2PI experiments.

There is some ambiguity associated with the notion of
solvation in a helium droplet. For not too small droplets, one
may consider that Mg is fully solvated when its position
inside the droplet is such that its solvation energy or atomic
shift does not appreciably differ from its asymptotic value in

bulk liquid helium, as both quantities approach such limit
fairly alongside each other. However, for very small drops
the energy or atomic shifts of an impurity atom at the center
of the drop may still differ appreciably from the bulk liquid
values because there is not enough helium to saturate these
quantities. This is the case, e.g., of Mg@ 4He50 studied in
Ref. 1.

Mella et al.1 discussed how the solvation properties of
magnesium are affected by the number of helium atoms in
small 4He drops. Since DMC calculations cannot be ex-
tended to the very large drops involved in LIF experiments,5

they could not carry out a detailed comparison between their
calculated atomic shifts and the experiments. They also
pointed out the sensitivity of the Mg solvation properties on
apparently small differences in the He-Mg pair potentials
available in the literature.

The aim of the present work is to re-examine the solvation
of magnesium in 4He nanodroplets from the DFT
perspective,10–14 extending our previous calculations4 down
to drops with N�50 atoms and improving the DFT
approach15 by fully taking into account the coupling of the
dipole excitation of the impurity with the dynamical defor-
mations of the helium around the Mg atom. Our results con-
firm that full solvation of a Mg atom in 4He drops requires a
minimum number of helium atoms, and disclose some un-
usual results for small drops. We calculate the absorption
spectrum of a Mg atom attached to small and large drops,
finding good agreement with the experiments for the latter.
We discuss in a qualitative way the effect of the impurity
angular momentum on the electron-impact ionization yield
and on the absorption spectrum. We also address the struc-
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ture of a two-magnesium-doped drop; the results are used to
discuss the scenario proposed by Przystawik et al.6 to inter-
pret their experimental results on R2PI. The experimental
status of doped helium drops is reviewed in, e.g., Refs.
16–19.

This work is organized as follows. In Sec. II we discuss
the results we have obtained for the structure of Mg@ 4HeN
drops. The method we have employed to obtain the atomic
shifts is presented in Sec. III, and it is applied to the case of
Mg-doped 4He droplets in Sec. IV. In Sec. V we study how
the presence of a second magnesium atom in the droplet may
alter both the helium drop structure and the calculated atomic
shift. A summary is presented in Sec. VI, and some technical
details of our calculations are described in Appendixes A and
C.

II. STRUCTURE AND ENERGETICS OF Mg-DOPED
HELIUM NANODROPLETS WITHIN DENSITY

FUNCTIONAL THEORY

In this section we recall the essentials of our method and
refer the interested reader to Ref. 15 for the details. Our
starting point is the Orsay-Trento density functional,10 to-
gether with the Mg-He adiabatic ground-state potential X1�
of Ref. 20, here denoted as VMg-He. To check the sensitivity
of our results to the details of different available pair poten-
tials describing the Mg-He interaction, we also use the
slightly less attractive potential computed in Ref. 21. For the
sake of comparison, we plot both potentials in Fig. 1. Despite
the apparently minor differences between these two potential
curves, they cause very different solvation properties of Mg
in small 4He drops, as we will show in the following.

The energy of the Mg-helium system E�� ,�� is written
as a functional of the Mg wave function ��r� and the 4He
order parameter ��r�=���r�, where ��r� is the 4He atomic
density. Minimizing E under the constraints of a given N and
a normalized Mg wave function, one obtains an Euler-
Lagrange equation for � coupled to a Schrödinger equation
for � that we have self-consistently solved as outlined in
Ref. 15 in order to determine the ground state �gs� of the

drop-impurity complex as well as the helium chemical po-
tential � and lowest Mg eigenenergy �.

To address the solvation of the Mg atom, we have found it
convenient to minimize E subjected to the additional con-
straint of a fixed distance Z0 between the centers of mass of
the helium moiety and of the impurity atom, which, due to
the symmetry of the problem, can both be taken on the z
axis. This is done following a method borrowed from nuclear
physics—similar to that used to describe the fission of rotat-
ing 3He drops.22 We minimize the expression E+	C�Z
−Z0�2 /2, where Z is the distance between the impurity and
the center of mass of the helium droplet. 	C is an arbitrary
constant. The value 	C�1000 K Å−2 has been used in our
calculations, which ensures that the desired Z0 value is ob-
tained within a 0.1% accuracy.

We have first solved the mentioned coupled equations for
	C=0 and several N values, namely N=30, 50, 100, 200,
300, 500, 1000, and 2000. This yields the ground state of the
drop-impurity complex, and will allow us to study the atomic
shift for selected cluster sizes. Figure 2 shows the energy of
a magnesium atom in a drop, defined as

SN�Mg� = E�Mg @ 4HeN� − E�4HeN� . �1�

We compare in Fig. 2 the SN�Mg� values here obtained with
those of Ref. 4, where the Mg atom was treated as an infi-
nitely massive particle—i.e., as a fixed external field acting
on the 4He drop. The neglect of the quantum kinetic energy
of the impurity overestimates the impurity solvation energies
by quite a large amount, about 19.7 K for N=50 and 18.8 K
for N=2000. The value we have found for S50�Mg�,
−18.4 K, compares well with the DMC result of Ref. 3 �
−21 K�, showing that DFT performs quite well for small
clusters,14 far from the regime for which it was parametrized.
The DMC energy found for the same system is �
−168.2 K,1 whereas our DFT result is �−157.0 K. The
“asymptotic” DMC value for S200�Mg�, −33.1 K, compares
well with the DFT value, still far from the limit value corre-
sponding to a very large helium drop �see Fig. 2�.

The solvation properties of the Mg atom are determined
by a delicate balance between the different energy terms—
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FIG. 1. �Color online� X1� Mg-He pair potentials used in this
work: squares connected with a solid line, from Ref. 20; circles
connected with a dotted line, from Ref. 21.
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FIG. 2. �Color online� Energy of the Mg atom as a function of
the number of atoms in the drop, obtained using the Mg-He poten-
tial of Ref. 20 �squares�. The values given in Ref. 4 are also dis-
played �dots�. The lines are drawn to guide the eyes.
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surface, bulk, and helium-impurity—whose contribution is
hard to disentangle and depends on the number of atoms in
the drop, as shown by DMC and DFT calculations. To gain
more insight into the solvation process of magnesium in
small 4He droplets, we have computed the energy of the
doped droplet as a function of the impurity position Z0.

The bottom panel in Fig. 3 shows E�Z0� for N=50, as
computed using the two different Mg-He pair interactions
shown in Fig. 1 �the discussion of the top panel is postponed
until Sec. IV A�. It can be seen that E�Z0� in both cases
displays two local minima. In one case �i.e., for the slightly
less attractive potential in Fig. 1� a “surface” state for the Mg
atom is energetically preferred, while in the other case the
impurity prefers to sit in the interior to the droplet �although
not exactly at its center�. These results are in agreement with
the DMC calculations in Ref. 1, where it was shown that a
bimodal distributions for the Mg radial probability density
function with respect to the center of mass of the helium
moiety appears for N
30.1 More recent DMC calculations
carried out up to N�200 drops3 seem to point out that Mg is
always in a surface state, although somewhat beneath the

drop surface. Our DFT calculations yield that Mg is already
solvated for N=200.

For both pair potentials, the bottom panel of Fig. 3 shows
that the two local minima in E�Z0� are separated by an en-
ergy barrier of about 1 K height, allowing the impurity to
temporarily visit, even at the experimental temperature T
�0.4 K,16–19 the less energetically favored site. This causes
changes in the total energy of the system by less than 1%,
but has a large effect on the value of the atomic shift. We will
address this important issue and its consequences on the
computed spectral properties of Mg@HeN in Secs. IV and V.

