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On the basis of Monte Carlo simulations using the Potts model Hamiltonian, we investigate the complex
temperature dependence of magnetization of ferromagnetic Ni-Mn-X �X=In,Sn,Sb� Heusler alloys, in which
part of the Mn atoms, which occupy the X sites, interacts antiferromagnetically with the Mn atoms on the Mn
sublattice. It is shown that this antiferromagnetic exchange is responsible for metamagnetic behavior and a
series of magnetic phase transitions in the Heusler alloys. For an optimal choice of parameters of the model
Hamiltonian, which have partially been obtained from ab initio calculations, we are able to describe the
physics associated with the coupled martensitic-magnetic phase transition. The simulations lead to a qualitative
agreement with the experimental magnetization curves and their dependence on temperature and composition.
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I. INTRODUCTION

In recent years, ferromagnetic �FM� Ni-Mn-X �X
=Ga, In,Sn,Sb� Heusler alloys have attracted attention in
view of their unique properties such as the shape memory
effect, giant magnetocaloric effect �MCE�, large magnetore-
sistance, and other interesting magnetic properties such as
the coupled magnetic-martensitic transformation, i.e., the so-
called magnetostructural phase transition.1–9 For these alloys,
the values of the MCE are comparable with those of the best
magnetocaloric materials known so far, such as Gd-Si-Ge,
La-Fe-Si, and Mn-As. The reason for the large MCE, i.e.,
large adiabatic temperature change �T in an external mag-
netic field, is closely related to the coupled magnetostructural
phase transition, which exists in some off-stoichiometric FM
Heusler systems over an extended range of compositions.7–9

See also Ref. 10 for new information regarding the absolute
value of �T for the Ni2.19Mn0.81Ga alloy. The properties of
magnetic Heusler alloys are of technological interest involv-
ing potential applications in actuator and magnetic refrigera-
tion devices.

Recent experiments have shown that the structural phase
transition from the paramagnetic �PM� cubic high-
temperature austenite to FM tetragonal low-temperature mar-
tensite occurs with a steep slope as a function of the valence
electron number per atom e /a,11 which underlines the impor-
tance of the interplay of composition, band filling, and mag-
netic interactions in these alloys. From ab initio calculations
of stoichiometric Ni50Mn25X25 compounds it is known that
the magnetic moments of nearest-neighbor Ni-Mn atoms
�with Ni and Mn atoms on their regular sublattice sites� in-
teract ferromagnetically; whereas the Mn-Mn interactions are
predominantly FM but may have antiferromagnetic �AF�
contributions depending on the distance of the Mn atoms.
This means that even for the stoichiometric systems, the ab
initio calculations reveal latent tendencies toward AF inter-
actions which mostly involve the Mn-Mn interactions due to
the long-range oscillatory behavior of the exchange interac-

tions. This has been discussed in a series of papers dealing
with ab initio calculations of magnetic exchange interaction
parameters using different tools, see Refs. 12–17 and refer-
ences therein. The magnetic interactions of Ni and Mn with
the X atoms are usually small and negligible.18 For the cor-
responding nonstoichiometric Ni50Mn25+xX25−x alloys, we
have undertaken additional ab initio calculations19,20 using
the method in Ref. 21. These computations as well as results
of recent experiments9 highlight again that in the martensitic
state, the Mn-excess atoms occupying the X-sublattice sites
�X=In,Sb,Sn� interact with the Mn atoms on the Mn-
sublattice sites antiferromagnetically. In particular, an en-
hancement of the AF interactions occurs at low temperatures.
The AF interactions are also responsible for the drop in the
thermomagnetization curves.9,11,22,23

Some results of our ab initio calculations regarding trends
of the zero-temperature magnetic exchange coupling con-
stants of stoichiometric Ni2MnGa, Ni2MnIn, and nonsto-
ichiometric Ni50Mn34In16 �Ni2Mn1.36In0.64�, respectively, us-
ing the Korringa-Kohn-Rostoker method in combination
with the coherent potential approximation �KKR-CPA�,19,20

are presented in Fig. 1 and listed in Table I. The calculations
have been done for the cubic structure in each case and also
for the tetragonal structure in case of Ni50Mn34In16. In the
Monte Carlo simulations using the Heisenberg and Potts
model, we will rely on these values.

Thus, we may conclude that in the martensitic phase of
Ni50Mn25+xX25−x, FM and AF interactions coexist and may
also lead to competing FM and AF regions if the sample is
inhomogeneous with respect to concentration �as is the case
in Ni50Mn25+xSb25−x for 10�x�16 �Ref. 24��. The conse-
quence is that in these systems a sequence of phase transi-
tions occurs, which are experimentally observed, from PM
austenite to FM austenite and then to a mixed AF-FM mar-
tensitic state with decreasing temperature.9,11,22,23 The result-
ing complex phase diagram in case of Ni50Mn25+xSb25−x is
shown in Fig. 2. Note that a theoretical phase diagram repro-
ducing the different phases has already been obtained by us
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using a phenomenological Ginzburg-Landau theory with
Landau parameters taken from experiments where
possible.25,26