Figure 4 shows the helium configurations for the four sta-
tionary points displayed in Fig. 3, namely, those correspond-
ing to Z0=0, 2, 4, and 6 Å. Although the preference for the
surface or the solvated state depends on the He-Mg pair po-
tential used in the calculations, similar to the case of other
alkali atoms,4 this does not seem to be the case for the sta-
tionary points at Z0=2 and 4 Å that are present in both
curves. We have compared in Fig. 5 the density profiles
along the z axis for the Z0=2�4� Å configuration with the
profile of the pure 4He drop, finding that the appearance of
these stationary points is related to the position of the density
peak in the first helium solvation shell with respect to a
maximum �minimum� of the density of the pure drop. We see
that a minimum �maximum� in the energy is associated with
a constructive �destructive� interference in the oscillation
pattern of the He density. We are lead to conclude that the
interplay between the density oscillations already present in
pure drops and the solvation shells generated by the impurity
plays an important role in the solvation properties of the Mg
atom. This effect is also present, although to a lesser extent,
in Ca-doped 4He nanodroplets.15

Eventually, for larger drops Mg becomes fully solvated.
We have found that this is the case whichever of these two
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FIG. 3. �Color online� Bottom panel: Total energy �K� of
Mg@ 4He50 as a function of Z0 �Å� obtained using the Mg-He
potentials of Ref. 20 �squares� and of Ref. 21 �circles�. The energies
are referred to their equilibrium values, −157.0 and −153.8 K, re-
spectively. The vertical line locates the drop surface at R1/2
=r0N1/3, with r0=2.22 Å. The horizontal line has been drawn 0.4 K
above the equilibrium energy. Top panel: Probability densities for
the configurations displayed in the bottom panel; the single-peak
distribution corresponds to the Mg-He interaction of Ref. 21.
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FIG. 4. �Color online� Helium density plots of the Mg@ 4He50

droplet on the y=0 plane obtained using the Mg-He potential of
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spond to the stationary points displayed in Fig. 3, namely, 0, 2, 4,
and 6 Å. The brighter regions are the higher-density ones.
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potentials we use �see, for instance, the bottom panel of Fig.
6�. For this reason, the results we discuss in the following
have been obtained with the Mg-He pair potential of Ref. 20,
unless differently stated.

When the Mg atom is fully solvated, e.g., for N=1000, we
have found that E�Z0� grows monotonously as Z0 increases
�i.e., as the Mg atom approaches the droplet surface�. This is
shown in the bottom panel of Fig. 6. To better understand
how E�Z0� depends on N, we have plotted in the top panel of
Fig. 6 the energies of the N=1000 and 2000 doped drops,
referred to their equilibrium values, as functions of the dis-
tance from the dividing surface, i.e., the radius R1/2 at which
the density of the pure drop equals �b /2, �b being the liquid
density value �R1/2=r0N1/3, with r0=2.22 Å�. These radii are
22.2 and 28.0 Å for N=1000 and 2000, respectively.

The top panel of Fig. 6 shows that most of the change in
�E takes place in the 15 Å outer region of the drop, irre-
spective of its size. As a consequence of the flatness of
E�Z0�, the magnesium atom is very delocalized in the radial
direction even in relatively small drops. This delocalization
might affect the absorption spectrum of the attached Mg
atom, and also must be explicitly considered in the interpre-
tation of the electron-impact yield experiments.9 We address
this issue in Sec. IV.

III. EXCITATION SPECTRUM OF A Mg ATOM
ATTACHED TO A 4He DROP

To determine the absorption spectrum of a Mg atom em-
bedded in a helium drop, we have used the method of Lax,23

together with the diatomics-in-molecules approach.24 As in
Sec. II, we recall here the essentials of the method and refer
again the interested reader to Ref. 15 for the details.

To obtain the line shape, one has to carry out an average
on the possible initial states of the system that may be ther-
mally populated. This is likely not needed for helium drops,
as their temperature is much smaller than the vibrational ex-
citation energies of the Mg atom in the mean field created by
the helium environment. In small helium droplets thermal
effects can show up in the Mg absorption spectrum due to
the high mobility of the atom. For large drops, thermal mo-
tion plays a minor role, as the Mg atom hardly gets close
enough to the drop surface to have some effect on the line
shape. In this case, however, dynamical deformations of the
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FIG. 6. �Color online� Bottom panel: Total energy �K� of
Mg@4He1000 as a function of Z0 �Å� obtained using the Mg-He
potentials of Ref. 20 �squares� and of Ref. 21 �circles�. The energies
are referred to their equilibrium values, −5482.0 and −5476.8 K,
respectively. The vertical lines roughly delimit the drop surface re-
gion, conventionally defined as the radial distance between the
points where the density equals 0.1�b and 0.9�b, with �b

=0.0218 Å−3 as the bulk liquid density. The horizontal line has
been drawn 0.4 K above the equilibrium energy. Top panel: Total
energy �K� of Mg@ 4HeN with N=1000 and 2000 �vertical right
scale� as a function of Z0 �Å� obtained using the Mg-He potential
of Ref. 20. The energies are referred to their equilibrium values,
−5482.0 and −11 629.8 K, respectively, and the distances �horizon-
tal scale� are referred to the R1/2 radius. Also shown are the corre-
sponding probability densities �vertical left scale�: dotted �dot-
dashed� line, N=1000 �2000�. The solid line represents the
probability density of the N=10 000 drop.
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cavity around the impurity may be relevant25,26 and these
degrees of freedom have to be taken into account.

The line shape I��� for electronic transitions from the gs
to the excited state �ex� in a condensed phase system is
evaluated using the Born-Oppenheimer approximation and
the Franck-Condon principle. If ��gs� is the ground state of
the system, projecting on eigenstates of the orbital angular
momentum of the excited electron �m�, one obtains

I��� 
 	
m

 dte−i��+�X

gs�t
 dn���
 d3r�X
gs�r,�����

�e�it/��Hm
ex�r,�����X

gs�r,���� , �2�

where ��X
gs and �X

gs�r , ���� are the energy and the wave func-
tion of the rovibrational ground state of the frozen helium-
impurity system, and Hm

ex�r , ���� is the rovibrational excited
Hamiltonian with potential energy Vm

ex�r , ���� determined by
the electronic energy eigenvalue, as obtained for a p←s
transition. At this point, we have introduced the variables ���
to represent the degrees of freedom needed to describe pos-
sible deformations of the system, corresponding to the zero-
point oscillations of the helium bubble around the impurity.
If this effect is neglected, the deformation parameters ��� are
dropped and the ground-state wave function �X

gs coincides
with the Mg wave function � found by solving the equation
of Schrödinger we referred to in Sec. II.

Treating as classical the relevant excited states for the
transition, which is justified if they have large quantum num-
bers, one obtains the expression

I��� 
 	
m

 dn���
 d3r��X

gs�r,�����2��� + �X
gs

− Vm
ex�r,����/�� , �3�

where �m��� is the surface defined by the equation �+�X
gs

−Vm
ex�r , ���� /�=0. If the atom is in bulk liquid helium or at

the center of the drop, the problem has spherical symmetry
and the above equation can be further simplified.15

The potential-energy surfaces �PESs� Vm
ex�r , ���� needed

to carry out the calculation of the atomic shifts have been
obtained in the pairwise sum approximation, using the V��r�
and V��r� Mg-He adiabatic potentials from Ref. 1. In Carte-
sian coordinates and assuming that the He-impurity spin-
orbit interaction is negligible for magnesium, the eigenvalues
of the symmetric matrix

Uij�r,���� =
 d3r���r� + r,����

��V��r���ij + �V��r�� − V��r���
x�ix�j

r�2 �
�4�

are the Vm
ex�r , ���� potentials which define the PESs as a

function of the distance between the center of mass of the
droplet and that of the impurity.

For spherical geometries, Eq. �4� is diagonal with matrix
elements �in spherical coordinates�

	i�r,���� 
 Uii�r,���� = 2�
 
 r�2 sin ��d��dr����r�2 + r2 + 2r�r cos ��,����

��V��r�� + �V��r�� − V��r����1

2
��i1 + �i2�sin2 �� + �i3 cos2 ���� . �5�

In this case, two of the PESs are degenerate, namely,
	1�r , ����=	2�r , �����	3�r , ����.27 This holds true for r�0,
and it is relevant when we take into account the delocaliza-
tion of the impurity inside the bubble due to its quantum
motion. Otherwise, since at r=0 all the 	i coincide, they are
threefold degenerate.

IV. RESULTS FOR THE ABSORPTION SPECTRUM
OF MAGNESIUM ATOMS

We consider first the ���=0 case �i.e., no zero-point de-
formations of the helium cavity hosting the impurity�. The
general situation, in particular the homogeneous width cal-
culation, is presented later on in this section.

If ���=0, the model is expected to yield at most the en-
ergies of the atomic transitions, but not the line shapes since
the impurity-droplet excitation interactions as well as inho-

mogeneous broadening effects are not taken into
account.28,29 We discuss here two illustrative examples,
namely, the atomic shifts of magnesium in N=50 and 1000
nanodroplets. The homogeneous width is calculated in Sec.
IV B for the N=1000 droplet.

For Mg@ 4He50, the calculated shifts at Z0=0 �spherical
configuration�, 2, and 6 Å are 500, 450, and 281 cm−1, re-
spectively �281.3, 281.7, and 283.0 nm wavelengths�. No
experimental information is available for such a small drop.
Contrarily, the absorption spectrum of the 3s3p1P1
←3s2 1S0 transition of Mg atoms attached to large helium
drops has been measured,5 displaying a broad peak strongly
blueshifted from its position in the gas phase. This spectrum
is remarkably close to the one obtained by Moriwaki and
Morita7 in bulk liquid helium, and hence it has been con-
cluded that Mg is in the interior of the 4He droplet. We want
to point out that, while the absorption line in liquid helium
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was attributed to a single broad peak of energy of 281.5 nm
�35 524 cm−1�, i.e., a shift of 474 cm−1,7 in large drops a
similar line profile30 was fitted by two Gaussians centered at
35 358 and 35 693 cm−1 �282.8 and 280.2 nm wavelengths�,
respectively, i.e., shifted 307 and 642 cm−1 from the gas-
phase line.5 The origin of the two peaks was attributed to the
splitting of the degenerate � state by dynamical quadrupole
deformations of the cavity surrounding the dopant since this
argument had qualitatively explained similar doubly shaped
D2 excitation spectra of Rb and Cs atoms in liquid 4He due
to a quadrupole oscillation of the helium bubble �dynamic
Jahn-Teller effect�.26

LIF experiments on the heavier alkaline earths Ca and Sr
in large 4He droplets31 have disclosed the existence of
strongly blueshifted broad peaks with no apparent structure,
although it cannot be discarded that this broad line could be
a superposition of unresolved peaks. The same happens for
Ba.32 The surface location of Ca, Sr, and Ba in these drops
has been further confirmed by DFT calculations.4,15 It is also
interesting to recall that LIF experiments on Ca atoms in
liquid 4He and 3He have found a broad line in the region of
the 4s4p1P1←4s21S0 transition with no apparent splitting,33

contrary to the case of Mg.
Since Mg is fully solvated in the N=1000 drop, the cal-

culated atomic shift �� may be sensibly compared with the
experimental data where drops with N in the 103–104 range
are studied. We have obtained ��=659.0 cm−1 �280.0 nm
wavelength�; this peak nearly corresponds to the Gaussian
that takes most of the intensity of the absorption line �about
87%�.5 We have carried out a detailed analysis for this drop,
determining the equilibrium structure of Mg@ 4He1000 as a
function of Z0, and have used it to evaluate ��. The results
are displayed in Table I, showing the actual sensitivity of the
absorption spectrum to the Mg-atom environment.

The impurity-drop excitations will determine the homoge-
neous width of the spectral line, and the population of ex-
cited states may be relevant given the limit temperature at-
tained by the droplets.17,18,35 In this context, the relevant
excitation modes of the helium bubble are radial oscillations
of monopole type �breathing modes� and multipole shape
oscillations about the equilibrium configuration, as well as
displacements of the helium bubble inside the droplet. We
will address these issues in Secs. IV and IV B.

A. Thermal motion and angular momentum effects

To describe the displacement of the helium bubble inside
the droplet, we have fitted the E�Z0� curve of the
Mg@ 4He1000 system to a parabola, and have obtained the
excitation energy �� for this three-dimensional �3D� isotro-
pic harmonic oscillator. The hydrodynamic mass of the im-
purity atom has been estimated by its bulk liquid helium
value, M��40 a.u., obtained by the method outlined in Ap-
pendix A, Eq. �A23�. We find ��=0.1 K, indicating that
thermal motion, i.e., the population of the excited states, of
the “mean field” E�Z0� is important at the experimental tem-
perature T=0.4 K and may produce observable effects in the
absorption spectrum and the electron-impact ionization yield.

To describe in more detail the delocalization of the Mg
atom inside the drop, we have used an effective Hamiltonian
where we interpret Z0 as the radial distance R between the
impurity and center of mass of the helium moiety, and E�Z0�
as the “potential energy” V�R� associated with this new de-
gree of freedom of the impurity in the drop. Namely,

H =
P̂2

2M�
+ V�R� =

P̂R
2

2M�
+

L̂2

2M�R2 + V�R� , �6�

where M� is the Mg hydrodynamic mass. In the canonical
ensemble, the total probability distribution W as a function of
R can be written as

W�R� = Q−1

0

R

dR�R�2
 d��	
n�m

��n�m�R��e−H�R��/kBT�R���n�m� = Q−1

0

R

R�2dR�	
n�

�2� + 1�e−En�/kBT��n��R���2, �7�

where the partition function is defined as Q=Tr�e−H/kBT�
=	n��2�+1�e−En�/kBTm, kB being the Boltzmann constant.
The radial probability density w is

w�R� =
dW

dR
= Q−1R2	

n�

�2� + 1�e−En�/kBT��n��R��2. �8�

This expression has been evaluated for N=50 and 1000
by solving the Schrödinger equation for Hamiltonian �6� to
obtain the orbitals �n� and eigenenergies En�. For larger
N values, we have used the semiclassical approximation

En�→
p̂R

2

2M� +Veff�R�, where the effective potential is

TABLE I. Atomic shift �� of Mg@ 4He1000 �R1/2=22.2 Å� as a
function of the average distance between the magnesium atom and
the center of mass of the 4He1000 moiety. Also indicated is the
corresponding wavelength 	. The value of the transition energy in
the gas phase is 35051 cm−1 �Ref. 34�.

Z0

�Å�
��

�cm−1�
	

�nm�

0 659.0 280.0

10 642.1 280.2

14 615.8 280.4

18 520.3 281.1

22 492.5 281.4
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Veff�R� =
�2��� + 1�

2M�R2 + V�R� . �9�

Integrating pR in phase space, we obtain for the probability
density

w�R� = Q−1R2 exp�−
V�R�
kBT

�	
�

�2� + 1�

�exp�−
1

kBT

�2��� + 1�
2M�R2 � , �10�

with the normalization

Q = 

0

�

dRR2 exp�−
V�R�
kBT

�	
�

�2� + 1�

�exp�−
1

kBT

�2��� + 1�
2M�R2 � .

Lacking a better choice, we have weighted any possible
angular momentum value with a Boltzmann energy factor. It
has been shown36 that some of the angular momentum de-
posited in the droplet during the pick-up process may be kept
in the impurity atom, resulting in a different angular momen-
tum distribution from the Boltzmann one. This could yield
that some Mg atoms are actually closer to the drop surface.

If the angular momentum associated with the motion of
the magnesium atom—whose “radius” is �5 Å �see Fig.
1�—is such that Mg can be some 10 Å beneath the drop
surface, the shift of the absorption line would be hardly dis-
tinguishable from that of the totally solvated case—as seen
in Table I. At the same time, the electron-energy dependence
of the Mg+ yield observed in electron-impact ionization
experiments9 �and which was considered as evidence of a
surface location of Mg atoms on 4He droplets� could indeed
be due to the Penning ionization of the impurity in a collision
with a metastable He� atom that occupies a surface bubble
state in the drop, instead of being due to the transfer of a
positive hole �He+� to the Mg atom, which is the primary
ionization mechanism when the impurity is very attractive
and resides in the deep bulk of the droplet.

We show in the top panel of Fig. 3 the probability densi-
ties w�R� at T=0.4 K corresponding to the configurations
displayed in the bottom panel.37 Similarly, the top panel of
Fig. 6 shows that for Mg@ 4He1000 and Mg@ 4He2000, if
thermal motion is taken into account and the impurity retains
some of the pick-up angular momentum, the maximum den-
sity probability of Mg is at �15 Å beneath the drop surface
in both cases. To obtain it, we have taken for M� the bulk
value of 40 a.u. As seen from Table I, the absorption line
shift changes by a small 2% with respect to the R=0 con-
figuration. The values of the angular momentum correspond-
ing to these maximum density probabilities are �L2�1/2�9�
and �10�, respectively.38 For an N=10 000 drop,9 whose
radius is R1/2=47.8 Å, we have extrapolated inward the �E
curves of the calculated N=1000 and 2000 drops, and have
obtained from it the probability distribution displayed in Fig.
6. Its maximum is at �18.5 Å beneath the surface, with
�L2�1/2�28�.