From a theoretical point of view, it is a demanding task to
try to obtain all phases in a self-consistent way. This would
require the ab initio evaluation of all magnetic exchange
parameters, i.e., for each composition, structure �austenite
and martensite�, and temperature and compare at each step of
the calculation the corresponding free energies �consisting of
internal energy contributions and entropic contributions from
magnetic and phonon degrees of freedom with an underlying
self-consistent determination of the temperature variation in
the lattice constant�. While this is possible for simple metals
in reasonable computation time, for instance, see the work in
Refs. 27 and 28, for the Heusler alloys, this is beyond our
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FIG. 1. �Color online� Top two
panels: magnetic exchange inter-
actions of the cubic phases of stoi-
chiometric Ni2MnGa and
Ni2MnIn as a function of the dis-
tance between the atoms �in units
of the lattice constant�. Lower
panel: magnetic exchange interac-
tions of nonstoichiometric cubic
Ni50Mn34In16 �Ni2Mn1.36In0.64�.
Mn-Mn, Mn-Ga, Mn-In, and
Mn-Ni denote the magnetic inter-
actions between the atoms on their
respective sublattices. In the lower
panel, the index 1 refers to Mn at-
oms on the Mn sublattice and in-
dex 2 to Mn atoms on the In sub-
lattice, respectively.

TABLE I. Nearest-neighbor magnetic exchange interactions Jij

in meV of some cubic Ni-Mn-X Heusler systems. Mn1 refers to Mn
atoms on the original Mn sublattice; Mn2 refers to Mn atoms on the
X sublattice �Refs. 19 and 20�.

Jij Ni2MnGa Ni2MnIn Ni50Mn34In16

Mn1-Mn1 −0.41 0.41 −0.83

Mn1-Mn2 −5.74

Mn2-Mn2 −1.48

Mn1-Ni 4.67 3.74 3.19

Mn2-Ni 2.82
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FIG. 2. �Color online� Temperature-composition �T-x� phase
diagram showing the six different magnetic regions of
Ni50Mn25+xSb25−x �figure adapted from Ref. 24�. Phase A is the
exchange bias �EB� region where FM and AF regions exist in the
system. Phase B is the martensitic region with coexistence of both
FM and AF orderings. Phase C is the FM austenitic phase. Phase D
is the PM and AF phases. Phase E is the PM austenitic phase and
phase F denotes the AF phase. Labels A and M at TC refer to the
Curie temperatures in the austenitic �triangles up� and martensitic
�triangles down� regions, respectively. Filled �blue� circles mark the
martensitic transformation. See Ref. 24 for more details.
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computational facilities and beyond the purpose of the
present paper.

The purpose of this paper is to present a unified descrip-
tion of structural martensitic and associated first-order mag-
netic phase transitions �magnetostructural transitions� by us-
ing a model Hamiltonian as simple as possible, which,
however, would allow to explore the richness of the phase
diagram for small compositional changes as, for instance,
displayed by the phase diagram of Ni50Mn25+xSb25−x shown
in Fig. 2.24 The temperature variation in the corresponding
magnetization curves for fixed concentrations x in Fig. 3
shows how subtle changes in composition lead to drastic
changes in the behavior of M�T�.

Therefore, in this paper, we have chosen a q-state Potts
model29,30 Monte Carlo method to simulate the magnetic in-
teractions and have extended this method by incorporating
the Blume-Emery-Griffiths �BEG� �Refs. 31� model in order
to simultaneously allow for a structural transformation from
the cubic to tetragonal lattice as well as retaining two mar-
tensitic tetragonal variants in the martensitic phase. The
model parameters have been chosen such that, for example,
the important AF Mn1-Mn2 interaction is of the order of the
value listed in Table I with slight changes for the different
alloys considered; the energy changes associated with the
structural changes are also not too far off when compared to
ab initio total-energy differences.

In order to demonstrate the important role of the q-state
Potts model—employed in this paper—for the simulation of
first-order magnetic phase transitions seen in the experi-
ments, we show in Fig. 4 results of Monte Carlo simulations
using the classical Heisenberg model with ab initio exchange
parameters for the cubic �c /a=1� and tetragonal �c /a
=0.94� phases of Ni50Mn34In16. There are two important ob-
servations. First, the simulations yield Curie temperatures
which approximately agree with the experimental ones32 for
the austenitic �c /a=1� and martensitic �c /a=0.94� phases,
respectively �see also Fig. 5�. Second, for the composition
Ni50Mn34In16, the alloy is on the edge of a transformation
from the cubic to the martensitic structure. Figure 4 shows
that the magnetic moments of Mn and Ni decrease continu-
ously and smoothly for both phases with increasing tempera-
ture, which is typical for a second-order-like phase transition,

in spite of the fact of having competing FM and AF ab initio
exchange interactions. Thus, without adding further terms to
the Hamiltonian and without reformulating the magnetic in-
teractions of the model Hamiltonian, the Monte Carlo simu-
lations using the simple Heisenberg Hamiltonian do not re-
produce the strong increase in the magnetization at the Curie
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FIG. 3. �Color online� Experimental variation in magnetization
of Ni50Mn25+xSb25−x as a function of temperature for different com-
positions. The data have been taken from Ref. 24.
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FIG. 4. �Color online� Variation in the individual magnetic mo-
ments of Mn1, Mn2, and Ni atoms of Ni50Mn34In16 �per volume or
formula unit� alloy as a function of temperature as obtained from
Monte Carlo simulations for the classical Heisenberg model. The
solid lines represent magnetic behavior in the cubic �austenitic�
structure �c /a=1�, and the dashed lines show the temperature de-
pendence of spin moments for the tetragonal �martensitic� structure
�c /a=0.94�.
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FIG. 5. �Color online� Field-cooled �FC�, field-heated �FH�, and
zero-field-cooled �ZFC� experimental magnetization curves of
Ni50Mn34In16 �in an external magnetic field of �0H=5 mT�. The
arrows mark the Curie temperature in the austenitic phase TC