Finally, using the effective potential in Eq. �9�, we have
determined that for N=1000 �2000�, a Mg atom with �
�24� �44�� is in an “equilibrium position” some 10 Å be-
neath the drop surface. For the N=10 000 drop, this value is
��148�. These values look reasonable, and Mg atoms hold-
ing this angular momentum or larger might thus be the origin
of the primary electron-collision ionization yield by the Pen-
ning process, without questioning the conclusion drawn from
LIF experiments that magnesium is fully solvated in 4He
drops.

B. Homogeneous width from shape deformations
of the helium bubble

We have shown that for large drops, the Mg atom is fully
solvated and its thermal motion only produces small changes
in the absorption shift. This allows us to decouple the effect
of the translational motion of the helium bubble on the ab-
sorption line from that of its shape fluctuation. Moreover, we
can address shape fluctuations in the much simpler spheri-
cally symmetric ground state, when magnesium is located at
the center of the drop.

To quantify the effect of these fluctuations, we have first
used the spherical cap model39 to estimate the excitation en-
ergies of the helium bubble around the impurity in liquid
helium. To this end, we have fitted the VMg-He potential to a
Lennard-Jones potential with depth �=7 K at a minimum
distance rmin=5 Å. Minimizing the total energy within this
model yields a configuration with an equilibrium radius of
R0=0.97�2−1/6rmin, which we approximate by R0=2−1/6rmin
to obtain the excitation energies.

Deformations of the 4He around the Mg atom are mod-
eled as40,41

R��� = R��1 + �0 + 	
	=2

�

	
�=−	

	

�	�Z	����� , �11�

where R is the radius of the bubble cavity hosting the sol-
vated Mg atom, � represents the solid angle variables �� ,��,
Z	���� is a real spherical harmonic, and �	� is the amplitude
of the 	�-multipole deformation. The condition R�=R0�1
− 1

4�		���	��2� ensures the conservation of the number of
particles up to second order in �	�. The dipole mode ampli-
tude �1� is absent since, for an incompressible fluid, it cor-
responds to a translation of the bubble, and this has been
considered in Sec. IV A.

If S�R���� represents the bubble surface and � represents
the surface tension, the energy for a large drop can be written
as

E = �S�R���� + �b�

R���

�

d3r�� rmin

r
�12

− 2� rmin

r
�6�

� Eeq +
1

2
C0��0�2 +

1

2 	
	=2

�

C	 	
�=−	

	

��	��2, �12�

where C0=8��R0
2�1+12	A� and C	=�R0

2��	−1��	+2�
+6	A� are the stiffness parameters, and 	A=�b�2−1/6rmin�

−1

is the impurity-He solvation parameter.39 The mass param-
eters are B0=4��bmHeR0

5 and B	=�bmHeR0
5 / �	+1�,42 and the
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excitation energies are determined from ��	=��C	 /B	,
yielding ��0=10.2 K for the breathing mode and ��2
=9.8 K for the quadrupole mode. Given the droplet tempera-
ture of 0.4 K, we conclude that only the ground state is
populated. The mean amplitude of the shape oscillations is
estimated from the variance �	=�1/2�B	C	�−1/4 /2, giving
�0=0.03 and �2=0.15. This model thus yields that the
bubble can experience monopole oscillations of �3% ampli-
tude and quadrupole deformations of �2

�3 /4��8% ampli-
tude. Amplitudes of this order have been determined within
the atomic bubble model for cesium atoms in liquid
helium.26 Since their effect in the absorption spectrum is ex-
pected to be relevant, we have undertaken a more refined
calculation within DFT taking Mg@ 4He1000 as a case study.

For helium droplets, we have described bubble deforma-
tions in a way similar to that in Refs. 26 and 40–42, namely,
if �0�r� is the helium spherical ground-state density, defor-
mations are introduced as ��r , t�=�0�R�r , t��K−1, with

R�r,t� = r + �0�t� + 	
	=2

�

	
�=−	

	

�	��t�Z	��r̂� , �13�

where the real spherical harmonics are normalized as
�Z	� �Z	����= 4�

2	+1�		����� for convenience, and the normal-
ization K=N−1�d3r�0�R�r , t�� ensures particle number con-
servation. If the Mg wave function follows adiabatically the
helium density deformation, it can be shown that to second
order in �	�, the total energy of the system can be written as

E���̇�,���� � Egs +
1

2
M0

��̇0
2 + 2�E0

�2��0
2

+ 	
	=2

�

	
�=−	

	 �1

2
M	

��̇	�
2 +

2�

2	 + 1
E	

�2��	�
2 � ,

�14�

where Egs is the ground-state energy, M	
� is the hydrody-

namic mass associated with the 	 mode, and E	
�2� is the sec-

ond derivative of the total energy with respect to �	�. This
equation represents the Hamiltonian of a set of uncoupled
harmonic oscillators, whose quantization yields a ground
state to whose energy each mode contributes with �	�

= 1
2��	, with �	=� 4�E	

�2�

�2	+1�M	
� , and a ground-state wave func-

tion

������ = �M0
��0

��
�1/4

e−�M0
��0/2���0

2�
	=2

� �M	
��	

��
�1/4

e−�M	
��	/2���	

2
,

�15�

where �	
2 
	�=−	

	 �	�
2 . Details are given in Appendix A.

We have computed the hydrodynamic masses assuming
that the drop is large enough to use Eq. �A23�. We have
obtained M0

�=15.0mHe+0.28mMg�66.7 a.u. and M2
�

=1.9mHe+0.56mMg�21.0 a.u. In actual calculations, instead
of using Eq. �A10�, the energies E0

�2� and E2
�2� have been

numerically obtained by computing the total energy of the
system for different small values of �0 and �2. This has been
carried out by numerically introducing the desired deforma-

tion parameter into the ground-state density and renormaliz-
ing it, solving next the Schrödinger equation for the Mg atom
to determine the ground state of the impurity, and computing
the total energy of the system. Fitting these curves to a pa-
rabola, we have obtained E0

�2�=49.7 K Å−2 and E2
�2�

=16.8 K Å−2. We have then calculated the ground-state en-
ergies ��	 /2 and deformation mean amplitudes �	, obtain-
ing ��0 /2=10.6 K and ��2 /2=6.3 K, with mean ampli-
tudes �0=0.18 Å ��3.7%� and �2=0.42 Å ��8.5%�.

To quantitatively determine the effect of these deforma-
tions on the absorption spectrum, we have developed Eq. �3�
to first order in the deformation parameters, and have explic-
itly shown that to this order, only the breathing and quadru-
pole modes affect the dipole absorption spectrum. The details
are given in Appendix B, where we show that the breathing
mode affects the shift and shape of the line, whereas quad-
rupole modes only affect the shift.

Consequently, we restrict in Eq. �3� the deformation pa-
rameters needed to properly describe the homogeneous
broadening of the absorption dipole line, namely, d���
→d�0d5�2 and �X

gs�r , ����→���0 ,�2���r ,�0�, ��r ,�0� be-
ing the wave function of the Mg atom for a given �0 value.
We compute the spectrum as

I��� 
 4�
 d�0d5�2����0,�2��2	
m

 dr�r��r,�0��2

���� + �X
gs��0� −

1

�
Vm

ex�r,�0,��2���
= 4�
 d�0d5�2����0,�2��2�

�	
m
� �r��r,�0��2

dVm
ex�r,�0,��2��/dr

�
r=rm���

, �16�

where ��2�= ��2-2 ,�2-1 ,�20,�21,�22�, Vm
ex�r ,�0 , ��2�� are the

eigenvalues 	m�r , ���� of the excited potential matrix in Eq.
�C4�, and rm��� is the root of the equation �+�X

gs��0�
−Vm

ex�r ,�0 , ��2�� /�=0.
Expression �16� has been integrated using a Monte Carlo

method. We have sorted M =106 sets of values ���i

= ��0
i ,�2-2

i ,�2-1
i ,�20

i ,�21
i ,�22

i � using the square of the wave
function in Eq. �15� as probability density. Next, for each set
we have found the eigenvalues Vm

ex�r ,�0
i , ��2�i� of the Ui,j

matrix that define the potential-energy surfaces and have
used a trapezoidal rule to evaluate the integrals

Im��,���i� = 4�
 dr�r��r,�0
i ��2��� + �X

gs��0
i �

−
1

�
Vm

ex�r,�0
i ,��2�i�� �17�

using a discretized representation of the delta function.15 Fi-
nally, we have obtained the spectrum as

I��� 

1

M
	
i=1

M

	
m

Im��,���i� . �18�
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Figure 7 shows the absorption spectrum of one Mg atom
attached to 4He1000 in the vicinity of the 3s3p1P1←3s2 1S0
transition when homogeneous broadening is considered. We
have decomposed the absorption line into its three compo-
nents, the higher-frequency component being the � one. The
starred vertical line represents the gas-phase transition, and
the experimental curve, adapted from Ref. 5, has been verti-
cally offset for clarity. Also shown is the absorption spectrum
obtained by neglecting homogeneous broadening �hatched
region�. This figure shows that the both the energy and width
of the absorption peak that takes most of the experimental
intensity are correctly described by our calculations.