A

=300 K, the martensitic start temperature Ms=264 K, and the Cu-
rie temperature in the martensitic phase TC

M =200 K, respectively.
Note that the FC and FH M�T� curves in the martensitic phase
qualitatively agree with M�T� for c /a=0.94 of the Heisenberg
model in Fig. 4. The strong increase in M�T� in the austenitic phase
below TC

A cannot be reproduced by the Heisenberg model, which
lacks the information of the detailed magnetic behavior of the poly-
crystalline sample as well as the information about the change in
the magnetic exchange parameters with change in the lattice param-
eters of the martensitic phase when decreasing the temperature be-
low TC

A. The figure has been adapted from Ref. 32.
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temperature for the PM→FM transition with decreasing
temperature nor the decrease �drop� in the magnetization
when further decreasing the temperature near the structural
transition temperature from FM austenite to mixed AF-FM
martensite, as observed experimentally. This means that the
simple classical Heisenberg model without additional terms
cannot account for the richness of the phase diagram. The
advantage of choosing the q-state Potts model compared to
the classical Heisenberg model is that the former allows first-
order phase transitions for q�4, and, as discussed in Sec. II,
the refined q-state Potts model, in addition, allows to de-
scribe the magnetostructural phase transition as well.

For the merit of work done by using an effective Heisen-
berg model for the description of magnetocaloric properties
of rare-earth-based compounds and Heusler systems, we re-
fer to Refs. 33–38. In addition to this model, which allows
only a magnetic transition of second order �as shown in Fig.
4� without taking into account the structural transformation,
other work exists as in Ref. 39, where the model has been
extended to describe the premartensitic phase transformation
in stoichiometric Ni2MnGa. In this two-dimensional model,
interaction between structural and magnetic degrees of free-
dom was included by using the Ising model and the degen-
erated three-state BEG model. Our model employed here
goes beyond this ansatz.

Another question is whether the physical properties of
Ni-Mn-X would require to consider also the softening of
phonons associated with premartensitic or martensitic trans-
formation observed in some of the alloys close to stoichio-
metric composition.40–42 In most pronounced cases, the pho-
non softening involves energy changes in the order of 1–2
meV. In the BEG model,39 the authors assumed that the
structural part of the exchange constant is proportional to the
soft phonon energy at the phase-transition temperature. In
our Monte Carlo simulation of magnetic properties of
Ni-Mn-X using an extended BEG model, which allows for
coupled magnetostructural phase transitions from FM auste-
nite to mixed AF-FM martensite and magnetic phase transi-
tions from PM to FM austenite, the same order of energies is
taken into account as in Ref. 39. An explicit calculation of
the phonon softening for the off-stoichiometric Heusler sys-
tems is not undertaken; this is beyond the goals of the
present paper.

II. THEORETICAL MODEL

In the presence of a structural phase transformation, the
martensitic phase may exhibit several variants, i.e., existence
of degenerate phases. These variants can be described by
lattice distortions �compression or expansion� during the
phase transition along the x, y, and z axes, which for the
cubic phase yields six structural variants. The high-
temperature phase corresponds to a phase with vanishing dis-
placements, i.e., x=y=z=0. Thus, during cooling, the auste-
nitic phase may choose any of the six variants. In our model,
we consider only two variants of martensite with lattice de-
formation along �x or �y or �z axes, i.e., a double-
degenerated cubic phase.

In the model defined below, we use a simple three-
dimensional cubic lattice with periodic boundary conditions.

Although the magnetic interactions between the Ni-Mn and
X-Mn atoms are nonzero, for the sake of simplicity, we con-
sider a renormalized effective spin model involving only the
interactions between the magnetic moments of the Mn atoms
and neglect the contributions from the Ni and X atoms.

Thus, in our effective model we consider all lattice sites to
be occupied by magnetic Mn atoms. In case of stoichio-
metric Ni2MnX samples, all Mn atoms are taken to interact
with each other ferromagnetically. For the nonstoichiometric
cases Ni2Mn1+xX1−x �x�0�, we assume that a fraction of the
Mn atoms on the simple-cubic lattice �corresponding to the
composition of the real sample� interacts with each other and
the other Mn atoms antiferromagnetically, whereby the initial
configuration of these Mn atoms is randomly chosen.

Regarding the magnetic interactions, we consider only
nearest-neighbor interactions �although the ab initio ex-
change coupling constants show long-range oscillatory
behavior20�. Then, the Hamiltonian describing the system can
be represented by two interacting contributions: one that de-
scribes the magnetic interactions and the other one taking
care of the structural distortion. As pointed out, for the mag-
netic part, we have chosen the q-state Potts model which
allows to simulate the magnetic phase transition from the FM
to PM phase.43 Here, q is the number of spin states. In case
of q=2, the q-state Potts model is identical with the Ising
model. In our case, we consider a three-dimensional model
with five spin states due to the fact that in Ni-Mn-X, the spin
state of Mn corresponds to S=4 /2 with 2S+1 possible spin
projections, which we describe by the five-state Potts model.

The structural part is described by the degenerated three-
state BEG model allowing for a structural transformation
from the cubic �austenitic� phase to the tetragonal �martensi-
tic� phase.39 In the original BEG model, the cubic phase has
a degeneracy of only one; in our model we have a twofold
degeneracy.

The corresponding Hamiltonian �1� consists of three con-
tributions, the magnetic part is described by Eq. �2�, the elas-
tic part by Eq. �3�, and the magnetoelastic interaction is de-
fined in Eq. �4�,

H� = Hm
� + Hel

� + Hint
� , �1�

Hm
� = − Jfm

� �
�ij�

�Si,Sj
− Jafm

� T� − Tafm
�

Tafm
� �

�ij�
�Si,Sj

− h��
i

�Si,Sg
,

�2�

Hel
� = − �

�ij�
�i� j − K��

�ij�
�1 − �i

2��1 − � j
2�

− zT� ln�p��
i

�1 − �i
2� , �3�

Hint
� = 2U��

�ij�
�Si,Sj

�1

2
− �i

2	�1

2
− � j

2	 −
1

2
U��

�ij�
�Si,Sj

.

�4�

Here, the stars indicate that the Hamiltonian contains only
renormalized parameter values defined by ratios over J �J is
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chosen such that the magnetic exchange interactions are of
the order of the calculated ab initio parameters�, which is the
energy scale of the first term in Eq. �3� for the tetragonal
distortion, so, H�=H /J, etc.

Jfm
� =

Jfm

J
, K� =

K

J
,

Jafm
� =

Jafm

J
, T� =

kBT

zJ
,

h� =
g�BHext

J
, Tafm

� =
kBTafm

zJ
,

U� =
U

J
,

where Jfm and Jafm are the FM and AF exchange constants,
respectively; T is the actual temperature and Tafm is the tem-
perature at which the AF interaction changes its sign in the
second term in Eq. �2�; z is the coordination number of a
given site; �Si,Sj

is the Kronecker symbol which limits the
spin-spin interaction to interactions between the same q state
only �we have adopted the notation in Ref. 44 for the spin-
spin interactions� and the sum is over nearest neighbors; Sg is
a kind of a ghost spin, whose direction is that of the external
magnetic field, a spin parallel to the ghost spin is favored by
positive Hext, see Ref. 44; J and K are the exchange constants
of the structural Hamiltonian �3�, where p is the degeneracy
factor and U in Eq. �4� is the strength of the magnetoelastic
interaction; finally, g is the Landé factor, �B is Bohr’s mag-
neton, and kB is the Boltzmann constant. The variable �i=1,
0, and −1 represents the deformation state at each site, where
�i=0 denotes the undistorted phase and �i= �1 the distorted
phases. The coordination number z is six, since we do not
consider the Ni and X atoms explicitly. Thus the model can
be considered as the simplest model to account for the exis-
tence of metamagnetic states and associated first-order-like
magnetic phase transitions. Depending on the parameters, the
martensitic transformation accompanying the increase in AF
interactions below Tafm can also be a first-order-like transi-
tion. At least, this guarantees the occurrence of a combined
magnetostructural transition.

As stated above, we consider a three-dimensional cubic
lattice. All sites of the lattice are occupied by magnetic Mn
atoms. For stoichiometric Ni2MnX, all Mn atoms interact FM
with each other; while for nonstoichiometric Ni2Mn1+xX1−x, a
fraction of Mn atoms on this lattice interacts AF with each
other and the remaining Mn atoms. The initial configuration
of these Mn atoms has been chosen randomly with the total
number determined from the experimental compositions. The
remaining Mn spins interact ferromagnetically as for the
stoichiometric case. This is modeled by Eq. �2�. In addition,
Eq. �2� contains a magnetic-field term.

The AF interaction term in Eq. �2� limits the AF interac-
tions to the low-temperature phase. For T	Tafm, i.e., T�

	Tafm
� , this interaction term will change sign resulting in

additional FM interactions. Accordingly, above this tempera-
ture, enhanced FM interaction between all Mn atoms occurs.

Since this means that there will be no transition from FM
austenite to PM austenite, we allow the maximal value of the
factor �T�−Tafm

� � /Tafm
� to be in unity, i.e., for temperatures

T�	2Tafm
� the prefactor of the second term in Eq. �2� is

assumed not to depend on temperature any more and is set
equal to −Jafm

� . By this, we achieve simultaneous magnetic
and martensitic phase transitions. Moreover, the Hamiltonian
may lead to several magnetic phase transitions from the
high-temperature PM phase to different magneto-ordered
phases with decreasing temperature such as the FM and AF
phases or mixed FM and AF phases. The critical tempera-
tures will in each case be determined by the degree of com-
petition between FM and AF interactions depending on the
strengths of exchange coupling constants.