V. TWO MAGNESIUM ATOMS ATTACHED
TO A 4He DROP

The attachment of magnesium atoms in 4He droplets has
been recently addressed using resonant two-photon
ionization.6 In particular, the authors of Ref. 6 obtained the
absorption spectrum for drops doped with different selected
numbers of Mg atoms. From their measurements it appears
that two main features contribute to the observed line shapes,
one peaked at about 279 nm and another at about 282 nm.
This is in agreement with the results of Refs. 5 and 7 �we
recall that, actually, the two peaks were not resolved by the
authors of the bulk liquid experiment�. The structure at 282
nm, however, only appears if the droplet contains more than
one Mg atom. Thus the two-peak structure cannot be due to
the splitting of the absorption line due to dynamical quadru-
pole deformations of the helium bubble around the impurity,
as previously believed. We have indeed shown in Sec. IV
that this coupling only produces a broad peak, in good agree-
ment with the results of Ref. 6 for helium drops containing
just one Mg atom.

Another interesting observation reported in Ref. 6 is that
their experimental results for multiatom-doped 4He droplets
are not consistent with the formation of compact metallic Mg
clusters inside the 4He droplet. The magnesium atoms in the
droplet appear instead to be relatively isolated from each
other, showing only a weak interaction and leading to the
282 nm shift in the observation.

To confirm this scenario and find an explanation for the
origin of the low-energy component in the absorption peak,
we have carried out DFT calculations to determine the struc-
ture of a two-magnesium-doped 4He drop. Our goal is to
verify whether the helium density oscillation around a mag-
nesium atom may result in an energy barrier preventing the
Mg atoms from merging into a Mg2 dimer, as suggested by
Przystawik et al.6 To obtain the structure of two Mg atoms in
a 4He drop, we have minimized the energy of the system
written as

E��,�1,�2� =
�2

2mHe

 d3r����r��2 +
 d3rE��� +

�2

2mMg

 d3r����1�r��2 + ���2�r��2�

+
 
 d3rd3r����1�r��2 + ��2�r��2�VMg-He��r − r�����r�� +
 
 d3rd3r���1�r��2VMg-Mg��r − r�����2�r���2,

�19�

where VMg-Mg��r−r��� is the Mg-Mg pair potential in Ref. 43,
�i�r� is the wave function of the ith Mg atom and ��r�
=���r� represents again the 4He order parameter, where ��r�
is the 4He atomic density. In this expression, E��� is the 4He
potential-energy density.10

There are at least two additional effects which are not
considered when modeling the Mg-Mg interaction via the

pair potential in vacuum, as implied in the above expression.
The first is due to three-body �and higher� correlation effects
involving the 4He atoms surrounding the Mg pair: these
should exert an additional, albeit small, screening effect due
to He polarization, which is expected to reduce the absolute
value of the dispersion coefficients in the long-range part of
the Mg-Mg interaction. The second is a possible reduction in

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
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FIG. 7. �Color online� Total absorption spectrum of one Mg
atom attached to 4He1000 in the vicinity of the 3s3p1P1←3s2 1S0

transition. The line has been decomposed into its two � and one �
components; the former is the higher-frequency transition. The
starred vertical line represents the gas-phase transition. The experi-
mental curve, adapted for Ref. 5, has been vertically offset for clar-
ity. Also shown is the absorption spectrum obtained neglecting ho-
mogeneous broadening �hatched region�.

DENSITY FUNCTIONAL THEORY OF THE STRUCTURE… PHYSICAL REVIEW B 78, 184515 �2008�

184515-9



the Mg-atom polarizability due to the presence of the sur-
rounding 4He cavity which, because of the repulsive charac-
ter of the electron-He interaction, should make the electronic
distribution of the impurity atom slightly “stiffer,” thus re-
ducing further the values of the dispersion coefficients in the
Mg-Mg pair interactions. Although in principle these effects
might reduce the net interaction between a pair of Mg atoms
embedded in liquid 4He, in practice in the present system
they are indeed very small. The correction to the leading
term of the long-range dispersion interaction, −C6 /r6, due to
three-body correlation effects can be written to first order44

as −C6�1−2�n� /3� /r6, � being the static polarizability of
the host fluid ��He=1.39a0

3�. Such correction is on the order
of only 1% in our case. To estimate the change in the Mg
atomic polarizability due to the surrounding He, we com-
puted, using ab initio pseudopotential calculations, the
�static� polarizability of a Mg atom in the presence of an
effective �mainly repulsive� potential acting on the Mg va-
lence electrons due to the presence of the surrounding He.
The effective interaction is derived from the equilibrium
shape of the 4He bubble hosting the Mg atom, as predicted
by our DFT calculations, and assuming a �local� electron-He
density-dependent interaction which was proposed by Cheng
et al.45 We find a very small change in the static atomic
polarizability � of Mg. Assuming that, roughly, C6
�2, we
find a reduction in the C6 coefficient of about 1–2 %.

The minimization of the total-energy functional written
above under the constraint of a given number of helium at-
oms and normalized Mg ground-state wave functions should
in principle yield the equilibrium configuration of the sys-
tem. In practice, depending on the initial configuration, we
have found several local minima, whose origin is again the
“interference” of the He solvation shells around the Mg at-
oms. We have found three such metastable configurations for
�Mg+Mg�@ 4He1000 if we start the minimization procedure
with one Mg atom near the center of the droplet, and the
other placed off center, at some distance from the first. They
are displayed in Fig. 8. The energy difference between the
innermost �Mg-Mg distance d=9.3 Å� and the outermost
�d=18.5 Å� configurations is 12.5 K. The energy of the d
=9.3 Å configuration is sensibly that of the configuration
specularly symmetric about the z=0 plane �−5581.4 K� also
shown in the figure. It is worth noticing that, since R1/2
=22.2 Å and the radius of Mg is �5 Å, only the upper left
corner configuration has the Mg impurity in a surface state.

Figure 9 shows two density profiles of the symmetric con-
figuration obtained along the z axis �solid line� and the x or y
axis �dashed line�. It shows a relatively high-density helium
ring around the two-bubble waist, clearly visible in Fig. 8,
where the local density is almost three times the bulk liquid
4He density, and that prevents the collapse of the two-bubble
configuration. The Mg wave functions are peaked at
��4.75 Å and very narrow. This justifies a posteriori the
assumptions we have made to write the total energy of the
system, Eq. �19�.

Our results confirm the existence of the energy barrier
suggested in Ref. 6, which prevents the two Mg atoms from
coming closer than some 9 Å, and thus hinders, at least
temporarily, the formation of the Mg2 dimer. This barrier is
shown in Fig. 10 as a function of the Mg-Mg distance d,

which is kept fixed in a constrained energy minimization.
Note that the energy of the Mg+Mg system increases as d
does because the two Mg atoms in a drop form a state more
bound than that of a pure drop with the impurities well apart.

Since the height of the barrier is larger than the experi-
mental temperatures, two solvated Mg atoms will not easily
merge into a dimer, but rather form a metastable weakly
bound state. Based on these findings, we suggest that several
Mg atoms solvated inside 4He drops might form a sparse,
weakly bound “foamlike” aggregate rather than coalesce into
a more tightly bound metallic cluster. Partial coagulation of
impurities was already invoked by Lewerenz et al.46 to ex-
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FIG. 8. �Color online� From top to bottom and left to right,
�Mg+Mg�@ 4He1000 metastable configurations for Mg-Mg inter-
atomic distances d=18.5, 12.9, and 9.3 Å, and total energies of
−5567.8, −5573.9, and −5580.3 K, respectively. The bottom right
panel shows the specularly symmetric configuration at d=9.5 Å
with total energy of −5581.4 K. The brighter regions are the
higher-density ones.
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FIG. 9. �Color online� Helium density profiles of the �Mg
+Mg�@ 4He1000 symmetric configuration �d=9.5 Å� along the z
axis �solid line� and the x or y axis �dashed line�.
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plain their experimental findings for the successive capture
of foreign atoms and molecules in helium clusters �see also
Ref. 47 for the case of bulk liquid helium�. Very recently, a
kind of “quantum gel” has been predicted to be formed in
4He drops doped with neon atoms.48 Although some degree
of mutual isolation between foreign atoms is expected in the
case of strongly attractive impurities �such as those studied
in the two cases mentioned above�, where they are kept apart
by the presence a solid 4He layer coating the impurity,47 our
calculations show that this effect is possible even for rela-
tively weakly attractive impurities such as Mg, where such
solidlike 4He layer is absent.

One may estimate the mean life of the metastable state as

� = 2�� �Mg
�

U��deq�
exp��U/�kBT�� , �20�

where �Mg
� =MMg

� /2�20 a.u. is the hydrodynamic reduced
mass of the Mg+Mg system and �U is the barrier height.
From Fig. 10 we have that U��deq��40 K Å−2. This yields a
mean life of a few nanoseconds, which is about 5–6 orders of
magnitude smaller than the time needed for its experimental
detection.6,49 The mean life becomes increasingly large as the
relative angular momentum L deposited into the two Mg
system increases. Writing

�E = �E�L = 0� +
�2

2�Mg
�

L�L + 1�
d2 , �21�

one obtains the L-dependent energy barriers displayed in Fig.
10. For L=30 we have ��0.6 �s, and for L=40, �

�0.1 ms. Thus, there is an angular momentum window that
may yield mean lives compatible with the experimental find-
ings. Increasing L much further would produce too a distant
Mg+Mg system which would correspond to two indepen-
dent Mg impurities in a drop.

To check whether this foamlike structure of the Mg ag-
gregate also appears in 3He drops, we have carried out cal-
culations for �Mg+Mg�@ 3He1000 using the same density
functional as in Ref. 50, and the method presented in
this section. Figure 11 shows the energy of the �Mg
+Mg�@ 3He1000 complex as a function of d. For distances
smaller than some 8.6 Å, we have found that the system has
a tendency to collapse into a dimer—physically unreachable
from our starting point, Eq. �19�. We are led to conclude that
there is no barrier in the case of liquid 3He. The configura-
tion corresponding to the closest d we have calculated is
shown in Fig. 12.

We are now in the position to determine the effect of these
weakly bound systems on the LIF and R2PI experiments on
4He droplets containing more than one Mg atom. Notice that
the bottom right panel of Fig. 8 shows that the helium
bubbles have a nonzero static quadrupole moment, whereas
they are spherically symmetric for a single Mg atom in the
drop. It is precisely the existence of this static quadrupole
moment that causes an additional separation between the �
and � spectral components in the absorption spectra, which
results, as a consequence of the broadening of each line, in a
double-peak structure of the computed spectra, in semiquan-
titative agreement with the experimental data. Details of our
calculation are given in Appendix C; see Eq. �C6�. Figure 13
shows such two-peak structure corresponding to the specu-
larly symmetric configuration displayed in Fig. 8, and indi-
cates that the 282 nm structure observed in the experiments
may be attributed to the distortion produced by neighbor Mg
bubbles. These bubbles contribute incoherently to the ab-
sorption spectrum, and the relative intensities of the 282 and
279 nm peaks might reflect the different populations of drops
doped with one and two Mg atoms since those hosting a
compact cluster �dimer, trimer, etc.� would not yield an ab-
sorption signal in the neighborhood of the monomer
3s3p1P1←3s2 1S0 transition. Notice that a large static distor-
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tion of the helium bubble could also arise if the Mg atom
were in a shallow dimple at the drop surface, but Fig. 6
discards this possibility.

We finally note that we have not considered in our work
another source for an additional splitting of the spectral lines
of a Mg atom in the field produced by a neighboring one,
i.e., the resonant dipole-dipole interaction occurring during
the electronic excitation. This effect could in principle lead
to an additional �but probably small, compared with the ef-
fect discussed here� splitting of the calculated lines. An ac-
curate determination of the dipole moment is required for a
proper inclusion of this effect, which is beyond the scope of
the present paper.

VI. SUMMARY

We have obtained, within DFT, the structure of 4He drop-
lets doped with Mg atoms and have discussed in detail the

magnesium solvation properties. In agreement with previous
DMC calculations,1,3 we have found that Mg is not fully
solvated in small 4He drops, whereas it becomes fully sol-
vated in a large droplet.

As a consequence of its interaction with the helium envi-
ronment, it turns out that magnesium is radially quite delo-
calized inside the droplets. This large delocalization provides
a way to reconcile two contradictory results on the solution
of one Mg atom in a 4He drop, namely, center localization
�LIF and R2PI experiments5,6� and surface localization
�electron-impact ionization experiments9�.

We have calculated the absorption spectrum of magne-
sium in the vicinity of the 3s3p1P1←3s2 1S0 transition. For
the large Mg@ 4He1000 droplet, where Mg is fully solvated,
we reproduce the more intense component of the absorption
line found by LIF and R2PI experiments in large drops and
in liquid helium. This agreement is only achieved when ho-
mogeneous broadening due to the coupling of the dipole ex-
citation with the quadrupole deformations of the helium
bubble is fully taken into account. This coupling is naturally
included in quantum Monte Carlo simulations of the absorp-
tion spectrum,51,52 whereby one takes advantage of the inher-
ent fluctuations present in these simulations. These fluctua-
tions are the full quantal equivalent of the dynamical
distortions of the helium bubble we have introduced for the
description of homogeneous broadening. An alternative
method to include shape fluctuations within DFT has been
proposed and applied to the case of Cs in bulk liquid
helium.53 It would be interesting to adapt this method to the
drop geometry since it is not simple to handle dynamical
bubble distortions in a nonspherical environment or in 3He
drops.

To explain the origin of the low-energy peak in the ab-
sorption line and confirm the likely existence of soft, foam-
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like structure of Mg aggregates in 4He drops as proposed by
Przystawik et al.,6 we have addressed the properties of two
Mg atoms in 4He1000 and have found that, indeed, Mg atoms
are kept apart by the presence of helium atoms that prevent
the formation of a compact Mg cluster. We have estimated
that the height of the energy barrier for the formation of the
Mg dimer in 4He drops is �2–3 K, which should be
enough, at the droplet experimental temperature of 0.4 K, to
guarantee a relatively long lifetime to these weakly bound
Mg aggregates. We predict that, contrarily, Mg atoms ad-
sorbed in 3He droplets do not form such metastable states.

The presence of neighboring Mg atoms in these structures
induces a static quadrupole deformation in the helium bubble
accommodating a Mg atom. As a consequence, the dipole
absorption line around the 3s3p1P1←3s2 1S0 transition
splits. We attribute to this static quadrupole moment the ori-
gin of the low-energy peak in the absorption line, and con-
firm the suggestion made by the Rostock group6 that the
splitting of the absorption line, rather than being due to a
dynamical �Jahn-Teller� deformation of the helium bubble, is
due to the presence of more than one magnesium atom in the
same droplet.

Our previous study on Ca-doped helium drops15 and the
present work show that, within the diatomics-in-molecules
approach and provided the impurity-helium pair potentials
are accurately determined, DFT is able to quantitatively ad-
dress the dipole absorption of dopants in 4He drops whose
size is relevant for the analysis of current experiments.
Clearly, the influence of an inaccurate pair potential on the
solvation properties of a given impurity shows up not only
within the DFT approach but also within any other method.
A clear example is presented in Ref. 1, where the structure of
small drops is addressed within quantum Monte Carlo. An-
other key issue is how the choice of the density functional
may affect the final results. This is as relevant as the choice
of the He-He potential within any Monte Carlo approach. In
this respect, the parallel evolutions of both DFT and quantum
MC approaches have come to establish the Aziz potential54

and the DF of Ref. 10 as the tools of reference for addressing
helium systems.