With respect to the elastic part of the Hamiltonian �3�, the
first term characterizes the interaction between single strains
�i in the tetragonal �martensitic� phase. The second term
defines the interaction between single strains �i in the cubic
�austenitic� phase. Large values of K� will stabilize the pure
cubic phase in which �i=0 holds. Moreover, the parameter
K� and the degeneracy p of the zero state control the order of
the transition, which changes from second order �for low
values of K�� to first order. In case of low values of K�, the
cubic phase will be stabilized in the high-temperature region
where we find an equal population of the strain variables
�i=0 and �1.39 The last term in Eq. �3� characterizes a
temperature-dependent degeneracy factor p for the cubic
phase or, in other words, this term defines a temperature-
dependent crystal field.45 As in the work of Ref. 39, the
Hamiltonian �3� describes the transition from the high-
temperature cubic �austenitic� phase to the low-temperature
tetragonal �martensitic� phase with decreasing temperature
where the transition temperature is determined by K�. Taking
into account the magnetoelastic part �4� of the Hamiltonian
allows not only for a structural phase transition to the mar-
tensitic phase �tetragonal phase with strains �i= +1 or −1�
but also allows to describe the premartensitic phase �average
cubic phase with equal parts of strains �i= �1 and 0.39�

To summarize, the extended Potts model Hamiltonian in
Eqs. �1�–�4� allows to describe the different structural, mag-
netic, as well as the coupled magnetostructural phase transi-
tions as they are observed in experiments. In order to calcu-
late the mean energy for a given temperature, we use the
same algorithm as in Ref. 46: �a� Generate the initial spin
configuration �the ferromagnetically ordered state� and the
initial strain configuration �the tetragonal state, one of the
martensitic variants�. Calculate the energy of the initial con-
figuration H1 according to Eq. �1�. �b� Select a particular site
i and randomly change the values of the spin state q and
strain �i. �c� Calculate the energy for this new configuration
�H2� according to Eq. �1�. �d� If H2�H1, accept the new
configuration with energy H2 and go to step �h�. �e� If H2
	H1, calculate the probability factor exp�−�H /kBT�. �f�
Generate a random number r such that 0�r�1. �g� If r
�exp�−�H /kBT�, accept the new configuration with energy
H2, else preserve the old configuration of spin and strain and
return to step �b�. �h� Move to the next site, change at ran-
dom the values of the spin state q and deformation �i, and
return to step �c�. �i� Repeat the entire process until all the
lattice sites are swept. The whole process of the partition of
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the lattice is described by one Monte Carlo step. For a given
temperature, the mean energy �H� and mean-squared energy
�H2� are calculated by using

�H�� =
1

Nc − N0
�

i	N0

Nc

Hi
�,

�H�2� =
1

Nc − N0
�

i	N0

Nc

Hi
�2, �5�

where Nc is the total number of Monte Carlo steps, N0 is the
number of Monte Carlo steps which are used for the thermal-
ization; the index i denotes the Monte Carlo step.

In the q-state Potts model, the process of calculating the
magnetization of the whole system per Monte Carlo step
differs from the case of the Ising model. As is well known,
for the Ising model for one Monte Carlo step, the spin aver-
age is calculated by summing over all spins throughout the
lattice. For the q-state Potts model for one Monte Carlo step,
it is necessary to calculate the maximal number of sites on
the lattice having the similar magnetic state Nmax. Thus, the
mean value of Nmax is calculated by summing the averages of
all Monte Carlo steps,

�Nmax� =
1

Nc − N0
�

i	N0

Nc

�Nmax�i. �6�

Then, for the q-state Potts model, the magnetization of the
system at a given temperature is calculated by

m =
1

L3

qNmax − NmagL
3

q − 1
, �7�

where L is the linear size of the system �L3=N�, q is the
number of magnetic states, Nmax is the maximal number of
same magnetic states on the lattice, and Nmag is the number
of magnetic atoms.

As in the BEG model used in Ref. 39, we define the strain
order parameter in the following way:


 =
1

N
�

1

N

�i. �8�

For the degenerate BEG model, we have two cubic states in
which the parameter 
 is equal to zero. For the first cubic
state, we have equal population of strain variables �i=0 and
�1. This case corresponds to an average cubic phase, which
we define as premartensitic phase. The second state is a pure
cubic phase in which we have �i=0. For 
=1, we find the

tetragonal phase for one of the variants �i=1 or −1.
With respect to material parameters, the magnetic part of

the specific heat and susceptibilities associated with fluctua-
tions of the order parameters have yet to be calculated, but
may be obtained from

Cmag
� �T�,h�� =

1

N

�H�2� − �H��2

T�2 , �9�

�m�T�,h�� =
�m2� − �m�2

T�
, �10�

�
�T�,h�� =
�
2� − �
�2

T�
. �11�

III. NUMERICAL RESULTS FOR MAGNETIC HEUSLER
ALLOYS

In the following, we discuss numerical results for
Ni-Mn-X alloys obtained by Monte Carlo simulations using
the extended Potts model. The corresponding equilibrium
simulations have been carried out using the standard Me-
tropolis algorithm. Changes in the spin states q and �i are
treated independently and are accepted or rejected according
to the single-site transition probability W=min
1,
exp�−�H� /T���. For the simulations of the three-
dimensional cubic lattice, we used periodic boundary condi-
tions and six nearest neighbors for each site. The number of
sites in the lattice was taken to be N=153. The distribution of
the Mn atoms with AF interactions is chosen at random but
its total number is determined from the experimental compo-
sition of Ni-Mn-X. The time unit is one Monte Carlo step,
which consists of N attempts to change the q and �i vari-
ables. For a given temperature, the number of Monte Carlo
steps at each site varies between 105 and 106. We start the
Monte Carlo simulations from the FM martensite phase with
q=2 and �i=1. The various quantities are averaged over 400
configurations, each taken after every 100 Monte Carlo steps
and discarding the first 104 Monte Carlo steps for equilibra-
tion. The degeneracy factor was taken as p=2, Landé factor
was taken as g=2, and the number of q states was equal to 5.
In order to find the spin state at each lattice site, we choose a
random number r such that 0�r�1 and fix the value of q
according to the scheme: if 0�r�n /5 then q=n where n
=1. . .5.