Finally, we want to point out that, while we have a con-
sistent scenario that explains the results of LIF and R2PI
experiments, the understanding of the electron-impact ion-
ization experiment reported in Ref. 9 still requires further
analysis. Indeed, since Mg atoms may be in the bulk of the
drop or just beneath the drop surface, the experimental ion
yield curve should reflect both possibilities, whereas appar-
ently it does not �see Fig. 2 of Ref. 9�. One possible expla-
nation may be that for electron-impact experiments, a N
=10 000 drop is still small, so that the impurity is always
close enough to the drop surface to make the Penning ion-
ization process prevail in the direct formation of a He+ ion.
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APPENDIX A

In this appendix we obtain the energy of the doped drop
up to second order in the deformation parameters and the
hydrodynamic mass of the helium bubble. To this end,
the helium order parameter and Mg wave function are ex-
pressed as ��r , t�=���r , t� exp�i

mHe

� S�r , t�� and ��r , t�
= ���r , t��exp�i

mMg

� ��r , t��, respectively. Neglecting the
velocity-dependent terms of the Orsay-Trento functional that
mimic backflow effects,10 the total energy of the system is
written as

E =
1

2
mHe
 d3r��r,t���S�r,t��2

+
1

2
mMg
 d3r���r,t��2����r,t��2

+
�2

2mHe

 d3r�����r,t��2

+
�2

2mMg

 d3r�����r,t���2 +
 d3rE���

+
 
 d3rd3r����r,t��2VMg-He��r − r�����r�,t� ,

�A1�

where the functions ������ and S��� fulfill the continuity
equations

−
�

�t
��r,t� = ����r,t� � S�r,t�� , �A2�

−
�

�t
���r,t��2 = �����r,t��2 � ��r,t�� �A3�

that allow to identify S�r , t� and ��r , t� as velocity field po-
tentials, and the first two terms in Eq. �A1� as a collective
kinetic energy, whose density we denote as t�� ,S , ��� ,��.
Thus,

E = T + V =
 d3r�t��,S, ���,�� + v��, ����� . �A4�

In the adiabatic approximation, the dynamics of the
system requires the following steps: �i� introduce a set of
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collective variables �or deformation parameters� ���t�� that
define the helium density, ��r , t�=��r , ���t���; �ii� for each
helium configuration defined by ���, solve the time-
independent Schrödinger equation obeyed by ���r , �����;
�iii� obtain the potential surface V�� , ���� by computing the
static energy for each configuration; �iv� determine the ve-
locity field potentials S�r , ���t��� and ��r , ���t��� by solving
the continuity equations; �v� compute the collective kinetic
energy to obtain the hydrodynamic mass; and �vi� solve the
equation of motion associated with the effective Hamiltonian
written as a function the deformation parameters.

We aim to describe harmonic deformations of a spherical
helium bubble created by an impurity in the ground state,
and have to determine the helium density ��r , ���t��� result-
ing from a change in the radial distance to the center of the
spherical bubble induced by the ���t�� parameters:

r → r + 	
	=0

�

	
�=−	

	

�	��t�Z	��r̂� , �A5�

where the 	=1 deformation is now introduced to allow for
displacements of the bubble. We recall that the real spherical
harmonics have been normalized as �Z	� �Z	����
= 4�

2	+1�		�����, with Z00�r̂�=1, Z10�r̂�=cos �, etc. The
breathing mode corresponds to 	=0, an infinitesimal trans-
lation to 	=1 �provided the fluid is incompressible�, and a
quadrupolar deformation to 	=2. To first order, the density
can be written as

��r,t� � �0�r� + �0��r�	
	=0

�

	
�=−	

	

�	��t�Z	��r̂� , �A6�

where from now on, the prime will denote the derivative of
the function with respect to its argument.

1. Impurity wave function

To first order, the wave function ���r , ����� is written as

���r,t�� � �0�r� + 	
	=0

�

	
�=−	

	

�	��t��	�
�1��r� . �A7�

The amplitudes �	�
�1��r� are determined in first-order pertur-

bation theory from the multipole expansion of the impurity-
helium pair potential

U	�
�1��r� =
 d3r��0��r��Z	��r̂��VX-He��r − r���

=
 d3r��0��r��Z	��r̂��	
	�

VX-He
	 �r,r��Z	��r̂�Z	��r̂��


 U	
�1��r�Z	��r̂� , �A8�

which defines U	
�1��r�. We obtain

�	�
�1��r� = 	

n�m

��0�U	
�1�Z	���n�Z�m�
�0 − �n�m

�n��r�Z�m�r̂�

= �	
n

4�

2	 + 1

��0�U	
�1���n	�

�0 − �n	�

�n	�r��Z	��r̂�


 �	
�1��r�Z	��r̂� , �A9�

which shows that, actually, �	�
�1� is � independent.

Once we have obtained the wave function, we can com-
pute the energy surface V�� , ����. Since we describe defor-
mations around a spherically symmetric ground state, the
first-order term vanishes, and the derivative g	


�2v /��	���	��� is also spherically symmetric. We can
evaluate the second-order contribution to the collective po-
tential energy as

V�2� = 	
	�

	
	���

1

2

 d3r� �2v

��	� � �	���
�

�0,�0

�	�Z	��r̂��	���Z	����r̂� = 	
	�

2�

2	 + 1



0

�

drr2g	�r��	�
2 
 	

	=0

�
2�

2	 + 1
E	

�2� 	
�=−	

	

�	�
2 ,

�A10�

which defines E	
�2�. The parameters ��� are the dynamical

variables that describe the evolution of the system.

2. Velocity field potentials

Introducing the expansion S�r , t�
		��̇	��t�S̃	�r�Z	��r̂�,
where the dot denotes the time derivative, the continuity
equation for the liquid helium is, to first order,

− 	
	�

�̇	�Z	�

d�0

dr
= 	

	�

�̇	�Z	�� d�0

dr

dS̃	

dr

+ �0�d2S̃	

dr2 +
2

r

dS̃	

dr
−

	�	 + 1�
r2 S̃	�� .

�A11�

Hence,
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−
d�0

dr
=

d�0

dr

dS̃	

dr
+ �0�d2S̃	

dr2 +
2

r

dS̃	

dr
−

	�	 + 1�
r2 S̃	� .

�A12�

When r→�, the density vanishes for a drop and approaches
�b for the liquid. In the latter case, Eq. �A12� reduces to the
radial part of the Laplace equation

0 =
d2S̃	

dr2 +
2

r

dS̃	

dr
−

	�	 + 1�
r2 S̃	, �A13�

whose general solution is

S̃	�r� = A	r	 +
B	

r	+1 . �A14�

We have solved Eq. �A12� adapting the method proposed
in Ref. 55. Let ri be the first point where �0�r� is significantly
different from zero ��0�r�=0 for r
ri�. At this point, Eq.
�A12� implies that

�−
d�0

dr
�

ri

= � d�0

dr

dS̃	

dr
�

ri

, �A15�

which determines the boundary condition at ri:

� dS̃	

dr
�

ri

= − 1. �A16�

For the liquid, the other boundary condition is that when r
→�, the solution behaves as in Eq. �A14� with A	=0 to have
a physically acceptable solution. If the bubble has a sharp

surface of radius ri and the liquid is uniform, S̃	�r� is com-
pletely determined by Eq. �A14� and the velocity field poten-
tial that fulfills Eq. �A16� corresponds to the coefficients

A	 = 0,

B	 =
ri

	+2

	 + 1
. �A17�

To find the velocity field potential in a large drop, we
have defined a radial distance rb, far from the bubble and
from the drop surface at R1/2, around which one may con-
sider that the density is that of the liquid. Starting from r
=rb with the liquid solution fixed by the coefficients given in

Eq. �A17�, we have integrated inward Eq. �A12�, finding the

solutions S̃	
inh�r� and S̃	

h�r� that correspond, respectively, to
the nonhomogeneous and to the homogeneous differential
equations that result by setting to zero the left-hand side of
Eq. �A12�. The general solution that satisfy the boundary
condition Eq. �A16� is obtained as

S̃��r� = S̃	
inh�r� + CS̃	

h�r� , �A18�

with

C = −

1 +
dS̃	

inh

dr
�ri

dS̃	
h

dr
�ri

. �A19�

The field � is analogously obtained after introducing the
expansion ��r , t�=		��̇	��t��̃	�r�Z	��r̂�. We have assumed
that the wave function of the impurity in the ground state is
a Gaussian �0�r�=A exp�−�r2� whose shape has been deter-
mined by fitting it to the actual wave function, and have
introduced a cutoff distance rg such that safely �0�r�=0 if
r�rg. We then obtain the following differential equation to
determine �̃	:

4�r = − 4�r
d�̃	

dr
+

d2�̃	

dr2 +
2

r

d�̃	

dr
−

	�	 + 1�
r2 �̃	.

�A20�

The appropriate boundary conditions are

�d�̃	

dr
�

r0

= − 1,

�̃	�0� = 0, �A21�

and the solution is analytical but very involved �we have
found it by using the MATHEMATICA package�. The dipole
mode is the only exception; if 	=1 we have �̃1=−r.

3. Kinetic energy

Once the velocity fields S�r , t� and ��r , t� have been de-
termined, the collective kinetic energy can be easily calcu-
lated to second order in the collective parameters:

T =
 d3rt��,S, ���,�� =
1

2
mHe
 d3r��r,t���S�r,t��2 +

1

2
mMg
 d3r���r,t��2����r,t��2

� 	
	=0

�
4�

2	 + 1
� 1

2
mHe
 drr2�0�r���dS̃	

dr
�2

+
	�	 + 1�

r2 S̃	
2�

+
1

2
mMg
 drr2��0�r��2��d�̃	

dr
�2

+
	�	 + 1�

r2 �̃	
2�� 	

�=−	

	

�̇	�
2 


1

2 	
	=0

�

M	
� 	

�=−	

	

�̇	�
2 , �A22�
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which defines the hydrodynamic mass M	
� for each 	 mode.

Using the continuity equations and the Gauss theorem,
one can find an alternative expression for M	

�

M	
� =

4�

2	 + 1
�mHe
 drr2�0��r�S̃	�r�

+ mMg
 drr22�0�r��0��r��̃	�r�� . �A23�

We have checked that both expressions yield the same values
for M	

�, which constitutes a test on the numerical accuracy of
the method. It is easy to see from Eq. �A22� that in bulk
liquid helium, the 	=1 hydrodynamic mass coincides with
that given in Ref. 55. Using �̃1=−r, it is also easy to check
from the above expressions that the impurity contribution to
the 	=1 hydrodynamic mass is just the bare mass of the Mg
atom. The sum of Eqs. �A10� and �A22� represents the
Hamiltonian of a set of uncoupled harmonic oscillators
whose frequency only depends on 	.

APPENDIX B

In this appendix we work out in detail the expressions we
have used to describe the homogeneous broadening of the
absorption line. We consider a spherical ground state defined
by a helium density �0�r� and impurity wave function �0�r�,
both modified by the action of the breathing mode defined in
Eq. �13�, namely, ��r ,�0�=�0�r+�0�K−1, and ��r ,�0�. The
computation of the spectra for a given �0 can be carried out
starting from Eq. �3�,

I��,�0� = 4�	
i

 dr�r��r,�0��2��� + ���0� − Vi

ex�r,�0�/�� ,

�B1�

where �����=���0� is the impurity eigenenergy and
Vi

ex�r ,�0� are the PESs defined by Eq. �5�, where ��� reduces
to �0. Notice that �0 is not introduced perturbatively; it is
unnecessary since this mode does not break the spherical
symmetry. Next, we perturbatively introduce the modes with
	�2 to first order; Eq. �B1� becomes

I��,���� � I��,�0� + 	
i

	
	=2

�

	
�=−	

	 �
 dr��r,�0��	
�1��r,�0�Z	��r̂���� + ���0� − Vi

ex�r,�0�/��

− 4�
 dr�r��r,�0��2���� + ���0� − Vi
ex�r,�0�/��

1

�
�	�

i �r���	�, �B2�

where �	�
i �r�=�Vi

ex�r� /��	� ����	�2=0. The first integral is zero due to the orthogonality of the spherical harmonics. To evaluate
the second integral, we expand �	�

i �r� as a power series of r. Taken into account that the PESs have a stationary point at r
=0 due to the spherical geometry—the first-order term is zero—we can safely stop the expansion at the zeroth-order term since
the wave function ��r ,�0� is very narrow,

I��,���� � I��,�0� − 4�	
i

	
	=2

�

	
�=−	

	 
 dr�r��r,�0��2���� − ���0� − Vi
ex�r,�0�/��� 1

�
�	�

i �0��	�� . �B3�

This equation may be interpreted as the expansion to first order of a shift in �, so it can be written as

I��,���� � 4�	
i

 dr�r��r,�0��2��� + ���0� −

1

�
�Vi

ex�r,�0� + 	
	=2

�

	
�=−	

	

�	�
i �0��	���

= 	
i

I�� + 	
	=2

�

	
�=−	

	

�	�
i �0��	�/�,�0� . �B4�

Thus the eigenvalues �	�
i �0� are related to the diagonalization of the expansion of Uij�r , ���� defined in Eq. �4�. Writing this

matrix equation as a function of the real spherical harmonics
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U�r,���� =
 d3r���r� + r,����� 1

3
�V��r�� + 2V��r���Z00�r̂��1 0 0

0 1 0

0 0 1
� +

1
�3

�V��r�� − V��r���

��
−

1
�3

Z20�r̂� + Z22�r̂� Z2-2�r̂� Z21�r̂�

Z2-2�r̂� −
1
�3

Z20�r̂� − Z22�r̂� Z2-1�r̂�

Z21�r̂� Z2-1�r̂�
2
�3

Z20�r̂�
�� , �B5�

expanding ��r�+r , ���� to first order in ���	�2, and evaluating the first-order contribution at r=0, we obtain

U�r,���� � U�r,�0� + 	
	=2

�

	
�=−	

	
4�

2	 + 1

 dr�r�2���r�,�0�

1
�3

�V��r�� − V��r���

��
−

1
�3

�2	�0� + �2	�2� �2	�−2� �2	�1�

�2	�−2� −
1
�3

�2	�0� − �2	�2� �2	�−1�

�2	�1� �2	�−1�

2
�3

�2	�0�

��	�. �B6�

This shows that, to first order, only quadrupolar deformations
are coupled to the dipole electronic transition, and that its
effect is a shift of the spectral line, as shown in Eq. �B4�. At
variance with the approach of Ref. 26, where the above ma-
trix is approximated by its diagonal expression, implying that
only the �=0 and 2 components of the quadrupole deforma-
tion are considered, our approach incorporates all five com-
ponents.

The relation between the eigenvalues 	i�r , ���� of
U�r , ���� and the coefficients �	�

i �0� is

	i�r,���� 
 Vi
ex�r,�0� + 	

�=−2

2

�2�
i �0��2�. �B7�

Finally, the total spectrum is written as

I��� 
 4�
 d�0d5�2����0,�2��2I��,����

� 4�
 d�0d5�2����0,�2��2	
m

 dr�r��r,�0��2

���� + �X
gs��0� −

1

�
	i�r,����� . �B8�

APPENDIX C

In this appendix we consider that the doped drop is cylin-
drically symmetric. We expand the helium density and
ground-state wave function into spherical harmonics with
�=0,

��r� = 	
	=0

�

�	�̃	�r�Z	0�r̂� ,

��r� = 	
	=0

�

�	�̃	�r�Z	0�r̂� , �C1�

where �	= 2	+1
4� �d3r��r�Z	0�r̂� and �̃	�r�

= 2	+1
4��	

�d���r�Z	0�r̂�, with analogous definitions for �̃	 and
�	. If �0 �	!0 �⇒�0 �	!0�, we can compute the line
shape to first order in �	!0 ��	!0�; in analogy with Eq. �B2�
we write

I��,���� � I��,�0� − 4�	
i

	
	=1

� 
 dr�r�0�̃0�r��2����

− ���0� − Vi
ex�r,�0�/��

1

�
�	0

i �0��	, �C2�

with �	0
i defined now by the potential matrix
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U�r,���� � U�r,�0� +
4�

15

 dr�r�2�̃2�r���V��r�� − V��r����− 1 0 0

0 − 1 0

0 0 2
��2. �C3�

Introducing the shape deformations defined in Eq. �A5�, to first order this matrix becomes

U�r,���,���� � U�r,�0,�0� +
4�

5�3

 dr�r�2�0�̃0��r�,�0��V��r�� − V��r����

−
1
�3

�̃20 + �22 �2-2 �21

�2-2 −
1
�3

�̃20 − �22 �2−1

�21 �2-1

2
�3

�̃20
� ,

�C4�

where we have defined �̃20
�20+�2C, with

C =

 dr�r�2�̃2�r���V��r�� − V��r���


 dr�r�2�0�̃0��r�,�0��V��r�� − V��r���
. �C5�

These equations show that the computation of the line shape for this geometry is as in the spherical case but with a shift in the
�20 parameter.

The dipole absorption spectrum is finally obtained as

I��� 
 4�
 d�0d5�2����0,�2���
2	

m

 dr�r��r,�0��2��� + �X

gs��0� −
1

�
	i�r,����� , �C6�

with �2�
2= ��20−�2C�2+�22

2 +�2-2
2 +�21

2 +�2-1
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