In the Monte Carlo simulations we adopted the parameter
values listed in Table II in order to describe the magnetic and

TABLE II. Model parameters for the Heusler alloys Ni-Mn-X �X=In,Sn,Sb� in meV used in the Monte
Carlo simulations for the extended Potts model defined in Eqs. �1�–�4�.

J Jfm Jafm U K Tafm

Ni50Mn35Sn15 1.35 3.1 3.24 −0.135 −0.135 1.89

Ni50Mn37.5Sb12.5 1.67 4.68 3.67 −0.835 −0.167 2.37

Ni50Mn34.95In15.05 1.58 3.16 3.48 −0.32 −0.24 2.26

Ni45Co5Mn36.6In13.4 1.68 0 4.03 −0.588 −0.84 2.37
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structural properties of Ni-Mn-X alloys in an optimal way.
As explained, all model parameters are renormalized param-
eter values defined by ratios over the structural exchange
constant J with J	0. The actual values of the model param-
eters used in the simulations have been chosen in the follow-
ing way. The information about the approximate value of the
structural exchange interaction was taken from experimental
data of the phonon-dispersion curves of Ni-Mn-Ga
alloys.40,42 As is known from Ref. 42, the exchange constant
J is proportional to the energy of the soft phonon and for
Ni-Mn-Ga with Tm�284 K, TC�364 K the value of J at
the phase-transition temperature is of the order of 2 meV.
Note that this value of the exchange constant J can be ob-
tained from the Monte Carlo calculations of the reduced mar-
tensitic transition temperature Tm

� . According to the Monte
Carlo calculations in Ref. 39, the reduced temperature in
martensitic transition Tm

� in Ni-Mn-Ga is �2.25. Taking into
account the experimental value for the martensitic transition
temperature of Ni-Mn-Ga from Ref. 42, Tm�284 K, we find
for the lattice exchange constant J=kBTm /zTm

� �2.7 meV for
z=4.

For estimating the values of J for the different alloys in
Table II, we used the same method: for each alloy, we deter-
mined the reduced temperature Tm

� in the martensitic transi-
tion from the Monte Carlo simulations. From this, we ob-
tained the ratio Tm /Tm

� , where Tm is the experimental
martensitic transition temperature for each alloy. �So, the ex-
perimental value of Tm for each system is used as a fit pa-
rameter.� Finally we determine the lattice exchange constant
J by using J=kBTm /zTm

� with z=6 for the cubic lattice. The
calculated exchange constants J for different alloys are listed
in Table II. The knowledge of J allows us to express the
different parameters values in meV, which are also given in
Table II. As can be seen, these values nearly coincide with
values obtained for the magnetic interactions by ab initio
calculations.20 Furthermore, in order to determine K�, which
characterizes the martensitic transition, and the value of the
magnetoelastic interaction U�, we have used the following
conditions: Jfm

� 	0, Jafm
� 	0, U��0, Jfm

� +U�	0, and K�

�0.39 In this context, we would like to note that for an
appropriate value of K� with K�	0 �in the BEG model�
three phase transitions are possible with increasing tempera-
ture: the martensitic transition from the tetragonal phase to
the quasicubic one, the premartensitic transition from the
quasicubic phase to the cubic one at TI, and the magnetic
transition from the FM phase to the PM one with a sequence
of transitions as Tm

� �TI
��TC

� .39 Since the premartensitic
transition in Ni-Mn-X alloys has not been observed experi-
mentally, we simply choose K��0. In the simulations, we fix
the value of the FM and AF interactions, while for the dif-
ference between Tm

� and TC
� , we have used different values of

U�, K�, and Tafm
� for the different alloys under consideration.

Computational results are presented in Figs. 6–8. In Fig.
6, the top panel shows the simulations results while the lower
panel presents the experimental data taken from Ref. 22 for
Ni50Mn35Sn15 in an external magnetic field of 0.01 T. The
simulations reproduce the experimental trends and yield two
phase transitions at �320 K �T��3.4� and �183 K �T�

�1.95�, respectively. The first transition is from PM cubic
austenite to FM cubic austenite, the second transition is the

coupled magnetostructural phase transition from FM cubic
austenite to mixed FM-AF tetragonal martensite. The behav-
ior of the strain order parameter 
 shows the onset of the
structural phase deformation at �183 K �T��1.95�. This
transition is also accompanied by a change in sign of the
exchange integral from FM to AF interaction; see second
term in Eq. �2�. For temperatures below the structural tran-
sition, the corresponding term describes AF interactions. In
the martensitic state, the concentration of Mn atoms which
interact antiferromagnetically with each other and with the
remaining Mn atoms is 40%. In the austenitic phase, these
40% of Mn atoms begins to interact ferromagnetically with
each other and with the remaining Mn atoms.

Figure 7 shows the magnetization and the strain as a func-
tion of reduced temperature for Ni50Mn37.5Sb12.5 in the ab-
sence of a magnetic field. The two magnetic phase transitions
are now at T��3.07 and at T��2.45, respectively. We obtain
from the simulations a PM-FM transition in the cubic state at
T��3.07. The second transition at T��2.45 describes the
FM to mixed FM-AF phase transition which is again accom-
panied by a tetragonal transformation. The decrease in mag-
netization in the martensitic state results again from the in-
fluence of the AF exchange interactions. Figure 7 shows also
the experimental values taken from Ref. 23.
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FIG. 6. �Color online� Top panel: magnetization in units of
�B /atom and tetragonal distortion 
 as a function of the reduced
temperature T�=kBT / �zJ� obtained by Potts model Monte Carlo
simulations for Ni50Mn35Sn15. Magnetization and strain are marked
by filled �blue� circles and solid line, respectively. Lower panel:
experimental temperature dependence of magnetization taken from
Ref. 22.
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In Fig. 8, we show theoretical and experimental results for
Ni50Mn34.95In15.05 for the case of an external magnetic field
of 0.1 T. We observe here three phase transitions at 330
�T��3.0�, 280 �T��2.55�, and 200 K �T��1.82�, respec-
tively. At 330 K �T��3.0�, we find the PM-FM transition in
the cubic state. The second transition is the structural transi-
tion from the FM cubic state to the PM or AF tetragonal
phase. The third transition is the magnetic phase transition in
the tetragonal state. The decrease in magnetization in the
low-temperature FM martensitic state is again the influence
of AF exchange on the FM spin system. The experimental
data in Fig. 8 have been taken from Ref. 47.

For application in refrigeration devices, higher transition
temperatures are needed and intense research is going on to
find new magnetic Heusler alloys allowing for the construc-
tion of shape memory or refrigeration devices at tempera-
tures higher than room temperature. One possibility to obtain
higher transition temperatures is to insert magnetic transition
metal or rare-earth ions with a large spin moments to achieve
higher working temperatures. Figure 9 shows simulations re-
sults for the case that 5 at. % Ni have been replaced by Co,
whereby the experimental data have been taken from Ref. 6.

We note that an additional effect is associated when in-
corporating Co. It is known from experimental studies that
adding Co to Ni-Mn-In will lead to the disappearance of the

FM phase and the onset of AF in the low-temperature mar-
tensitic phase. In Fig. 9, we can observe two phase transi-
tions at 380 �T��3.26� and 300 K �T��2.57�, respectively.
The first transition is the magnetic transition from the cubic
PM state to the cubic FM one. The second transition is as-
sociated with the coupled magnetostructural transition from
the cubic FM state to the tetragonal AF one. Since the mar-
tensitic phase is now AF ordered, we have switched off the
FM interaction, i.e., the first term in Eq. �2�, in the Monte
Carlo simulations.

Although, we have chosen parameters for the effective
Hamiltonian which partially rely on ab initio calculations,
small variations in the parameters were chosen such that the
experimental results were reproduced in an optimal way. The
general agreement with experiment with respect to the repro-
duction of two first-order phase transitions shows that the
model seems to contain indeed the essential terms in order to
describe the magnetic Heusler alloys over the entire phase
diagram.

In order to test the predictability of our model more pre-
cisely, we have tried to describe the change in measured
magnetization curves with composition for one system, only
by allowing K� to vary in order to obtain the experimental
values for the structural transition, but leaving all other pa-
rameters in the Hamiltonian unchanged. We have chosen

0 1 2 3 4
Reduced temperature (T*)

0

1

2

3

4
M
ag

ne
tiz

at
io
n

B
/M

n)

0

1

2

3

4
(µ

0.0

0.2

0.4

0.6

0.8

1.0

T
et
ra
go

na
ld

is
to
rt
io
n

0

0.2

0.4

0.6

0.8

1 (ε
)

(Potts model)

ε

Ni50Mn37.5Sb12.5

��
��
��
���������

�
�
��
�����
��
�
�
��
������
�����
��
��
����
�����
����
��
��
����
��
�
�
��
���������
��
��
��
��
��
��
��
��
��
��
��
��
��������
��
��
��
��
��
��
��
�
�
��
��
��
��
��
��
��
�����
��
��
��
��
��
��
��
��
������
���
�
��
����
��
��
���
��
��
�
�
���
����
��
��
����
����
����
��
��
������
��
��
��
��
��
�
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
�
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�

�
�
��
��
��
��
��
��
��
�
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��

0 100 200 300 400
Temperature (K)

0

2

4

6

8

10

M
ag

ne
tiz

at
io
n
(e
m
u/
g)

(exp.)
Ni50Mn37.5Sb12.5

(a)

(b)

FIG. 7. �Color online� Top panel: Potts model simulation results
showing the variation in magnetization �circles� and strain �tetrag-
onal distortion, solid line� as a function of reduced temperature T�

for Ni50Mn37.5Sb12.5. Lower panel: experimental temperature de-
pendence of magnetization taken from Ref. 23.
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FIG. 8. �Color online� Top panel: results of Potts model Monte
Carlo simulations of magnetization �circles� and strain �tetragonal
distortion, solid line� as a function of the reduce temperature T� for
Ni50Mn34.95In15.05. Lower panel: experimental results taken from
Ref. 47.
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Ni50Mn25+xSb25−x, for which the magnetization was recently
measured for different compositions.24 As is obvious from
Fig. 10, there is some overall agreement with the behavior of
the experimental magnetization curves which are shown in
Fig. 3.

The corresponding parameters which we adopted for
Ni50Mn25+xSb25−x are listed in Table III. For the alloy series
of different compositions x, all parameters have been kept
constant except K which has been chosen to reproduce the
experimental value of the structural transformation.

More detailed, we estimated the values of K��x� from the
�T ,x�-phase diagram �Fig. 3� so that the values of the theo-
retical reduced temperature for the structural and AF transi-

tions coincide. For example, for x=12 �x=18� and K�

=−0.52 �K�=−130�, the values of the reduced temperatures
of the coupled structural and AF transition are approximately
equal to 2.3 and 3.0, respectively. In the simulations, the
number of lattice sites was taken to be N=153. The resulting
composition-dependent theoretical and experimental magne-
tization curves show some qualitative agreement; compare
Figs. 3 and 10.

IV. CONCLUSIONS

In this work, we have investigated the temperature depen-
dence of magnetization and strain of Ni-Mn-X �X
=In,Sn,Sb� alloys using Monte Carlo simulations for the
Heisenberg and the extended Potts model. In the latter case
the spin moments of Mn interact on a simple-cubic lattice
with coordination z=6; here, part of the Mn atoms are as-
sumed to interact only antiferromagnetically, whereby the
concentration of these Mn atoms is determined by the experi-
mental composition of Ni50Mn25+xX25−x. In addition to the
magnetic interactions, the model Hamiltonian contains struc-
tural degrees of freedom allowing for a tetragonal deforma-
tion. The magnetic subsystem is described by the q-state
Potts model. For the structural subsystem, we have used the
degenerated Blume-Emery-Griffiths model. The resulting
model allows for a combined magnetostructural phase tran-
sition of the first order. The antiferromagnetic interaction
term in the model leads to several magnetic phase transitions
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FIG. 9. �Color online� Top panel: Potts model Monte Carlo
simulation results of the variation in magnetization �circles� and
strain �tetragonal distortion, solid line� as a function of reduced
temperature T� for Ni45Co5Mn36.6In13.4. Lower panel: experimental
results taken from Ref. 6.

TABLE III. Model parameters in meV used in the Potts model Monte Carlo simulations of
Ni50Mn25+xSb25−x in an external magnetic field of Hext=1 kOe �see Fig. 10�.

J Jfm Jafm U K Tafm

Ni50Mn37Sb13 1.74 4.44 3.92 −1.57 −0.52 2.33

Ni50Mn38.5Sb11.5 1.74 4.44 3.92 −1.57 −2.61 2.33

Ni50Mn39Sb11 1.74 4.44 3.92 −1.57 −5.39 2.33

Ni50Mn40Sb10 1.74 4.44 3.92 −1.57 −26.9 2.33

Ni50Mn43Sb7 1.74 4.44 3.92 −1.57 −130 2.33
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from the high-temperature paramagnetic phase to different
magneto-ordered phases with decreasing temperature such as
the ferromagnetic phase, the antiferromagnetic phase, or a
mixed ferro/antiferromagnetic phase. The corresponding
temperatures of these phase transitions are determined by the
competition of ferromagnetic and antiferromagnetic ex-
change constants. The degenerated BEG model allows to de-
scribe the transition from the high-temperature cubic �auste-
nitic� phase to the low-temperature tetragonal �martensitic�
phase. In each alloy case, the experimental value of the mar-
tensitic transformation temperature Tm has been taken as a
main fitting parameter, although, in general, the parameter
values used in the Potts model Monte Carlo simulations are
not too far off from corresponding ab initio values.

The comparison of results of simulations and experiment
is satisfying, in spite of the fact that a fully self-consistent ab
initio kind of treatment as well as the use of the actual com-
plex lattice of four interpenetrating fcc lattices still need to
be undertaken. We also expect that the model Hamiltonian
may successfully be used in the investigation of the magnetic
shape memory and the magnetocaloric effect.

A final remark concerns the usefulness of the present
model to predict different magnetic Heusler alloys which are
better suited for applications due to higher Curie and marten-
sitic transition temperatures. In particular, for magnetocaloric
devices one would need the magnetostructural transition to
occur around room temperature. It is obvious from the simu-
lation of the Co-based system shown in Fig. 8 that this is
indeed possible and a close look at Table II allows also

speculations about what parameters should be changed in
order to achieve better alloys of technological relevance.
However, we would also like to point out that this kind of
combinatorial materials research can only be achieved by
hand in hand laborious ab initio calculations. How subtle
changes in the composition, in this case the addition of Co,
might change the finite-temperature materials parameters
have been discussed in Ref. 48. Another promising route
which we have started is using ab initio calculations for bi-
nary transition-metal alloys which show metamagnetic and
martensitic tendencies such as Fe-Mn, Fe-Ni, Ni-Mn, Fe-Pd,
and Fe-Pt and subsequently optimizing the alloy properties
by adding a third element; see, for instance, the work in Ref.
49. Ab initio calculations along these lines have been started.
In this context, accompanying model calculations as in this
paper might help obtain suggestions for combining different
materials in an optimal way without doing tedious ab initio
calculations for each case.
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